Random Amplified Polymorphic DNA (RAPD)

Total Page:16

File Type:pdf, Size:1020Kb

Random Amplified Polymorphic DNA (RAPD) View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository Aquaculture Research, 2004, 35, 10 06 ^ 10 09 d o i: 10.1111/ j.1365 -2109.20 04.01112. x SHORT COMMUNICATION Random amplified polymorphic DNA (RAPD) fingerprinting resolves species ambiguity of domesticated clown fish (genus: Amphiprion, family: Pomacentridae) from India Pallipuram Jayasankar Central Marine Fisheries Research Institute,Tatapuram PO, Cochin, Kerala, India Correspondence: P Jayasankar, Central Marine Fisheries Research Institute, PB No1603, Ernakulam North PO, Cochin 682 018, Kerala, India. E-mail: [email protected] Clown ¢shes of the genus Amphiprion are a valuable di¡erent groups of marine ¢shes such as striped bass resource from the point of view of the aquarium (Bielawski & Pumo 1997), large mouth bass (Wil- trade. There are about 27 species distributed widely liams, Kazianis & Walter 1998), goat¢shes (Mamuris, in the Indo West Paci¢c region, extending from the Stamatis, Bani & Triantaphyllidis1999) and groupers eastern Indian Ocean to the Indonesian and Philip- (Govindaraju & Jayasankar 2004). pine archipelagos and from the coast of northwest- The domesticated species of clown ¢sh at Vizhin- ern Australia to the Ryukyu Islands of Japan (Allen jam Marine Aquarium on the southwest coast of 1980; Fautin & Allen 1992). Allen (1991) used mor- India was identi¢ed as Amphiprion chrysogaster phological similarities to designate six taxonomic (Gopakumar, George & Jasmine 1999). However, the complexes of closely related species. Apart from col- species, which was domesticated at Mandapam Ma- our variation, tooth shape, scalation on the head rine Aquarium on the southeast coast of India, was and body proportions are used to identify the species identi¢ed as A. sebae (Ignatius, Rathore, Jagdis, Kan- of clown ¢sh (Fautin & Allen1992).The occurrence of dasami & Victor 2001). Since the stock of the latter multiple colour variants in most of the species, be- was drawn from the former, the present study was sides variations in colour patterns between juveniles carried out to ratify the species status of this import- and adults of the same species, makes unambiguous ant marine ornamental ¢sh. identi¢cation in clown ¢shes di⁄cult. Caudal ¢n clippings were taken from eight in Molecular techniques have become a major tool dividual clown ¢sh each from Mandapam Marine for systematic ichthyologists and may also be useful Aquarium (65^117mm total length) and Vizhinjam to ¢shery biologists for rati¢cation of taxonomic prob- Marine Aquarium (38^108 mm total length). Liver lems at species and population levels (Chow, Clarke tissues of 8 individuals of A. chrysogaster, collected & Walsh 1993). Random ampli¢ed polymorphic DNA from Mauritius waters, were obtained from Dr Joel El- (RAPD) technique allows detection of DNA poly- liot (Biology Department, University of Puget Sound, morphisms by randomly amplifying multiple regions Tacoma, WA, USA). Morphological identi¢cation of the genome by PCR using single arbitrary primers of the clown ¢sh was done based on the description designed independent of target DNA sequence of Fautin and Allen (1992). Original photographs (Welsh & McClelland 1990; Williams, Kubelik, Livak, and type specimens of domesticated clown ¢sh Rafalski & Tingey1990; Hardys, Balick & Schierwater species fromVizhinjam and Mandapam aquaria were 1992). Random ampli¢ed polymorphic DNA markers sent to Dr Gerald Allen for con¢rmation of species have been used to investigate the taxonomic status of identity. 10 06 r 2004 Blackwell Publishing Ltd Aquaculture Research, 2004, 35, 1006^1009 RAPD ¢ngerprinting of domesticated clown ¢sh from India P Jayasankar Extraction of genomic DNA and RAPD ampli¢ca- ter analysis. For this, the unweighted pair-group tion were done as per Govindaraju and Jayasankar method with arithmetic (UPGMA) (Sneath & Sokal (2004). Initially, a total of 15 primers from kits A and 1973) contained in the NEIGHBOR program of PHYLIP F of Operon Technologies (Alameda, CA, USA) were ver 3.57c (Department of Genome Science, University used to amplify the DNA. Based on repeatability and of Washington, Seattle, WA, USA), based on Nei’s robustness of the loci generated by them, the ampli¢- (1978) genetic distance values calculated for all pri- cation results of four primers, OPA 08 (50 GTGACG- mers, was used. Data resampling (1000 replicates) TAGG 30), OPA 10 (50 GTGATCGCAG 30), OPF 02 (50 and matrix calculations for bootstrap analysis were GAGGATCCCT 30) and OPF 03 (50 CCTGATCACC 30) performed using WinBoot, an UPGMA-based pro- were the only ones analysed. The size of RAPD bands gram (Yap & Nelson1996). was determined by comparison with a l DNA diges- In order to con¢rm the repeatability of the results, ted with EcoRI/HindIII molecular weight marker. For each tissue was ampli¢ed with each of the primers at all the primers, presence (1) or absence (0), of a frag- least three times and considered the loci for further ment was scored and RAPD patterns of individuals analysis only if they occurred in all the three ampli¢- were compared within and between species. Biopro¢l cations. The four primers generated three to nine (Bio-1D,Vilber Lourmet, Cedex1, France) was used to stable and clear loci in the size range of 100^ calculate the fragment sizes of the RAPD bands with 3500 bp. Figure1shows the RAPD pro¢les of di¡erent reference to molecular size markers.The‘species-spe- individuals of domesticated species from India and ci¢c diagnostic’ markers are de¢ned in the present Mauritius generated by two of the selected primers. study as those RAPD bands which are exclusive to a The average GD (genetic distance) and SI (similarity species for a given primer. index) values were calculated for all the four primers The similarity index between all possible pairwise together. The SI value derived between Mandapam comparisons of individuals was calculated (Nei1978) and Vizhinjam samples was 0.936, as expected for and the phylogenetic relationships between indi- the same species, while that between them and viduals and populations were constructed using clus- Mauritius species was very low,0.340. Figure 1 RAPD ¢ngerprints of clown ¢sh generated by Primer OPA 08 (a) and OPF 03 (b). Lanes 1^8, eight individuals of Amphiprion sebae from Mandapam marine aquarium; lanes 9^16, 8 individuals of A. sebae from Marine Aquarium of Vizhinjam; lanes17^24, A. chrysogaster from Mauritius; lane M, DNA size marker, l HindIII/EcoRI. r 2004 Blackwell Publishing Ltd, Aquaculture Research, 35, 1006^1009 10 07 RAPD ¢ngerprinting of domesticated clown ¢sh from India P Jayasankar Aquaculture Research, 2004, 35, 1006^1009 Table 1 Species diagnostic RAPD loci (in bp) in two species of clown ¢shes Species OPA 08 OPA 10 OPF 02 OPF 03 Amphiprion sebae 1650 and 2027 947 4973 500 and 4268 A. chrysogaster 1584 500 1375, 1000 1000 and 900 RAPD, random ampli¢ed polymorphic DNA. in Indian waters but commonly occur in Mauritius waters (pers. comm.). Morphological (Fautin & Allen 1992) and RAPD ¢ngerprinting (present study) have rati¢ed the species status of the domesticated clown ¢sh in the marine aquariums of Mandapam and Vizhinjam as A. sebae. Acknowledgments I am thankful to Dr Mohan Joseph Modayil, Director, CMFRI and Dr R. Paul Raj, Head, Division of Physiol- ogy, Nutrition and Pathology for facilities and useful suggestions. Thanks are due to Dr Gerald Allen for identifying clown ¢sh specimens and to Dr Joel Elliot, Dr G. Gopakumar and Boby Ignatius for kindly pro- viding tissue samples of clown ¢sh from Mauritius, Vizhinjam and Mandapam respectively. I am also Figure 2 UPGMA dendrogram showing relationships grateful to the Indian Council of Agricultural Re- among 24 individuals of two species of Amphiprion.Based search for ¢nancial help. on genetic distance values calculated by Nei (1978) from data for all primers. Bootstrap estimates (as percentage) are indicated above the branches. MM, Mandapam; VIZ, References Vizhinjam; MR, Mauritius. Allen G.R. (1980) Anemone Fishes of theWorld: Species, Care The similarity index between all possible pair- and Breeding. Aquarium Systems, Mentor, OH, USA. A l le n G. R. (1991) Damsel Fishes of theWorld. Mergus Publish- wise comparisons of individuals from all primers was ers, Melle, Germany. calculated and phylogenetic relationship between in- Bielawski J.P. & Pumo D.E. (1997) Random ampli¢ed poly- dividuals of Mandapam,Vizhinjam and Mauritius sam- morphic DNA (RAPD) analysis of Atlantic coast stripped ples was constructed using cluster analysis (UPGMA bass. Heredity 73,32^40. contained in PHYLIP 3.57c package). The results Chow S., Clarke M.E. & Walsh P.J. (1993) PCR-RFLP analysis (Fig. 2) showed clustering of Mandapam and Vizhin- on 13 western Atlantic snapper (Subfamily Lutjanidae): a jam samples together, clearly separated from Mauri- single method for species and stock identi¢cation. United tius samples. Thus all the individuals of each species States National Marine Fisheries Service Fishery Bulletin formed monophyletic species clusters. Some RAPD 91,619^627. fragments have shown ¢xed frequencies and hence Fautin D.G. & Allen G.R. (1992) Anemone Fishes And Their they can be used as species diagnostic markers in A. Hosts Sea Anemones: A Guide forAquarists and Divers.West- ern Australian Museum, Perth,WA, Australia. sebae and A. chrysogaster (Table 1). Both the species Gopakumar G., George R.M. & Jasmine S. (1999) Breeding had at least one diagnostic marker from each primer, and larval rearing of the
Recommended publications
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Travel, Technology, and Theory: the Aesthetics of Ichthyology During the Second
    Travel, Technology, and Theory: The Aesthetics of Ichthyology during the Second Scientific Revolution Claudia Kreklau ABSTRACT By investigating the ichthyology of “foreign fishes” in the Age of Exploration and printing developments before the camera, aquariums, and Darwin, this article shows that aesthetic theory and romanticism informed and inflected ichthyology during its rapid development 1780-1830. It builds on the mutual constitution of art and science during the Second Scientific Revolution and aesthetic ways of seeing that treated beauty as an indicator of scientific truth that preceded scientific objectivity, and demonstrates that by 1839, ichthyologists operated in an ontological framework that integrated fishes into nature and located the scientific viewer in a world of natural beauty. In 1790, Immanuel Kant noted how “horrible” the sight was of “the vast ocean heaved up by storms.”1 American writer and Romantic Henry David Thoreau wrote as late as 1864 that “[t]he ocean is a wilderness reaching round the globe, wilder than a Bengal jungle, and fuller of monsters.”2 Yet in 1825, ichthyologist William Greatheed Lewis compared the “lustre” of the mackerel with that of a “diamond,” and the “crescent” on the Gilt head’s cranium with a “gold-colored” moon.3 Between 1780 and 1830, ichthyologic understandings of fishes changed profoundly. This article shows how ichthyologists and their artistic collaborators brought new scientific ways of seeing to bear on their study of “foreign fishes”4 and portrayed them as aesthetically pleasing portions of a sublime 1 natural world. “Truth,” Daston and Galison remind us, “came before and remains distinct from objectivity.” 5 During the “Second Scientific Revolution,” this period of rapid development similar to the first Scientific Revolution that preceded it, the truth of fishes was often aesthetic.6 “Drawing from nature”7 here meant seeing nature in a particular way: it was an “act of aesthetic appreciation, selection, and accentuation.
    [Show full text]
  • Ontogenetic and Phylogenetic Simplification During
    Salis et al. BMC Biology (2018) 16:90 https://doi.org/10.1186/s12915-018-0559-7 RESEARCH ARTICLE Open Access Ontogenetic and phylogenetic simplification during white stripe evolution in clownfishes Pauline Salis1, Natacha Roux1, Olivier Soulat2, David Lecchini3, Vincent Laudet1* and Bruno Frédérich4 Abstract Background: Biologists have long been fascinated by the striking diversity of complex color patterns in tropical reef fishes. However, the origins and evolution of this diversity are still poorly understood. Disentangling the evolution of simple color patterns offers the opportunity to dissect both ultimate and proximate causes underlying color diversity. Results: Here, we study clownfishes, a tribe of 30 species within the Pomacentridae that displays a relatively simple color pattern made of zero to three vertical white stripes on a dark body background. Mapping the number of white stripes on the evolutionary tree of clownfishes reveals that their color pattern diversification results from successive caudal to rostral losses of stripes. Moreover, we demonstrate that stripes always appear with a rostral to caudal stereotyped sequence during larval to juvenile transition. Drug treatments (TAE 684) during this period leads to a dose-dependent loss of stripes, demonstrating that white stripes are made of iridophores and that these cells initiate the stripe formation. Surprisingly, juveniles of several species (e.g., Amphiprion frenatus) have supplementary stripes when compared to their respective adults. These stripes disappear caudo-rostrally during the juvenile phase leading to the definitive color pattern. Remarkably, the reduction of stripe number over ontogeny matches the sequences of stripe losses during evolution, showing that color pattern diversification among clownfish lineages results from changes in developmental processes.
    [Show full text]
  • Bourmaud, 2003
    Museum d’Histoire Naturelle INVENTAIRE DE LA BIODIVERSITE MARINE RECIFALE A LA REUNION Chloé BOURMAUD Octobre 2003 Maître d’ouvrage : Association Parc Marin de la Réunion Maître d’œuvre : Laboratoire d’Ecologie Marine, ECOMAR Financement : Conseil Régional 1 SOMMAIRE Introduction ……………………………………………………………………………………3 PHASE I : DIAGNOSTIC ....................................................................................................... 5 I. Méthodologie ...................................................................................................................... 6 1. Scientifiques impliqués dans l’étude.............................................................................. 6 1.1. EXPERTS LOCAUX RENCONTRES................................................................... 6 1.2. EXPERTS HORS DEPARTEMENT CONTACTES ............................................. 6 2. Harmonisation des données............................................................................................ 6 2.1. LES SITES ET SECTEURS DU RECIF ................................................................ 7 2.2. LES UNITES GEOMORPHOLOGIQUES DU RECIF ......................................... 8 2.3. LE DEGRE DE VALIDITE DES ESPECES ......................................................... 8 2.4. LE NIVEAU D’ABONDANCE ............................................................................. 9 2.5. LES GROUPES TAXONOMIQUES ................................................................... 10 3. Conception d'un modèle de base de données ..............................................................
    [Show full text]
  • Hermaphroditism in Fish
    Tesis doctoral Evolutionary transitions, environmental correlates and life-history traits associated with the distribution of the different forms of hermaphroditism in fish Susanna Pla Quirante Tesi presentada per a optar al títol de Doctor per la Universitat Autònoma de Barcelona, programa de doctorat en Aqüicultura, del Departament de Biologia Animal, de Biologia Vegetal i Ecologia. Director: Tutor: Dr. Francesc Piferrer Circuns Dr. Lluís Tort Bardolet Departament de Recursos Marins Renovables Departament de Biologia Cel·lular, Institut de Ciències del Mar Fisiologia i Immunologia Consell Superior d’Investigacions Científiques Universitat Autònoma de Barcelona La doctoranda: Susanna Pla Quirante Barcelona, Setembre de 2019 To my mother Agraïments / Acknowledgements / Agradecimientos Vull agrair a totes aquelles persones que han aportat els seus coneixements i dedicació a fer possible aquesta tesi, tant a nivell professional com personal. Per començar, vull agrair al meu director de tesi, el Dr. Francesc Piferrer, per haver-me donat aquesta oportunitat i per haver confiat en mi des del principi. Sempre admiraré i recordaré el teu entusiasme en la ciència i de la contínua formació rebuda, tant a nivell científic com personal. Des del primer dia, a través dels teus consells i coneixements, he experimentat un continu aprenentatge que sens dubte ha derivat a una gran evolució personal. Principalment he après a identificar les meves capacitats i les meves limitacions, i a ser resolutiva davant de qualsevol adversitat. Per tant, el meu més sincer agraïment, que mai oblidaré. During the thesis, I was able to meet incredible people from the scientific world. During my stay at the University of Manchester, where I learned the techniques of phylogenetic analysis, I had one of the best professional experiences with Dr.
    [Show full text]
  • Perspectives in Mariculture
    PERSPECTIVES IN MARICULTURE Editors N. G. Menon and P. P. Pillai Central Marine Fisheries Research Institute, Cochin The Imveitigator The Marine Biological Association of India Post Box No. 1604, Tatapuram P.O., Cochin - 682014 2001 Hatchery production of the clownfish Amphiprion chrysogaster G. Gopakumar, Rani Mary Creorge and S. Jasmine Vizhinjam Research Centre of C.M.F.R.I.. Vizhinjam-695521 ABSTRACT Tropical marine aquarium fishes have demand in the international market. Clownflshes or anemonefishes are most popular among marine aquarists due to their attractive colours and interesting display of behaviour with sea anemones. A technology for the hatchery production of the clownfish, Amphiprion chrysogaster was developed for the first time in India. The broodstock maintained in the hatchery spawned frequently and methods were developedfor hatching the eggs. The hatching period was 6-7 days. A simple biological detoxifying filtration system with effective circulation was designed and fabricated for larval rearing. The larvae were fed with the rotifer Brachionus rotundiformis at a Perspectives in Mariculture concentration of 6-8 numbers per ml kept in the rearing tank for one week for the first four days. From the fifth to one month by feeding them with day onwards they were fed with a Moina mlcrura and then transferred mixture of B. rotundiformis and to grow out tanks with sea freshly hatched Artemia nauplii. anemones. By upscaling the present The larvae metamorphosed into technology, large scale hatchery Juveniles in 12 to 15 days from, the production of clownfish young ones day of hatching. Thejuveniles were could be achieved. Introduction The marine ornamental fish trade is rapidly expanding and tropical marine aquarium fishes are in great demand in the international market.
    [Show full text]
  • Luận Án Tiến Sĩ
    BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC NHA TRANG ------------oo0oo----------- NGUYỄN THỊ HẢI THANH NGHIÊN CỨU ĐẶC ĐIỂM SINH HỌC SINH SẢN VÀ THỬ NGHIỆM SẢN XUẤT GIỐNG NHÂN TẠO CÁ KHOANG CỔ YÊN NGỰA Amphiprion polymnus (Linnaeus, 1758) LUẬN ÁN TIẾN SĨ KHÁNH HÒA – 2021 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC NHA TRANG ------------oo0oo----------- NGUYỄN THỊ HẢI THANH NGHIÊN CỨU ĐẶC ĐIỂM SINH HỌC SINH SẢN VÀ THỬ NGHIỆM SẢN XUẤT GIỐNG NHÂN TẠO CÁ KHOANG CỔ YÊN NGỰA Amphiprion polymnus (Linnaeus, 1758) Chuyên ngành: Nuôi trồng thủy sản Mã số: 9620301 LUẬN ÁN TIẾN SĨ NGƯỜI HƯỚNG DẪN KHOA HỌC: 1. TS. NGÔ ANH TUẤN 2. TS. HUỲNH MINH SANG KHÁNH HÒA – 2021 LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của tôi. Một số kết quả thu được trong luận án này là thành quả nghiên cứu của Đề tài Uỷ ban Phối hợp: “Nghiên cứu sinh sản nhân tạo cá khoang cổ Amphiprion polymnus (Linnaeus, 1758) trong điều kiện thí nghiệm tại Khánh Hòa” do Phòng Sinh thái Nhiệt đới, Chi nhánh Ven biển, Trung tâm Nhiệt đới Việt - Nga triển khai trong đó tôi là người thực hiện chính. Các tài liệu tham khảo trong luận án với mục đích tổng quan làm cơ sở lý luận, so sánh, phân tích và thảo luận đều được trích dẫn đầy đủ theo quy định. Toàn bộ nội dung và kết quả trong luận án đều đảm bảo tính tin cậy, không trùng lặp và đã được chính NCS công bố trên các tạp chí chuyên ngành.
    [Show full text]
  • Diversity and Distribution of Sea Anemones in India with Special Reference to Andaman and Nicobar Islands
    RAGHUNATHAN et al.: Diversity and distribution of sea anemones......Andaman and Nicobar Islands ISSN 0375-1511269 Rec. zool. Surv. India : 114(Part-2) : 269-294, 2014 DIVERSITY AND DISTRIBUTION OF SEA ANEMONES IN INDIA WITH SPECIAL REFERENCE TO ANDAMAN AND NICOBAR ISLANDS C. RAGHUNATHAN1 R. RAGHURAMAN1 SMITANJALI CHOUDHURY1 K. VENKATARAMAN2 1Zoological Survey of India, Andaman and Nicobar Regional Centre, Port Blair-744102, Andaman and Nicobar Islands, India 2Zoological Survey of India, M-Block, New Alipore, Kolkata - 700053, India INTRODUCTION external fertilization followed by the development Sea anemones are brightly coloured, classifi ed of planktonic planula larva and settled down as under the phylum Cnidaria, inhabit coastal waters single polyp, and asexually by budding, binary throughout the world, but are particularly abundant fi ssion and pedal laceration. in tropical oceans. They are distributed in intertidal Though the sea anemone encompasses order to deep oceans and live attached with rocks, sea Actiniaria, Corallimorpharia and Ptychodactiaria, fl oor, shells and some forms burrow in the mud however due to wide distribution, and sheer or sand. They are radial symmetric with columnar numbers, especially in the intertidal region, body have a single body opening, mouth which the actiniarian sea anemones are received more is surrounded by tentacles. However, body shape attention for their potential uses in drugs and of the sea anemones is often related to the habitat pharmaceuticals as well as sentinel organisms in which they live. Sea anemones are solitary for ecological monitoring of estuarine and marine polyps and are considerably larger and heavier environment (Ross, 1967) and also played a role than the polyps of hydrozoans (Barnes, 1982).
    [Show full text]
  • Influence of Prompt First Feeding on Growth and Survival of Clownfish Amphiprion Percula Larvae
    Emir. J. Food Agric. 2012. 24 (1): 92-97 http://ejfa.info/ ANIMAL SCIENCE Influence of prompt first feeding on growth and survival of Clownfish Amphiprion percula larvae K. V. Dhaneesh*, T. T. Ajith Kumar, S. P. Divya, S. Kumaresan and T. Balasubramanian Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu, India Abstract The present study was conducted to evaluate the changes in the morphometric characteristics and survival rate of clownfish Amphiprion percula larvae with respect to different initial feeding times. The larvae started their initial feeding at 12 hr showed maximum survival (42%) and no survival was observed at 8th day when larvae started initial feeding after 24, 36 and 48 hr. Morphometric parameters such as Total length (TL), Weight (W), Head depth (HD), Body depth (BD) and Eye diameter (ED) were significantly higher in larvae which started their initial feed at 12 hr. The present study thus suggests that the first feeding of the clownfish A. percula larvae can be initiated before 12 hr, for better growth and survival. Key words: Clownfish, Growth, Initial feeding, Larval rearing, Survival Introduction The hobby of marine ornamental fish keeping been conducted in the family Pomacentridae (26 is more valuable. In the recent past, aquarium species) which is noteworthy (Olivotto et al., 2003). keeping has increased quiet a lot and more Larval rearing of marine ornamental fishes is hobbyists are interested in this lucrative trade. relatively complicated due to their small size and Among marine ornamentals, clownfish is very feeding problems, particularly first feed and popular among aquarists due to their aesthetic peculiar water conditions required in the rearing appeal and easy adaptability to captive condition.
    [Show full text]
  • Pomacan 1983 Fao Species Identification Sheets
    click for previous page POMACAN 1983 FAO SPECIES IDENTIFICATION SHEETS FISHING AREA 51 (W. Indian Ocean) POMACANTHIDAE Angelfishes Body elongate-oval to orbicular in shape, strongly compressed. Mouth very small, terminal, protrusible, the gape not extending to anterior rim of orbit; snout never produced; teeth setiform, usually arranged in brush-like bands in jaws; preoercle always with a strong spine at angle. Dorsal fin with 9 to 15 spines and 15 to 33 soft rays, continuous (never notched and sometimes, along with anal fin, greatly extended into filaments; anal fin with 3 spines and 14 to 25 soft rays. Scales ctenoid (rough to touch), ribbed, small to moderate in size, rounded to angular in shape, extending onto soft portions of vertical fins; no axillary scaly process at bases of pelvic fins; lateral line complete or nearly so. Colour: brightly coloured fishes; ground colour white, grey, yellow, orange, red, blue, black or brown; often marked with bars, stripes, or spots of white, yellow, orange, blue, black or brown. Juveniles often differently coloured than adults. continuous dorsal fin filamentous rays sometimes present mouth small, terminal, protrusible preopercular spine no scaly process filamentous rays sometimes present - 2 - FAO Sheets POMACANTHIDAE Fishing Area 51 Angelfishes inhabit shallow coral reef areas in depths above 30 to 40 m. A few species range to depths of 80 m or more. As adults they feed mainly on sponges, while juveniles eat principally algae. Species of the genus Pomacanthus grow to a relatively large size (50 to 60 cm) and are frequently seen in markets, although they are considered commercially unimportant.
    [Show full text]
  • A Review of the Movements of Fish Held in Captivity in the Reunion Island Aquarium Over a Five-Year Period Thierry Mulochau1 and Patrick Durville1,2
    SPC Live Reef Fish Information Bulletin #15 – December 2005 13 A review of the movements of fish held in captivity in the Reunion Island Aquarium over a five-year period Thierry Mulochau1 and Patrick Durville1,2 Introduction thetizing products, basket traps, bottom fishing, and scoop nets. These highly selective capture For about 20 years, the marine aquarium fish trade activities are only carried out three to four times has been showing continuous growth and now monthly and concern only two to three specimens involves major movements of wild reef fish all over on average per operation. the world (Dufour 1998; Wood 2001; Sadovy and Vincent 2002; Sadovy 2003; Wabnitz et al. 2003). During the transport phase, which lasts less than Also, the number of public aquaria displaying an hour, the fish are placed in tanks with water agi- coral reef organisms is constantly expanding, while tation and aeration systems. They are then kept in the size of display tanks is steadily increasing. To quarantine for two to eight weeks, depending on remain attractive to the public, aquarium man- their capacity to adapt. This obligatory stage agers find they must adopt innovative approaches, allows parasites to be removed from the fish, and display ever bigger and scarcer living organ- allows fish to become accustomed to a different isms. There is no accurate measure of the quantity diet from that of their natural environment, and of marine fish caught for such purposes. Given this helps mitigate the stress associated with captivity. context, there seemed to be merit in publishing a The next step is to place the fish in the display review of fish movements into and out of Reunion tanks.
    [Show full text]
  • Hatchery Production of Clark's Clownfish, Amphiprion Clarkii
    2011 2nd International Conference on Agricultural and Animal Science IPCBEE vol.22 (2011) © (2011) IACSIT Press, Singapore Hatchery Production of Clark’s Clownfish, Amphiprion clarkii (Bennett, 1830) Using Brackishwater + Swagat Ghosh , T. T. Ajith Kumar, K. Nanthinidevi and T. Balasubrananian Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India Abstract. Using the filtered brackish water as a source for broodstock maintenances, spawning and larval rearing of a reef associated clownfish, Amphiprion clarkii was investigated under captive condition, for the first time in aquaculture vista. Sub-adult of A. clarkii and sea anemones were obtained from the traders and maintained in a conditioning tank. After pair formation, they laid eggs in the spawning tank, which were sticky, capsule shaped and yellow orange in colour. The eggs were allowed to remain in the same tank till hatching, which took 7 - 8 days for incubation and the percentage of hatching was up to 93.37±3.52 (mean±SD) %. Spawning, embryonic development, hatching success, larval survival and juvenile production were noted in detail. Optimum water quality parameters were also standardized for the hatchery operations. The size range of newly hatched larvae measured 3.5 to 3.8 mm in length and they were transferred to separate larval rearing tanks. The first white band was prominent on the body between 15 - 17th days, an indication of metamorphosis. The complete metamorphosis was occurred 25th days after hatching. The larvae were initially fed with micro-algae, rotifers, Artemia nauplii and later they accepted frozen Artemia and squashed boiled meat of oysters and clams.
    [Show full text]