Letter We Call * Joseph L

Total Page:16

File Type:pdf, Size:1020Kb

Letter We Call * Joseph L FEDERATION OF AMERICAN SCIENTISTS T: 202/546-3300 1725 DeSales Street NW, Suite 600, Washington, DC 20036 www.fas.org F: 202/675-1010 [email protected] Board of Sponsors March 29, 2016 (Partial List) * Peter Agre Dear National Leaders at the Nuclear Security Summit: * Sidney Altman * Philip W. Anderson * Kenneth J. Arrow * David Baltimore * Paul Berg We Nobel Laureates applaud you for your efforts to secure vulnerable nuclear and * J. Michael Bishop * Gunther Blobel radiological materials around the world and to further reduce the risks of nuclear * Nicolaas Bloembergen * Paul Boyer and radiological terrorism. We underscore that these threats cross national * Michael S. Brown * Linda B. Buck boundaries and thus require the concerted work of all nations to prevent these Ann Pitts Carter * Martin Chalfie terrorist acts from happening. In particular, we note that in the highly polarized * Stanley Cohen * Leon N. Cooper * E. J. Corey politics in the United States, preventing nuclear and radiological terrorism has * James Cronin * Johann Deisenhofer been one of the rare points of bipartisan support. We praise the George W. Bush Sidney Drell Ann Druyan administration for its Global Threat Reduction Initiative begun in May 2004 and Paul R. Ehrlich George Field the Barack Obama administration for extending this and related nuclear security * Val L. Fitch * Jerome I. Friedman programs and for convening the Nuclear Security Summits having started in 2010. * Riccardo Giacconi * Walter Gilbert * Alfred G. Gilman * Sheldon L. Glashow * Roy J. Glauber While we encourage you to move forward on all fronts, in this letter we call * Joseph L. Goldstein * David J. Gross attention to three technical challenges that if fully resolved, could result in * Roger C. L. Guillemin * Leland H. Hartwell eventually driving the risk close to zero in three important sectors. First, as * Dudley R. Herschbach * Roald Hoffmann security experts have agreed, highly enriched uranium (HEU) is the fissile John P. Holdren * H. Robert Horvitz material with the greatest ease of use in an improvised nuclear explosive. More * David H. Hubel * Eric R. Kandel * Wolfgang Ketterle than 80 percent of the world’s HEU is devoted to military purposes including * Brian Kobilka * Leon Lederman nuclear weapons and naval nuclear propulsion. We understand politically why * Robert J. Lefkowitz * Roderick MacKinnon certain nations have resisted phasing out military HEU. We urge serious technical * Eric S. Maskin Jessica T. Mathews studies be done to investigate the transition from HEU to low enriched uranium Roy Menninger Matthew S. Meselson (LEU) fuels, which cannot be used directly in weapons, in the naval nuclear Richard A. Meserve * Mario Molina propulsion sector. Stephen S. Morse * Ferid Murad Franklin A. Neva * Ei-ichi Negishi * Douglas D. Osheroff In a related sector, we note that the U.S. National Academies of Sciences, * Arno A. Penzias * David Politzer Engineering, and Medicine issued a report in January that outlines a roadmap for George Rathjens * Burton Richter converting or shutting down the remaining 74 research reactors worldwide * Richard J. Roberts * Phillip A. Sharp (including eight in the United States) that continue to use HEU. Over the past four * K. Barry Sharpless Stanley K. Sheinbaum * Robert M. Solow decades, more than 90 research reactors have been converted to LEU or * Jack Steinberger * Thomas A. Steitz shutdown. Given the urgency of preventing nuclear terrorism, we strongly * Joseph Stiglitz * Daniel Tsui recommend sufficient national and international technical and non-technical * Harold E. Varmus Frank von Hippel resources be devoted to addressing the remaining HEU-fuelled reactors over the Robert A. Weinberg * Steven Weinberg next decade. Also because more than a dozen of these reactors are operating in * Torsten N. Wiesel * Eric Wieschaus Russia, it is essential to reengage Russian technical experts and officials despite * Frank Wilczek * Ahmed Zewail the recent downturn in political relations. Boards of Trustees and Experts * Nobel Laureate Gilman Louie Rosina Bierbaum Stephen Hamblen Charles D. Ferguson Chair Vice Chair Secretary-Treasurer President Alton Frye Robert Gard Lisa Gordon-Hagerty Martin Hellman Lawrence Krauss Martha Krebs Jan Lodal Rodney Nichols Scott Sagan Maxine Savitz Michael Telson Peter Thiel Valerie Thomas Ex officio: Robert Solow and Frank von Hippel Finally, we point to progress made by several governments and companies in developing commercially viable means of irradiation using techniques other than highly radioactive sources for blood treatment, cancer treatment, as well as medical and other scientific research. These highly radioactive sources include thousands of Curies (or more than 37,000 Gigabecquerels) of cesium-137 or cobalt-60 and would result in massive disruption and huge economic consequences if dispersed in a city. More concerted international work is needed to make commercially useful non-radioactive source alternative technologies that provide comparable benefits while eliminating the risk of radiological terrorism in this sector. We urge you to devote the necessary resources to make further substantial progress in the coming years to real risk reduction in preventing nuclear and radiological terrorism. Sincerely, Dr. Burton Richter Dr. E. J. Corey Dr. Sheldon Lee Glashow Stanford Linear Harvard University Boston University and Accelerator Center 1990 Nobel Prize in Harvard University 1976 Nobel Prize in Chemistry 1979 Nobel Prize in Physics Physics Dr. Robert Curl, Jr. Dr. Peter Agre Rice University Dr. Paul Greengard Johns Hopkins Malaria 1996 Nobel Prize in The Rockefeller University Research Institute Chemistry 2000 Nobel Prize in Johns Hopkins Bloomberg Physiology or Medicine School of Public Health Dr. Johann Deisenhofer 2003 Nobel Prize in UT Southwestern Medical Dr. David Gross Chemistry Center Kavli Institute for 1988 Nobel Prize in Theoretical Physics, UC, Dr. Bruce Beutler Chemistry Santa Barbara UT Southwestern Medical 2004 Nobel Prize in Center Dr. Andrew Fire Physics 2011 Nobel Prize in Stanford University Physiology or Medicine 2006 Nobel Prize in Dr. Roger Guillemin Physiology or Medicine Salk Institute Dr. Martin Chalfie 1977 Nobel Prize in Columbia University Dr. Jerome Friedman Physiology or Medicine 2008 Nobel Prize in MIT Chemistry 1990 Nobel Prize in Dr. Leland Hartwell Physics Fred Hutchison Cancer Dr. Leon Cooper Research Center Brown University Dr. Walter Gilbert 2001 Nobel Prize in 1972 Nobel Prize in Harvard University Physiology or Medicine Physics 1980 Nobel Prize in Chemistry Dr. Alan Heeger UC Santa Barbara 2000 Nobel Prize in Chemistry Dr. Dudley Herschbach Dr. Arno Penzias Dr. Jack Steinberger Harvard University New Enterprise Associates CERN 1986 Nobel Prize in 1978 Nobel Prize in 1988 Nobel Prize in Chemistry Physics Physics Dr. Roald Hoffmann Dr. William Phillips Dr. Daniel C. Tsui Cornell University 1997 Nobel Prize in Princeton University 1981 Nobel Prize in Physics 1998 Nobel Prize in Chemistry Physics Dr. David Politzer Dr. Wolfgang Ketterle California Institute of Dr. Steven Weinberg MIT Technology University of Texas at 2001 Nobel Prize in 2004 Nobel Prize in Austin Physics Physics 1979 Nobel Prize in Physics Dr. Brian Kobilka Dr. Richard J. Roberts Stanford University School New England Biolabs Dr. Torsten N. Wiesel of Medicine 1993 Nobel Prize in The Rockefeller University 2012 Nobel Prize in Physiology or Medicine 1981 Nobel Prize in Chemistry Physiology or Medicine Dr. Brian Schmidt Dr. John Mather Australian National Dr. David Wineland NASA’s Goddard Space University 2012 Nobel Prize in Flight Center 2011 Nobel Prize in Physics 2006 Nobel Prize in Physics Physics Dr. George F. Smoot Dr. Mario Molina Lawrence Berkeley 1995 Nobel Prize in National Laboratory Chemistry 2006 Nobel Prize in Physics Dr. Ei-ichi Negishi Purdue University 2010 Nobel Prize in Chemistry .
Recommended publications
  • Lecture Program
    EARL W. SUTHERLAND LECTURE EARL W. SUTHERLAND LECTURE The Earl W. Sutherland Lecture Series was established by the SPONSORED BY: Department of Molecular Physiology and Biophysics in 1997 DEPARTMENT OF MOLECULAR PHYSIOLOGY AND BIOPHYSICS to honor Dr. Sutherland, a former member of this department and winner of the 1971 Nobel Prize in Physiology or Medicine. This series highlights important advances in cell signaling. ROBERT J. LEFKOWITZ, MD NOBEL PRIZE IN CHEMISTRY, 2012 SPEAKERS IN THIS SERIES HAVE INCLUDED: SEVEN TRANSMEMBRANE RECEPTORS Edmond H. Fischer (1997) Alfred G. Gilman (1999) Ferid Murad (2001) Louis J. Ignarro (2003) MARCH 31, 2016 Paul Greengard (2007) 4:00 P.M. 208 LIGHT HALL Eric Kandel (2009) Roger Tsien (2011) Michael S. Brown (2013) 867-2923-Institution-Discovery Lecture Series-Lefkowitz-BK-CH.indd 1 3/11/16 9:39 AM EARL W. SUTHERLAND, 1915-1974 ROBERT J. LEFKOWITZ, MD JAMES B. DUKE PROFESSOR, Earl W. Sutherland grew up in Burlingame, Kansas, a small farming community DUKE UNIVERSITY MEDICAL CENTER that nourished his love for the outdoors and fishing, which he retained throughout INVESTIGATOR, HOWARD HUGHES MEDICAL INSTITUTE his life. He graduated from Washburn College in 1937 and then received his MEMBER, NATIONAL ACADEMY OF SCIENCES M.D. from Washington University School of Medicine in 1942. After serving as a MEMBER, INSTITUTE OF MEDICINE medical officer during World War II, he returned to Washington University to train NOBEL PRIZE IN CHEMISTRY, 2012 with Carl and Gerty Cori. During those years he was influenced by his interactions with such eminent scientists as Louis Leloir, Herman Kalckar, Severo Ochoa, Arthur Kornberg, Christian deDuve, Sidney Colowick, Edwin Krebs, Theodore Robert J.
    [Show full text]
  • Of Charles D. Ferguson, on Behalf Of
    FEDERATION OF AMERICAN SCIENTISTS T: 202/546-3300 1725 DeSales Street, NW 6th Floor Washington, DC 20036 www.fas.org F: 202/675-1010 [email protected] PRM-70-9 DOCKETED Board of Sponsors (75FR80730) USNRC (PartialList) March 4, 2011 March 7, 2011 (10:30 am) •Pacr Agre * SidnheyAman * Philip W. Anderson *Kenneth J. Arrow To: Secretary, U.S. Nuclear Regulatory Commission OFFICE OF SECRETARY * David Baltimore RULEMAKINGS AND * Bamj Be.....ea Washington, DC 20555-0001 SPaulBerg ADJUDICATIONS STAFF * J. Michael Bishop AT-TN: Rulemakings and Adjudications Staff * Guther Blobel * Nicolaas Bloensbergen * Paul Boyce Ann Pitts Carter Subject: Comment on Docket ID NRC-2010-0372, "Petition for Rulemaking, * Stanley Cohen * Leon N. Cooper Francis Slakey on Behalf of the American Physical Society" * E. J. Corey 'James Cronin * Johann Deismehofer ArmDruyan *RenatoDulbeomo As Board Members of the Federation of American Scientists, an independent, Paul L Ehrlich George Field nonpartisan think tank, we strongly support the petition submitted by the Vat L. Fitch * JeromeI. Friedman American Physical Society that requests proliferation risk assessments become a * Riccardo Giacoani * Walter Gilbert required part of the NRC licensing process. * Alfed G. Gilman " Donald Glaser * Sheldon L. Glashow Marvin L. Goidhergr * Joseph L. Goldstein Emerging nuclear fuel technologies such as laser enrichment of uranium can pose Roger C. L. Gaillemin * L[land H. Hartwell significant proliferation risks due to difficulties in detecting facilities using these * Herbert A. Hauptman " Dudley RKHIaechach technologies. If such technologies are developed without a clear, objective, and * Roald Hoff-aan John P. Hoidren detailed assessment, they can dangerously undermine U.S. nuclear * -l Robert Horvitz * David H.
    [Show full text]
  • CERN Courier Is Distributed to Member-State Governments, Institutes and Laboratories Affiliated with CERN, and to Their Personnel
    I n t e r n at I o n a l J o u r n a l o f H I g H - e n e r g y P H y s I c s CERN COURIERV o l u m e 4 6 n u m b e r 9 n o V e m b e r 2 0 0 6 OPERA makes its grand debut ACCELERATORS COMPUTING NEWS INTERVIEW Laser-wakefield device Business signs up to Stephen Hawking pays reaches 1 GeV p5 work with EGEE p12 a visit to CERN p28 CCENovCover1.indd 1 18/10/06 08:53:59 CERN & ProCurve Networking 15 petabytes of data And a network that can handle it “CERN uses ProCurve Switches because we generate a colossal amount of data, making dependability a top priority.” —David Foster, Communication Systems Group Leader, CERN CERN has joined with ProCurve to build their network based on high-performance security, reliability and flexibility, along with a lifetime warranty.* From the world’s largest applications, to a company-wide email, just think what ProCurve could do for your network. Get a closer look at CERN and the world’s biggest physics experiment. Visit www.hp.com/eur/procurvecern1 *For as long as you own the product, with next-business-day advance replacement (available in most countries). For details, refer to the ProCurve Software License, Warranty and Support booklet at www.hp.com/rnd/support/warranty/index.htm The ProCurve Routing Switch 9300m series, ProCurve Routing Switch 9408sl, ProCurve Switch 8100fl series, and the ProCurve Access Control Server 745wl have a one-year- warranty with extensions available.
    [Show full text]
  • Particle Detectors Lecture Notes
    Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2!
    [Show full text]
  • Earl W. Sutherland Lecture Earl W
    EARL W. SUTHERLAND LECTURE EARL W. SUTHERLAND LECTURE The Earl W. Sutherland Lecture Series was established by the SPONSORED BY: Department of Molecular Physiology and Biophysics in 1997 DEPARTMENT OF MOLECULAR PHYSIOLOGY AND BIOPHYSICS to honor Dr. Sutherland, a former member of this department and winner of the 1971 Nobel Prize in Physiology or Medicine. This series highlights important advances in cell signaling. MICHAEL S. BROWN, M.D NOBEL LAUREATE IN PHYSIOLOGY OR MEDICINE 1985 SPEAKERS IN THIS SERIES HAVE INCLUDED: SCAP: ANATOMY OF A MEMBRANE STEROL SENSOR Edmond H. Fischer (1997) Alfred G. Gilman (1999) Ferid Murad (2001) Louis J. Ignarro (2003) APRIL 25, 2013 Paul Greengard (2007) 4:00 P.M. 208 LIGHT HALL Eric Kandel (2009) Roger Tsien (2011) FOR MORE INFORMATION, CONTACT: Department of Molecular Physiology & Biophysics 738 Ann and Roscoe Robinson Medical Research Building Vanderbilt University Medical Center Nashville, TN 37232-0615 Tel 615.322.7001 [email protected] EARL W. SUTHERLAND, 1915-1974 MICHAEL S. BROWN, M.D. REGENTAL PROFESSOR Earl W. Sutherland grew up in Burlingame, Kansas, a small farming community that nourished his love for the outdoors and fishing, which he retained throughout DIRECTOR OF THE JONSSON CENTER FOR MOLECULAR GENETICS UNIVERSITY OF TEXAS his life. He graduated from Washburn College in 1937 and then received his M.D. SOUTHWESTERN MEDICAL CENTER AT DALLAS from Washington University School of Medicine in 1942. After serving as a medi- NOBEL PRIZE IN PHYSIOLOGY OR MEDICINE, 1985 cal officer during World War II, he returned to Washington University to train with MEMBER, NATIONAL ACADEMY OF SCIENCES Carl and Gerty Cori.
    [Show full text]
  • 1 Restoring Scientific Integrity in Policy Making February 18, 2004
    Restoring Scientific Integrity in Policy Making February 18, 2004 Science, like any field of endeavor, relies on freedom of inquiry; and one of the hallmarks of that freedom is objectivity. Now, more than ever, on issues ranging from climate change to AIDS research to genetic engineering to food additives, government relies on the impartial perspective of science for guidance. President George H.W. Bush, April 23, 1990 Successful application of science has played a large part in the policies that have made the United States of America the world’s most powerful nation and its citizens increasingly prosperous and healthy. Although scientific input to the government is rarely the only factor in public policy decisions, this input should always be weighed from an objective and impartial perspective to avoid perilous consequences. Indeed, this principle has long been adhered to by presidents and administrations of both parties in forming and implementing policies. The administration of George W. Bush has, however, disregarded this principle. When scientific knowledge has been found to be in conflict with its political goals, the administration has often manipulated the process through which science enters into its decisions. This has been done by placing people who are professionally unqualified or who have clear conflicts of interest in official posts and on scientific advisory committees; by disbanding existing advisory committees; by censoring and suppressing reports by the government’s own scientists; and by simply not seeking independent scientific advice. Other administrations have, on occasion, engaged in such practices, but not so systematically nor on so wide a front. Furthermore, in advocating policies that are not scientifically sound, the administration has sometimes misrepresented scientific knowledge and misled the public about the implications of its policies.
    [Show full text]
  • A. Personal Statement I Have Been Studying the Regulation of Mast Cell Activation and Its Role in Neuroinflammatory Diseases for Over 30 Years
    OMB No. 0925-0001 and 0925-0002 (Rev. 10/15 Approved Through 10/31/2018) BIOGRAPHICAL SKETCH Provide the following information for the Senior/key personnel and other significant contributors. Follow this format for each person. DO NOT EXCEED FIVE PAGES. NAME POSITION TITLE THEOHARIDES, THEOHARIS C. Professor of Pharmacology and Internal Medicine (Allergy & Clinical Immunology) eRA COMMONS USR NAME (credential, e.g. agency login) THEOHAR EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, and include postdoctoral training.) INSTITUTION AND LOCATION DEGREE YEAR(s) FIELD OF STUDY (if applicable) Yale University, New Haven, CT B.A. 1972 Biology & Hist. Medicine Yale University, New Haven, CT M.S. 1975 Neuroimmunology Yale University, New Haven, CT M.Phil. 1975 Immunopharmacology Yale University, New Haven, CT Ph.D.* 1978 Pharmacology Yale University, New Haven, CT M.D. 1983 Medicine Tufts University, Fletcher School Law & Diplomacy Certificate 1999 Leadership& Management Harvard Univ, J.F. Kennedy School of Government M.P.A. Deferred Biomedical Res Policy *Doctoral Thesis advisors: W.W. Douglas, M.D.-Royal Acad. Sciences; Paul Greengard, Ph.D.-2000 Nobel Laureate in Physiol & Med; Doctoral Thesis examiner, George E. Palade, M.D.- 1974 Nobel Laureate in Physiology& Medicine A. Personal Statement I have been studying the regulation of mast cell activation and its role in neuroinflammatory diseases for over 30 years. I was the first to report that mast cells can: (a) secrete specific mediators
    [Show full text]
  • Liste Der Nobelpreisträger
    Physiologie Wirtschafts- Jahr Physik Chemie oder Literatur Frieden wissenschaften Medizin Wilhelm Henry Dunant Jacobus H. Emil von Sully 1901 Conrad — van ’t Hoff Behring Prudhomme Röntgen Frédéric Passy Hendrik Antoon Theodor Élie Ducommun 1902 Emil Fischer Ronald Ross — Lorentz Mommsen Pieter Zeeman Albert Gobat Henri Becquerel Svante Niels Ryberg Bjørnstjerne 1903 William Randal Cremer — Pierre Curie Arrhenius Finsen Bjørnson Marie Curie Frédéric John William William Mistral 1904 Iwan Pawlow Institut de Droit international — Strutt Ramsay José Echegaray Adolf von Henryk 1905 Philipp Lenard Robert Koch Bertha von Suttner — Baeyer Sienkiewicz Camillo Golgi Joseph John Giosuè 1906 Henri Moissan Theodore Roosevelt — Thomson Santiago Carducci Ramón y Cajal Albert A. Alphonse Rudyard \Ernesto Teodoro Moneta 1907 Eduard Buchner — Michelson Laveran Kipling Louis Renault Ilja Gabriel Ernest Rudolf Klas Pontus Arnoldson 1908 Metschnikow — Lippmann Rutherford Eucken Paul Ehrlich Fredrik Bajer Theodor Auguste Beernaert Guglielmo Wilhelm Kocher Selma 1909 — Marconi Ostwald Ferdinand Lagerlöf Paul Henri d’Estournelles de Braun Constant Johannes Albrecht Ständiges Internationales 1910 Diderik van Otto Wallach Paul Heyse — Kossel Friedensbüro der Waals Allvar Maurice Tobias Asser 1911 Wilhelm Wien Marie Curie — Gullstrand Maeterlinck Alfred Fried Victor Grignard Gerhart 1912 Gustaf Dalén Alexis Carrel Elihu Root — Paul Sabatier Hauptmann Heike Charles Rabindranath 1913 Kamerlingh Alfred Werner Henri La Fontaine — Robert Richet Tagore Onnes Theodore
    [Show full text]
  • Nobel Laureates
    The Rockefeller University » Nobel Laureates Sunday, December 15, 2013 Calendar Directory Employment DONATE AWARDS & HONORS University Overview & Nobel Laureates Quick Facts History Since the institution's founding in 1901, 24 Nobel Prize winners have been associated with the university. Of these, two Faculty Awards are Rockefeller graduates (Edelman and Baltimore) and six laureates are current members of the Rockefeller faculty (Günter Blobel, Christian de Duve, Paul Greengard, Roderick MacKinnon, Paul Nurse and Torsten Wiesel). Nobel Prize Albert Lasker Awards Ralph M. Roderick Paul Nurse National Medal of Science Steinman MacKinnon 2001 Institute of Medicine 2011 2003 Physiology or National Academy of Physiology or Chemistry Medicine Sciences Medicine Gairdner Foundation International Award Campus Map & Views Travel Directions Paul Günter R. Bruce NYC Resources Greengard Blobel Merrifield Office of the President 2000 1999 1984 Physiology or Physiology or Chemistry Chief of Staff Medicine Medicine Board of Trustees and Corporate Officers Sustainability Torsten N. David Albert Contact Wiesel Baltimore Claude 1981 1975 1974 Physiology or Physiology or Physiology or Medicine Medicine Medicine Christian George E. Stanford de Duve Palade Moore 1974 1974 1972 Physiology or Physiology or Chemistry Medicine Medicine William H. Gerald M. H. Keffer Stein Edelman Hartline 1972 1972 1967 Chemistry Physiology or Physiology or Medicine Medicine Peyton Joshua Edward L. Rous Lederberg Tatum 1966 1958 1958 http://www.rockefeller.edu/about/awards/nobel/[2013/12/16 7:42:49] The Rockefeller University » Nobel Laureates Physiology or Physiology or Physiology or Medicine Medicine Medicine Fritz A. John H. Wendell Lipmann Northrop M. Stanley 1953 1946 1946 Physiology or Chemistry Chemistry Medicine Herbert S.
    [Show full text]
  • Jewish Nobel Prize Laureates
    Jewish Nobel Prize Laureates In December 1902, the first Nobel Prize was awarded in Stockholm to Wilhelm Roentgen, the discoverer of X-rays. Alfred Nobel (1833-96), a Swedish industrialist and inventor of dynamite, had bequeathed a $9 million endowment to fund significant cash prizes ($40,000 in 1901, about $1 million today) to those individuals who had made the most important contributions in five domains (Physics, Chemistry, Physiology or Medicine, Literature and Peace); the sixth, in "Economic Sciences," was added in 1969. Nobel could hardly have imagined the almost mythic status that would accrue to the laureates. From the start "The Prize" became one of the most sought-after awards in the world, and eventually the yardstick against which other prizes and recognition were to be measured. Certainly the roster of Nobel laureates includes many of the most famous names of the 20th century: Marie Curie, Albert Einstein, Mother Teresa, Winston Churchill, Albert Camus, Boris Pasternak, Albert Schweitzer, the Dalai Lama and many others. Nobel Prizes have been awarded to approximately 850 laureates of whom at least 177 of them are/were Jewish although Jews comprise less than 0.2% of the world's population. In the 20th century, Jews, more than any other minority, ethnic or cultural, have been recipients of the Nobel Prize. How to account for Jewish proficiency at winning Nobel’s? It's certainly not because Jews do the judging. All but one of the Nobel’s are awarded by Swedish institutions (the Peace Prize by Norway). The standard answer is that the premium placed on study and scholarship in Jewish culture inclines Jews toward more education, which in turn makes a higher proportion of them "Nobel-eligible" than in the larger population.
    [Show full text]
  • Research Organizations and Major Discoveries in Twentieth-Century Science: a Case Study of Excellence in Biomedical Research
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Hollingsworth, Joseph Rogers Working Paper Research organizations and major discoveries in twentieth-century science: A case study of excellence in biomedical research WZB Discussion Paper, No. P 02-003 Provided in Cooperation with: WZB Berlin Social Science Center Suggested Citation: Hollingsworth, Joseph Rogers (2002) : Research organizations and major discoveries in twentieth-century science: A case study of excellence in biomedical research, WZB Discussion Paper, No. P 02-003, Wissenschaftszentrum Berlin für Sozialforschung (WZB), Berlin This Version is available at: http://hdl.handle.net/10419/50229 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu P 02 – 003 RESEARCH ORGANIZATIONS AND MAJOR DISCOVERIES IN TWENTIETH-CENTURY SCIENCE: A CASE STUDY OF EXCELLENCE IN BIOMEDICAL RESEARCH J.
    [Show full text]
  • 2020– 2024 Strategic Plan
    2020-2024 STRATEGIC PLAN Amy Shyer, head of the Laboratory of Morphogenesis, studies the mechanical forces and molecular A new plan is intended to cues that guide tissue formation maximize the university’s in a developing embryo. She was scientific impact over the recruited to Rockefeller in 2018. next five years A five-year strategic plan for the university, developed in 2019, sets Investing in the most audacious and a course for new investments in faculty recruitment, technological original scientists in the world acquisitions, translational efforts, and other priorities between 2020 and 2024. The plan, titled “The Convergence of Science and Medicine,” The plan calls for maintaining the open-search process that has was approved by the Board of Trustees at its November 6 meeting. driven tenure-track faculty recruitment over the past decade. A The plan’s development was overseen by President Richard P. Lifton, second key goal is the appointment of new mid-career faculty in two who led a committee of faculty members and administrators through areas: computational biology and neurodegenerative disease. The a review of Rockefeller’s strengths, operations, and aspirations. The pace of hiring will be consistent with past practice: one to two new convergence of basic science, clinical medicine, and therapeutic heads of laboratory per year, maintaining the number of heads of discovery has set the stage for exceptional advances, says Lifton, laboratory at around 75. The plan also underscores the university’s and the plan will build on the technological breakthroughs of the last continued commitment to the recruitment of exceptional graduate decade to lead a new revolution in the development of novel medicine.
    [Show full text]