Introduction to Supersymmetric Theory of Stochastics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Funaional Integration for Solving the Schroedinger Equation
Comitato Nazionale Energia Nucleare Funaional Integration for Solving the Schroedinger Equation A. BOVE. G. FANO. A.G. TEOLIS RT/FIMÀ(7$ Comitato Nazionale Energia Nucleare Funaional Integration for Solving the Schroedinger Equation A. BOVE, G.FANO, A.G.TEOLIS 3 1. INTRODUCTION Vesto pervenuto il 2 agosto 197) It ia well-known (aee e.g. tei. [lj - |3| ) that the infinite-diaeneional r«nctional integration ia a powerful tool in all the evolution processes toth of the type of the heat -tanefer or Scbroediager equation. Since the 'ieid of applications of functional integration ia rapidly increasing, it *«*ae dcairahle to study the «stood from the nuaerical point of view, at leaat in siaple caaea. Such a orograa baa been already carried out by Cria* and Scorer (ace ref. |«| - |7| ), via Monte-Carlo techniques. We use extensively an iteration aethod which coneiecs in successively squa£ ing < denaicy matrix (aee Eq.(9)), since in principle ic allows a great accuracy. This aetbod was used only tarely before (aee ref. |4| ). Fur- chersjore we give an catiaate of che error (e«e Eqs. (U),(26)) boch in Che caaa of Wiener and unleabeck-Ometein integral. Contrary to the cur rent opinion (aae ref. |13| ), we find that the last integral ia too sen sitive to the choice of the parameter appearing in the haraonic oscilla tor can, in order to be useful except in particular caaea. In this paper we study the one-particle spherically sysssetric case; an application to the three nucleon probUa is in progress (sea ref. |U| ). St»wp«wirìf^m<'oUN)p^woMG>miutoN«i»OMtop«fl'Ht>p>i«Wi*faif»,Piijl(Mi^fcri \ptt,mt><r\A, i uwh P.ei#*mià, Uffcio Eanfeai SaMfiM», " ~ Hot*, Vi.1. -
Chaotic Decompositions in Z2-Graded Quantum Stochastic Calculus
QUANTUM PROBABILITY BANACH CENTER PUBLICATIONS, VOLUME 43 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1998 CHAOTIC DECOMPOSITIONS IN Z2-GRADED QUANTUM STOCHASTIC CALCULUS TIMOTHY M. W. EYRE Department of Mathematics, University of Nottingham Nottingham, NG7 2RD, UK E-mail: [email protected] Abstract. A brief introduction to Z2-graded quantum stochastic calculus is given. By inducing a superalgebraic structure on the space of iterated integrals and using the heuristic classical relation df(Λ) = f(Λ+dΛ)−f(Λ) we provide an explicit formula for chaotic expansions of polynomials of the integrator processes of Z2-graded quantum stochastic calculus. 1. Introduction. A theory of Z2-graded quantum stochastic calculus was was in- troduced in [EH] as a generalisation of the one-dimensional Boson-Fermion unification result of quantum stochastic calculus given in [HP2]. Of particular interest in Z2-graded quantum stochastic calculus is the result that the integrators of the theory provide a time-indexed family of representations of a broad class of Lie superalgebras. The notion of a Lie superalgebra was introduced in [K] and has received considerable attention since. It is essentially a Z2-graded analogue of the notion of a Lie algebra with a bracket that is, in a certain sense, partly a commutator and partly an anticommutator. Another work on Lie superalgebras is [S] and general superalgebras are treated in [C,S]. The Lie algebra representation properties of ungraded quantum stochastic calculus enabled an explicit formula for the chaotic expansion of elements of an associated uni- versal enveloping algebra to be developed in [HPu]. -
НОВОСИБИРСК Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia
ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им. Г.И. Будкера СО РАН Sudker Institute of Nuclear Physics P.G. Silvestrcv CONSTRAINED INSTANTON AND BARYON NUMBER NONCONSERVATION AT HIGH ENERGIES BIJ'DKERINP «292 НОВОСИБИРСК Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia P.G.SUvestrov CONSTRAINED INSTANTON AND BARYON NUMBER NON-CONSERVATION AT HIGH ENERGIES BUDKERINP 92-92 NOVOSIBIRSK 1992 Constrained Instanton and Baryon Number NonConservation at High Energies P.G.Silvestrov1 Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia Abstract The total cross section for baryon number violating processes at high energies is usually parametrized as <r«,toi oe exp(—.F(e)), where 5 = Л/З/EQ EQ = у/^ттпш/tx. In the present paper the third nontrivial term of the expansion is obtain^. The unknown corrections to F{e) are expected to be of 8 3 2 the order of c ' , but have neither (mhfmw) , nor log(e) enhance ment. The .total cross section is extremely sensitive to the value of single Instanton action. The correction to Instanton action A5 ~ (mp)* log(mp)/</2 is found (p is the Instanton radius). For sufficiently heavy Higgs boson the pdependent part of the Instanton action is changed drastically, in this case even the leading contribution to F(e), responsible for a growth of cross section due to the multiple produc tion of classical Wbosons, is changed: ©Budker Institute of Nuclear Physics 'етаЦ address! PStt.VESTBOV®INP.NSK.SU 1 Introduction A few years ago it was recognized, that the total crosssection for baryon 1БЭ number violating processes, which is small like ехр(4т/а) as 10~ [1] 2 (where a = р /(4тг)) at low energies, may become unsuppressed at TeV energies [2, 3, 4]. -
A Stochastic Fractional Calculus with Applications to Variational Principles
fractal and fractional Article A Stochastic Fractional Calculus with Applications to Variational Principles Houssine Zine †,‡ and Delfim F. M. Torres *,‡ Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] * Correspondence: delfi[email protected] † This research is part of first author’s Ph.D. project, which is carried out at the University of Aveiro under the Doctoral Program in Applied Mathematics of Universities of Minho, Aveiro, and Porto (MAP). ‡ These authors contributed equally to this work. Received: 19 May 2020; Accepted: 30 July 2020; Published: 1 August 2020 Abstract: We introduce a stochastic fractional calculus. As an application, we present a stochastic fractional calculus of variations, which generalizes the fractional calculus of variations to stochastic processes. A stochastic fractional Euler–Lagrange equation is obtained, extending those available in the literature for the classical, fractional, and stochastic calculus of variations. To illustrate our main theoretical result, we discuss two examples: one derived from quantum mechanics, the second validated by an adequate numerical simulation. Keywords: fractional derivatives and integrals; stochastic processes; calculus of variations MSC: 26A33; 49K05; 60H10 1. Introduction A stochastic calculus of variations, which generalizes the ordinary calculus of variations to stochastic processes, was introduced in 1981 by Yasue, generalizing the Euler–Lagrange equation and giving interesting applications to quantum mechanics [1]. Recently, stochastic variational differential equations have been analyzed for modeling infectious diseases [2,3], and stochastic processes have shown to be increasingly important in optimization [4]. In 1996, fifteen years after Yasue’s pioneer work [1], the theory of the calculus of variations evolved in order to include fractional operators and better describe non-conservative systems in mechanics [5]. -
A Short History of Stochastic Integration and Mathematical Finance
A Festschrift for Herman Rubin Institute of Mathematical Statistics Lecture Notes – Monograph Series Vol. 45 (2004) 75–91 c Institute of Mathematical Statistics, 2004 A short history of stochastic integration and mathematical finance: The early years, 1880–1970 Robert Jarrow1 and Philip Protter∗1 Cornell University Abstract: We present a history of the development of the theory of Stochastic Integration, starting from its roots with Brownian motion, up to the introduc- tion of semimartingales and the independence of the theory from an underlying Markov process framework. We show how the development has influenced and in turn been influenced by the development of Mathematical Finance Theory. The calendar period is from 1880 to 1970. The history of stochastic integration and the modelling of risky asset prices both begin with Brownian motion, so let us begin there too. The earliest attempts to model Brownian motion mathematically can be traced to three sources, each of which knew nothing about the others: the first was that of T. N. Thiele of Copen- hagen, who effectively created a model of Brownian motion while studying time series in 1880 [81].2; the second was that of L. Bachelier of Paris, who created a model of Brownian motion while deriving the dynamic behavior of the Paris stock market, in 1900 (see, [1, 2, 11]); and the third was that of A. Einstein, who proposed a model of the motion of small particles suspended in a liquid, in an attempt to convince other physicists of the molecular nature of matter, in 1905 [21](See [64] for a discussion of Einstein’s model and his motivations.) Of these three models, those of Thiele and Bachelier had little impact for a long time, while that of Einstein was immediately influential. -
Informal Introduction to Stochastic Calculus 1
MATH 425 PART V: INFORMAL INTRODUCTION TO STOCHASTIC CALCULUS G. BERKOLAIKO 1. Motivation: how to model price paths Differential equations have long been an efficient tool to model evolution of various mechanical systems. At the start of 20th century, however, science started to tackle modeling of systems driven by probabilistic effects, such as stock market (the work of Bachelier) or motion of small particles suspended in liquid (the work of Einstein and Smoluchowski). For us, the motivating questions are: Is there an equation describing the evolution of a stock price? And, perhaps more applicably, how can we simulate numerically a seemingly random path taken by the stock price? Example 1.1. We have seen in previous sections that we can model the distribution of stock prices at time t as p 2 St = S0 exp (µ − σ =2)t + σ tY ; (1.1) where Y is standard normal random variable. So perhaps, for every time t we can generate a standard normal variable, substitute it into equation (1.1) and plot the resulting St as a function of t? The result is shown in Figure 1 and it definitely does not look like a price path of a stock. The underlying reason is that we used equation (1.1) to simulate prices at different time points independently. However, if t1 is close to t2, the prices cannot be completely independent. It is the change in price that we assumed (in “Efficient Market Hypothesis") to be independent of the previous price changes. 2. Wiener process Definition 2.1. Wiener process (or Brownian motion) is a random function of t, denoted Wt = Wt(!) (where ! is the underlying random event) such that (a) Wt is a.s. -
Lecture Notes on Stochastic Calculus (Part II)
Lecture Notes on Stochastic Calculus (Part II) Fabrizio Gelsomino, Olivier L´ev^eque,EPFL July 21, 2009 Contents 1 Stochastic integrals 3 1.1 Ito's integral with respect to the standard Brownian motion . 3 1.2 Wiener's integral . 4 1.3 Ito's integral with respect to a martingale . 4 2 Ito-Doeblin's formula(s) 7 2.1 First formulations . 7 2.2 Generalizations . 7 2.3 Continuous semi-martingales . 8 2.4 Integration by parts formula . 9 2.5 Back to Fisk-Stratonoviˇc'sintegral . 10 3 Stochastic differential equations (SDE's) 11 3.1 Reminder on ordinary differential equations (ODE's) . 11 3.2 Time-homogeneous SDE's . 11 3.3 Time-inhomogeneous SDE's . 13 3.4 Weak solutions . 14 4 Change of probability measure 15 4.1 Exponential martingale . 15 4.2 Change of probability measure . 15 4.3 Martingales under P and martingales under PeT ........................ 16 4.4 Girsanov's theorem . 17 4.5 First application to SDE's . 18 4.6 Second application to SDE's . 19 4.7 A particular case: the Black-Scholes model . 20 4.8 Application : pricing of a European call option (Black-Scholes formula) . 21 1 5 Relation between SDE's and PDE's 23 5.1 Forward PDE . 23 5.2 Backward PDE . 24 5.3 Generator of a diffusion . 26 5.4 Markov property . 27 5.5 Application: option pricing and hedging . 28 6 Multidimensional processes 30 6.1 Multidimensional Ito-Doeblin's formula . 30 6.2 Multidimensional SDE's . 31 6.3 Drift vector, diffusion matrix and weak solution . -
Introduction to Stochastic Calculus
Introduction Conditional Expectation Martingales Brownian motion Stochastic integral Ito formula Introduction to Stochastic Calculus Rajeeva L. Karandikar Director Chennai Mathematical Institute [email protected] [email protected] Rajeeva L. Karandikar Director, Chennai Mathematical Institute Introduction to Stochastic Calculus - 1 Introduction Conditional Expectation Martingales Brownian motion Stochastic integral Ito formula A Game Consider a gambling house. A fair coin is going to be tossed twice. A gambler has a choice of betting at two games: (i) A bet of Rs 1000 on first game yields Rs 1600 if the first toss results in a Head (H) and yields Rs 100 if the first toss results in Tail (T). (ii) A bet of Rs 1000 on the second game yields Rs 1800, Rs 300, Rs 50 and Rs 1450 if the two toss outcomes are HH,HT,TH,TT respectively. Rajeeva L. Karandikar Director, Chennai Mathematical Institute Introduction to Stochastic Calculus - 2 Introduction Conditional Expectation Martingales Brownian motion Stochastic integral Ito formula Rajeeva L. Karandikar Director, Chennai Mathematical Institute Introduction to Stochastic Calculus - 3 Introduction Conditional Expectation Martingales Brownian motion Stochastic integral Ito formula A Game...... Now it can be seen that the expected return from Game 1 is Rs 850 while from Game 2 is Rs 900 and so on the whole, the gambling house is set to make money if it can get large number of players to play. The novelty of the game (designed by an expert) was lost after some time and the casino owner decided to make it more interesting: he allowed people to bet without deciding if it is for Game 1 or Game 2 and they could decide to stop or continue after first toss. -
Stochastic Calculus of Variations for Stochastic Partial Differential Equations
JOURNAL OF FUNCTIONAL ANALYSIS 79, 288-331 (1988) Stochastic Calculus of Variations for Stochastic Partial Differential Equations DANIEL OCONE* Mathematics Department, Rutgers Universiiy, New Brunswick, New Jersey 08903 Communicated by Paul Malliavin Receved December 1986 This paper develops the stochastic calculus of variations for Hilbert space-valued solutions to stochastic evolution equations whose operators satisfy a coercivity con- dition. An application is made to the solutions of a class of stochastic pde’s which includes the Zakai equation of nonlinear filtering. In particular, a Lie algebraic criterion is presented that implies that all finite-dimensional projections of the solution define random variables which admit a density. This criterion generalizes hypoelhpticity-type conditions for existence and regularity of densities for Iinite- dimensional stochastic differential equations. 0 1988 Academic Press, Inc. 1. INTRODUCTION The stochastic calculus of variation is a calculus for functionals on Wiener space based on a concept of differentiation particularly suited to the invariance properties of Wiener measure. Wiener measure on the space of continuous @-valued paths is quasi-invariant with respect to translation by a path y iff y is absolutely continuous with a square-integrable derivative. Hence, the proper definition of the derivative of a Wiener functional considers variation only in directions of such y. Using this derivative and its higher-order iterates, one can develop Wiener functional Sobolev spaces, which are analogous in most respects to Sobolev spaces of functions over R”, and these spaces provide the right context for discussing “smoothness” and regularity of Wiener functionals. In particular, functionals defined by solving stochastic differential equations driven by a Wiener process are smooth in the stochastic calculus of variations sense; they are not generally smooth in a Frechet sense, which ignores the struc- ture of Wiener measure. -
Supersymmetric Path Integrals
Communications in Commun. Math. Phys. 108, 605-629 (1987) Mathematical Physics © Springer-Verlag 1987 Supersymmetric Path Integrals John Lott* Department of Mathematics, Harvard University, Cambridge, MA 02138, USA Abstract. The supersymmetric path integral is constructed for quantum mechanical models on flat space as a supersymmetric extension of the Wiener integral. It is then pushed forward to a compact Riemannian manifold by means of a Malliavin-type construction. The relation to index theory is discussed. Introduction An interesting new branch of mathematical physics is supersymmetry. With the advent of the theory of superstrings [1], it has become important to analyze the quantum field theory of supersymmetric maps from R2 to a manifold. This should probably be done in a supersymmetric way, that is, based on the theory of supermanifolds, and in a space-time covariant way as opposed to the Hamiltonian approach. Accordingly, one wishes to make sense of supersymmetric path integrals. As a first step we study a simpler case, that of supersymmetric maps from R1 to a manifold, which gives supersymmetric quantum mechanics. As Witten has shown, supersymmetric quantum mechanics is related to the index theory of differential operators [2]. In this particular case of a supersymmetric field theory, the Witten index, which gives a criterion for dynamical supersymmetry breaking, is the ordinary index of a differential operator. If one adds the adjoint to the operator and takes the square, one obtains the Hamiltonian of the quantum mechanical theory. These indices can be formally computed by supersymmetric path integrals. For example, the Euler characteristic of a manifold M is supposed to be given by integrating e~L, with * Research supported by an NSF postdoctoral fellowship Current address: IHES, Bures-sur-Yvette, France 606 J. -
The Uncertainty Principle: Group Theoretic Approach, Possible Minimizers and Scale-Space Properties
The Uncertainty Principle: Group Theoretic Approach, Possible Minimizers and Scale-Space Properties Chen Sagiv1, Nir A. Sochen1, and Yehoshua Y. Zeevi2 1 Department of Applied Mathematics University of Tel Aviv Ramat-Aviv, Tel-Aviv 69978, Israel [email protected],[email protected] 2 Department of Electrical engineering Technion - Israel Institute of Technology Technion City, Haifa 32000, Israel [email protected] Abstract. The uncertainty principle is a fundamental concept in the context of signal and image processing, just as much as it has been in the framework of physics and more recently in harmonic analysis. Un- certainty principles can be derived by using a group theoretic approach. This approach yields also a formalism for finding functions which are the minimizers of the uncertainty principles. A general theorem which associates an uncertainty principle with a pair of self-adjoint operators is used in finding the minimizers of the uncertainty related to various groups. This study is concerned with the uncertainty principle in the context of the Weyl-Heisenberg, the SIM(2), the Affine and the Affine-Weyl- Heisenberg groups. We explore the relationship between the two-dimensional affine group and the SIM(2) group in terms of the uncertainty minimizers. The uncertainty principle is also extended to the Affine-Weyl-Heisenberg group in one dimension. Possible minimizers related to these groups are also presented and the scale-space properties of some of the minimizers are explored. 1 Introduction Various applications in signal and image processing call for deployment of a filter bank. The latter can be used for representation, de-noising and edge en- hancement, among other applications. -
Functional Integration and the Mind
Synthese (2007) 159:315–328 DOI 10.1007/s11229-007-9240-3 Functional integration and the mind Jakob Hohwy Published online: 26 September 2007 © Springer Science+Business Media B.V. 2007 Abstract Different cognitive functions recruit a number of different, often over- lapping, areas of the brain. Theories in cognitive and computational neuroscience are beginning to take this kind of functional integration into account. The contributions to this special issue consider what functional integration tells us about various aspects of the mind such as perception, language, volition, agency, and reward. Here, I consider how and why functional integration may matter for the mind; I discuss a general the- oretical framework, based on generative models, that may unify many of the debates surrounding functional integration and the mind; and I briefly introduce each of the contributions. Keywords Functional integration · Functional segregation · Interconnectivity · Phenomenology · fMRI · Generative models · Predictive coding 1 Introduction Across the diverse subdisciplines of the mind sciences, there is a growing awareness that, in order to properly understand the brain as the basis of the mind, our theorising and experimental work must to a higher degree incorporate the fact that activity in the brain, at the level of individual neurons, over neural populations, to cortical areas, is characterised by massive interconnectivity. In brain imaging science, this represents a move away from ‘blob-ology’, with a focus on local areas of activity, and towards functional integration, with a focus on the functional and dynamic causal relations between areas of activity. Similarly, in J. Hohwy (B) Department of Philosophy, Monash University, Clayton, VIC 3800, Australia e-mail: [email protected] 123 316 Synthese (2007) 159:315–328 theoretical neuroscience there is a renewed focus on the computational significance of the interaction between bottom-up and top-down neural signals.