04 46201 408-431 梶波 3/柴.Indd

Total Page:16

File Type:pdf, Size:1020Kb

04 46201 408-431 梶波 3/柴.Indd The official journal of the Japan Atherosclerosis Society and the Asian Pacific Society of Atherosclerosis and Vascular Diseases Original Article J Atheroscler Thromb, 2019; 26: 408-431. http://doi.org/10.5551/jat.46201 Real-World Data to Identify Hypercholesterolemia Patients on Suboptimal Statin Therapy Kouji Kajinami1, Asuka Ozaki2, Yuki Tajima2, Shizuya Yamashita3, 4, Hidenori Arai5 and Tamio Teramoto6 1Department of Cardiology, Kanazawa Medical University, Ishikawa, Japan 2Sanofi, Tokyo, Japan 3Rinku General Medical Center, Osaka, Japan 4Department of Community Medicine & Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan 5National Center for Geriatrics and Gerontology, Aichi, Japan 6Teikyo Academic Research Center, Tokyo, Japan Aim: Statins are generally well-tolerated but some patients develop adverse events and down-titrate or discon- tinue statins. It is important to understand the frequency of dyslipidemia patients with the inability to continue statins. The aim of the present study was to identify the frequency of high-risk dyslipidemia patients who are unable to take or not taking statins for any reason using Japanese hospital claims database. Methods: 2,527,405 dyslipidemia patients with atherosclerotic cardiovascular disease were investigated between April 2008 and September 2017. Definition 1 included statin discontinuation or down-titration with non-statin lipid modifying therapy (LMT) prescription, rhabdomyolysis or muscle-related symptoms with statin down- titration or discontinuation, or prescription for ≥3 statin types. Definition 2 included all components of Defini- tion 1 in addition to statin down-titration or discontinuation for any reason. Patients never given statins but who started non-statin LMT were considered as Definition 3. The achievement rate of the target LDL-C level was investigated. Results: Among 54,296 patients with statin prescription, 2.32% and 48.38% patients were identified as Defini- tion 1 and 2, respectively. Of eligible patients, 13.16% patients were identified as Definition 3. The achievement rate of target LDL-C level was lower in patients meeting each definition than not satisfying each definition. Conclusions: There is a proportion of high-risk dyslipidemia patients unable to take or not taking statins for any reason, and it is associated with lower achievement rates of target LDL-C levels. Suboptimal management of LDL-C is directly associated with residual cardiovascular risk and implementation of alternative therapeutic options in addition to existing LMT is warranted. See editorial vol. 26: 403-405 Key words: Hypercholesterolemia, Claim data, Statin, Non-HDL-cholesterol, LDL-cholesterol major cause of mortality in Japan and worldwide1, 2). Introduction The Japan Atherosclerosis Society (JAS) guidelines rec- Lowering low-density lipoprotein cholesterol (LDL- ommend lowering LDL-C to <100 mg/dL in patients C) level is one of the most widely available approaches to with a history of CAD and to <70 mg/dL (or by 50% prevent atherosclerotic cardiovascular disease (ASCVD), or more) in high-risk patients with heterozygous famil- including coronary artery disease (CAD), which is a ial hypercholesterolemia or acute coronary syndrome Address for correspondence: Kouji Kajinami, Department of Cardiology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan E-mail: [email protected] Received: August 1, 2018 Accepted for publication: September 20, 2018 Copyright©2019 Japan Atherosclerosis Society This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License. 408 Dyslipidemia on Suboptimal Statins for secondary prevention of CAD3). using a Japanese electrical medical record (EMR) data- The JAS guidelines as well as those of other major base. Because lipid management in these patients might international associations including the American Col- be poor, we also investigated the frequency of patients lege of Cardiology/American Heart Association (ACC/ who achieved target values such as LDL-C recommended AHA), the European Society of Cardiology/European by the JAS guidelines3). Atherosclerosis Society, the National Lipid Association, and the International Atherosclerosis Society recom- Methods mend statins as the first-line treatment for dyslipidemia patients with elevated LDL-C levels4-7). Asian patients Database often show an increased response to drug therapy com- This retrospective observational study was con- pared to Western populations, leading to lowered doses ducted using the EBM Provider, which contains hos- of therapeutic drugs such as statins. The approved max- pital claims database stored in electronic hospital infor- imum dose of statin is lower (e.g., atorvastatin 40 mg/ mation systems constructed by Medical Data Vision day and rosuvastatin 20 mg/day) as well as clinically Co., Ltd. (MDV; Tokyo, Japan). The EBM Provider used dose8, 9). Statins are generally well tolerated, and covers approximately 20.8 million patients from 323 serious adverse events are infrequent10, 11); however, some hospitals across Japan (as of December 2017) with bed patients experience statin-associated muscle symptoms numbers ranging from 20 to over 1000. This database (SAMS) such as myositis and rhabdomyolysis and hepatic also includes approximately 19% of all acute phase disorder that result in dose reductions or discontinua- hospitals in Japan, including university hospitals, which tion of statin treatment 4-7, 12). The inability to continue use the Diagnostic Procedure Combination (DPC) pay- an effective dosage or the discontinuation of a statin ment system/Per-Diem Payment System. treatment may limit clinically important effects, such The EBM Provider includes anonymized patient- as CAD risk reductions13, 14). level information on sex, age, previous medical history Statin intolerance is a term that is widely used to (diagnosed diseases), medical procedure, and prescribed describe clinical phenomenon such as the inability to drug. Laboratory test values were also provided by 35 continue an effective dosage or the discontinuation of hospitals. Information about the diagnosis and drugs statin treatment due to adverse events, but there are no is extractable based on the International Classification globally accepted criteria for statin intolerance. Previ- of Disease (ICD)-10 codes and the Anatomical Thera- ous studies have attempted to estimate the proportion peutic Chemical (ATC) code, respectively. of dyslipidemia patients unable to continue an effec- tive dosage or who need to discontinue statin treat- Patient Selection ment using various criteria; results range from 1% to All patients diagnosed with ASCVD (ICD-10 30%15, 16). With the complexity of a dose-dependent code: I20, I21, I22, I23, I24, I25, I63, I65, I66, I67, relationship of adverse effects and more sensitive response I69, I70, I71, I72, I73, I74) between April 2008 and in the Asian population to medications, the precise September 2017 (defined as the study period) were iden- number of the inability to continue an effective dos- tified from the EBM Provider database. Patients who age or the discontinuation of statin treatment due to met all of the following criteria were included in the adverse events is unknown. present study: 1) diagnosis of dyslipidemia (standard- In an era of new alternative lipid-lowering thera- ized Japanese disease codes: 2724036; high LDL cho- pies supported by emerging evidence, it is important lesterolemia, 2720004; hypercholesterolemia, 8840108; to understand the frequency of dyslipidemia patients essential hypercholesterolemia, 8833881; mixed hyper- with an inability to continue an effective dosage of lipidemia, 2724007; hyperlipidemia, 8833722; hyper- statins by quantifying patients with high cardiovascu- lipoproteinemia, 8844446; dyslipidemia, 2724012; essen- lar risk who may be candidates for non-statin lipid- tial hyperlipidemia, 2729002; disorder of lipid metab- modifying therapy (LMT) such as PCSK9 inhibitors, olism, 8845052; type1 diabetic hypercholesterolemia, cholesterol absorption inhibitors, and fibrates in Japan. 8845081; type2 diabetic hypercholesterolemia, 8838067; diabetic hypercholesterolemia) during the study period; 2) initiation of any statin (ATC code: C10A1, C11A1) Aim agents during the study period and initiation of non- The aim of the present study was to identify the statin LMT (ATC code: C10, C11) if statin agents were frequency of dyslipidemia patients with a history of not prescribed during the study period (as an index ASCVD such as CAD with an inability to continue date); 3) at least 365 days of medical data available an effective dosage or who need to discontinue statin before and after the index date; 4) age at the index date treatment for any reason in Japanese clinical practice over 20 years; 5) no prescription of LMT during the 409 Kajinami et al. look-back period of 365 days before the index date; each comparator. The earliest LDL-C and non-high- and 6) diagnosis of ASCVD before the index date. density lipoprotein (HDL-C) level recorded 365 days Patients with age at the index date younger than 20 after the index date were used. The target value of each years old and index date before April 2009 or after laboratory test parameter was referred the value of a September 2016 were excluded from the study. patient with a history of CAD recommended by the Definition of dyslipidemia patients who were un- JAS guidelines (LDL-C:
Recommended publications
  • Dyslipidemia in Newfoundland: Findings from Canadian Primary Care Sentinel Surveillance Network in Newfoundland and Labrador
    Dyslipidemia in Newfoundland: Findings from Canadian Primary Care Sentinel Surveillance Network in Newfoundland and Labrador By Justin D. Oake A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science in Medicine Clinical Epidemiology Program, Faculty of Medicine, Memorial University of Newfoundland St. John’s, NL May 2019 Abstract Newfoundland and Labrador (NL) has a higher level of cardiovascular disease (CVD) mortality than any other Canadian province. One factor which may explain this trend is the lipid profile pattern in this province. Given the limited lipid profile data which has been reported from NL, we organized three studies in this thesis to describe the lipid profile of Newfoundlanders. The first study was a secondary analysis of Canadian Primary Care Sentinel Surveillance Network (CPCSSN) data to document single and mixed dyslipidemia in NL. The second study compared lipid profiles and the prevalence of dyslipidemia between NL CPCSSN data and the Canadian Health Measures Survey (CHMS). The third study used electronic medical record (EMR) data in assessing the validity of ICD codes for identifying patients with dyslipidemia. This was a secondary analysis of EMR data in NL. Most recent lipid profile scores, co-morbidities, and demographic information were extracted from the CPCSSN database. We demonstrated that single and mixed dyslipidemia are quite prevalent in the NL population. Unhealthy levels of HDL were also more prevalent in NL men, compared to the Canadian sample. Of importance, the use of the ICD coding, either alone or in combination with laboratory data or lipid-lowering medication records, was an inaccurate indicator in identifying dyslipidemia.
    [Show full text]
  • Effects of Generic Substitution on Refill Adherence to Statin Therapy: a Nationwide Population-Based Study Henrik Trusell1 and Karolina Andersson Sundell1,2*
    Trusell and Andersson Sundell BMC Health Services Research 2014, 14:626 http://www.biomedcentral.com/1472-6963/14/626 RESEARCH ARTICLE Open Access Effects of generic substitution on refill adherence to statin therapy: a nationwide population-based study Henrik Trusell1 and Karolina Andersson Sundell1,2* Abstract Background: Several countries have introduced generic substitution, but few studies have assessed its effect on refill adherence. This study aimed to analyse whether generic substitution influences refill adherence to statin treatment. Methods: Between 1 July 2006 and 30 June 2007, new users of simvastatin (n = 108,806) and atorvastatin (n = 7,464) were identified in the Swedish Prescribed Drug Register . The present study included atorvastatin users as an unexposed control group because atorvastatin was patent-protected and thus not substitutable. We assessed refill adherence using continuous measure of medication acquisition (CMA). To control for potential confounders, we used analysis of covariance (ANCOVA). Differences in CMA associated with generic substitution and generic substitution at first-time statin purchase were analysed. Results: Nine of ten simvastatin users were exposed to generic substitution during the study period, and their adherence rate was higher than that of patients without substitution [84.6% (95% CI 83.5-85.6) versus 59.9% (95% CI 58.4-61.4), p < 0.001]. CMA was higher with increasing age (60–69 years 16.7%, p < 0.0001 and 70–79 years 17.8%, p < 0.0001, compared to 18–39 years) and secondary prevention (12.8%, p < 0.0001). CMA was lower among patients who were exposed to generic substitution upon initial purchase, compared to those who were exposed to a generic substitution subsequently [80.4% (95% CI 79.4-90.9) versus 89.8% (88.7-90.9), p < 0.001].
    [Show full text]
  • Regulation of Pharmaceutical Prices: Evidence from a Reference Price Reform in Denmark
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Kaiser, Ulrich; Mendez, Susan J.; Rønde, Thomas Working Paper Regulation of pharmaceutical prices: Evidence from a reference price reform in Denmark ZEW Discussion Papers, No. 10-062 Provided in Cooperation with: ZEW - Leibniz Centre for European Economic Research Suggested Citation: Kaiser, Ulrich; Mendez, Susan J.; Rønde, Thomas (2010) : Regulation of pharmaceutical prices: Evidence from a reference price reform in Denmark, ZEW Discussion Papers, No. 10-062, Zentrum für Europäische Wirtschaftsforschung (ZEW), Mannheim This Version is available at: http://hdl.handle.net/10419/41440 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Dis cus si on Paper No. 10-062 Regulation of Pharmaceutical Prices: Evidence from a Reference Price Reform in Denmark Ulrich Kaiser, Susan J.
    [Show full text]
  • Protective Lipid-Lowering Genetic Variants in Healthy Older Individuals Without Coronary
    medRxiv preprint doi: https://doi.org/10.1101/2021.02.16.21251811; this version posted February 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . TITLE PAGE Title: Protective lipid-lowering genetic variants in healthy older individuals without coronary heart disease Running title: Lacaze - Protective lipid-lowering variants Authors: Paul Lacaze, PhD1*, Moeen Riaz, PhD1, Robert Sebra, PhD2, Amanda J Hooper, PhD3,4, Jing Pang, PhD3, Jane Tiller, LLB, MSc GenCoun1, Galina Polekhina, PhD1, Andrew M Tonkin, PhD1, Christopher M Reid, PhD1,5, Sophia Zoungas, MD, PhD1, Anne M Murray, MD, MSc6, Stephen J Nicholls MD, PhD7, Gerald F Watts, MD, PhD4,8, Eric Schadt, PhD2 & John J McNeil, MD, PhD1 Departments and institutions: 1 Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia. 2 Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, USA. 3 School of Medicine, Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, Australia 4 Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia. 5 School of Public Health, Curtin University, Perth, WA, Australia 6 Berman Center for Outcomes and Clinical Research, Hennepin Healthcare Research Institute, Hennepin Healthcare, Minneapolis, MN, USA 7 Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia; 1 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
    [Show full text]
  • Part1 Gendiff.Qxp
    Sex Differences in Health Status, Health Care Use, and Quality of Care: A Population-Based Analysis for Manitoba’s Regional Health Authorities November 2005 Manitoba Centre for Health Policy Department of Community Health Sciences Faculty of Medicine, University of Manitoba Randy Fransoo, MSc Patricia Martens, PhD The Need to KnowTeam (funded through CIHR) Elaine Burland, MSc Heather Prior, MSc Charles Burchill, MSc Dan Chateau, PhD Randy Walld, BSc, BComm (Hons) This report is produced and published by the Manitoba Centre for Health Policy (MCHP). It is also available in PDF format on our website at http://www.umanitoba.ca/centres/mchp/reports.htm Information concerning this report or any other report produced by MCHP can be obtained by contacting: Manitoba Centre for Health Policy Dept. of Community Health Sciences Faculty of Medicine, University of Manitoba 4th Floor, Room 408 727 McDermot Avenue Winnipeg, Manitoba, Canada R3E 3P5 Email: [email protected] Order line: (204) 789 3805 Reception: (204) 789 3819 Fax: (204) 789 3910 How to cite this report: Fransoo R, Martens P, The Need To Know Team (funded through CIHR), Burland E, Prior H, Burchill C, Chateau D, Walld R. Sex Differences in Health Status, Health Care Use and Quality of Care: A Population-Based Analysis for Manitoba’s Regional Health Authorities. Winnipeg, Manitoba Centre for Health Policy, November 2005. Legal Deposit: Manitoba Legislative Library National Library of Canada ISBN 1-896489-20-6 ©Manitoba Health This report may be reproduced, in whole or in part, provided the source is cited. 1st Printing 10/27/2005 THE MANITOBA CENTRE FOR HEALTH POLICY The Manitoba Centre for Health Policy (MCHP) is located within the Department of Community Health Sciences, Faculty of Medicine, University of Manitoba.
    [Show full text]
  • Protective Lipid-Lowering Variants in Healthy Older Individuals Without
    Open access Special populations Open Heart: first published as 10.1136/openhrt-2021-001710 on 2 August 2021. Downloaded from Protective lipid- lowering variants in healthy older individuals without coronary heart disease Paul Lacaze ,1 Moeen Riaz,1 Robert Sebra,2 Amanda J Hooper,3,4 Jing Pang ,3 Jane Tiller,1 Galina Polekhina,1 Andrew Tonkin,1 Chris Reid,1,5 Sophia Zoungas,1 Anne M Murray,6 Stephen Nicholls,7 Gerald Watts,4,8 Eric Schadt,2 John J McNeil1 ► Additional supplemental ABSTRACT Key questions material is published online only. Objective Genetic variants that disrupt the function of To view, please visit the journal the PCSK9 (proprotein convertase subtilisin kexin type 9) online (http:// dx. doi. org/ 10. What is already known about this subject? and APOB (apolipoprotein B)genes result in lower serum 1136/ openhrt- 2021- 001710). Loss- of- function genetic variants in the PCSK9 (pro- low- density lipoprotein cholesterol (LDL- C) levels and ► protein convertase subtilisin kexin type 9) and APOB subsequently confer protection against coronary heart To cite: Lacaze P, Riaz M, (apolipoprotein B) genes result in lower serum low- disease (CHD). The objective of this study was to measure Sebra R, et al. Protective lipid- density lipoprotein cholesterol concentrations and lowering variants in healthy the prevalence and selective advantage of such variants subsequently confer protection against coronary older individuals without among healthy older individuals without a history of CHD. heart disease (CHD). coronary heart disease. Open Methods We performed targeted sequencing of the Heart 2021;8:e001710. PCSK9 and APOB genes in 13 131 healthy individuals What does this study add? doi:10.1136/ without CHD aged 70 years or older enrolled into the Our study measured the prevalence and selective openhrt-2021-001710 ► ASPirin in Reducing Events in the Elderly trial.
    [Show full text]
  • Lipid Lowering Drugs Prescription and the Risk of Peripheral Neuropathy
    1047 J Epidemiol Community Health: first published as 10.1136/jech.2003.013409 on 16 November 2004. Downloaded from RESEARCH REPORT Lipid lowering drugs prescription and the risk of peripheral neuropathy: an exploratory case-control study using automated databases Giovanni Corrao, Antonella Zambon, Lorenza Bertu`, Edoardo Botteri, Olivia Leoni, Paolo Contiero ............................................................................................................................... J Epidemiol Community Health 2004;58:1047–1051. doi: 10.1136/jech.2003.013409 Study objective: Although lipid lowering drugs are effective in preventing morbidity and mortality from cardiovascular events, the extent of their adverse effects is not clear. This study explored the association between prescription of lipid lowering drugs and the risk of peripheral neuropathy. Design: A population based case-control study was carried out by linkage of several automated databases. Setting: Resident population of a northern Italian Province aged 40 years or more. Participants: Cases were patients discharged for peripheral neuropathy in 1998–1999. For each case up See end of article for authors’ affiliations to 20 controls were randomly selected among those eligible. Altogether 2040 case patients and 36 041 ....................... controls were included in the study. Exposure ascertainment: Prescription drug database was used to assess exposure to lipid lowering drugs Correspondence to: Professor G Corrao, at any time in the one year period preceding the index date.
    [Show full text]
  • Business Acquisition Section 66: Notice Seeking Clearance
    PUBLIC VERSION COMMERCE ACT 1986: BUSINESS ACQUISITION SECTION 66: NOTICE SEEKING CLEARANCE Date: 10 December 2019 The Registrar Competition Branch Commerce Commission PO Box 2351 Wellington Pursuant to section 66(1) of the Commerce Act 1986 notice is hereby given seeking clearance of a proposed business acquisition. DOC REF 24857199 Clearance Application PUBLIC VERSION Part A: Summary of Application Executive Summary Introduction This clearance application concerns the proposed merger by Mylan N.V (Mylan) with Upjohn Inc. (Upjohn), (the Proposed Transaction). Upjohn and Mylan are together referred to as the Parties. Mylan is a US-based global pharmaceutical company that develops, licenses, manufactures, markets and distributes generic, branded generic and specialty pharmaceuticals. Its product portfolio in New Zealand specialises in off-patent medicines (most of which are non-branded). Upjohn is a newly created, currently wholly owned subsidiary of Pfizer Inc. (Pfizer). The Upjohn business was created as a focused division of Pfizer which operates Pfizer’s off-patent branded and generic (non-sterile injectables) established medicines business. The Upjohn business has a portfolio of 20 off-patent molecules/21 established brands1 organized across the following key therapeutic areas: (i) Cardiovascular, (ii) Central Nervous System/Psychiatry, (iii) Pain/Neurology, (iv) Urology and Ophthalmology. Pfizer (or a company that is now a member of the Pfizer group, such as Wyeth or Parke Davis) was the originator of these 20 molecules.2 The Upjohn branded products have, with a few exceptions, lost exclusivity years ago, and all face generic competition in New Zealand. Summary of competition analysis The Proposed Transaction will combine Upjohn’s portfolio of off-patent branded pharmaceutical products with Mylan’s portfolio of generic pharmaceutical products.
    [Show full text]
  • Summary of Product Characteristics
    Summary of Product Characteristics 1 NAME OF THE MEDICINAL PRODUCT Lipantil Micro 67mg capsules, hard. 2 QUALITATIVE AND QUANTITATIVE COMPOSITION Each capsule contains 67mg fenofibrate. Excipients with known effect: Each capsule contains 33.8 mg of lactose monohydrate. For the full list of excipients, see section 6.1. 3 PHARMACEUTICAL FORM Capsule, hard. Yellow hard gelatin capsule. 4 CLINICAL PARTICULARS 4.1 Therapeutic Indications Lipantil Micro 67mg is indicated as an adjunct to diet and other non-pharmacological treatment (e.g. exercise, weight reduction) for the following: - Treatment of severe hypertriglyceridaemia with or without low HDL cholesterol. - Mixed hyperlipidaemia when a statin is contraindicated or not tolerated. - Mixed hyperlipidaemia in patients at high cardiovascular risk in addition to a statin when triglycerides and HDL cholesterol are not adequately controlled. 4.2 Posology and method of administration Response to therapy should be monitored by determination of serum lipid values. If an adequate response has not been achieved after several months (e.g. 3 months), complementary or different therapeutic measures should be considered. Posology: Adults The recommended dose is 200mg daily administered as three capsules Lipantil Micro 67mg capsules. The dose can be titrated up to 267mg daily administered as 4 capsules Lipantil Micro 67mg if required. Special populations Geriatric population: In elderly patients without renal impairment the usual adult dose is recommended. Renal impairment: Dosage reduction is required in patients with renal impairment (creatine clearance <60mL/min): Creatinine clearance (ml/min) Dosage 20 - 60 One 67mg capsules 10 - 20 None In patients with severe renal dysfunction , fenofibrate should not be used (see section 4.3 Contra- indications) Hepatic impairment Lipantil Micro 67mg capsules is not recommended for use in patients with hepatic impairment due to the lack of data.
    [Show full text]
  • Drug–Drug Interactions in Italian Patients with Chronic Hepatitis C Treated with Pangenotypic Direct Acting Agents: Insights from a Real-World Study
    International Journal of Environmental Research and Public Health Article Drug–Drug Interactions in Italian Patients with Chronic Hepatitis C Treated with Pangenotypic Direct Acting Agents: Insights from a Real-World Study Alessandra Mangia 1 , Francesco Scaglione 2 , Pierluigi Toniutto 3, Mario Pirisi 4, Nicola Coppola 5 , Giovanni Di Perri 6, Gema Alvarez Nieto 7, Stefano Calabrese 7, Candido Hernandez 8, Valentina Perrone 9,*, Luca Degli Esposti 9 and Stefano Fagiuoli 10 on the behalf of a LHUs Study Group 1 Liver Unit, Fondazione “Casa Sollievo Della Sofferenza” IRCCS, 71013 San Giovanni Rotondo, Italy; [email protected] 2 Department of Oncology and Onco-Hematology, University of Milan, 20122 Milan, Italy; [email protected] 3 Hepatology and Liver Transplantation Unit, Azienda Ospedaliero Universitaria, 33100 Udine, Italy; [email protected] 4 Department of Translational Medicine (DiMeT), Università del Piemonte Orientale, 28100 Novara, Italy; [email protected] 5 Department of Mental Health and Public Medicine–Infectious Diseases Unit, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; [email protected] 6 Department of Medical Sciences, University of Turin, 10124 Turin, Italy; [email protected] 7 Gilead Sciences, Medical Affairs Italy, 202124 Milan, Italy; [email protected] (G.A.N.); Citation: Mangia, A.; Scaglione, F.; [email protected] (S.C.) Toniutto, P.; Pirisi, M.; Coppola, N.; Di 8 Gilead Sciences, Global Medical Affairs, Stockley Park, London
    [Show full text]
  • 1. NAME of the MEDICINAL PRODUCT Fluvastatin 20 Mg / 40
    1. NAME OF THE MEDICINAL PRODUCT Fluvastatin 20 mg / 40 mg hard capsules 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each capsule contains fluvastatin 20 mg / 40 mg as fluvastatin sodium For a full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Capsules, hard Fluvastatin 20 mg capsules are No. 3 hard gelatine, pale yellow capsules, with ‘FL 20’ printed on the cap and ‘G’ printed on the body, containing a white to pale yellow or brownish-pale yellow or reddish- pale yellow powder. Fluvastatin 40 mg capsules are No. 1 hard gelatine, red capsules, with ‘FL 40’ printed on the cap and ‘G’ printed on the body, containing a white to pale yellow or brownish-pale yellow or reddish-pale yellow powder. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Fluvastatin is indicated as an adjunct to diet for the reduction of elevated total cholesterol (total-C) and low-density lipoprotein cholesterol (LDL-C) when response to diet and other non-pharmacological treatments (e.g. exercise, weight reduction) is inadequate in patients with primary hypercholesterolaemia (heterozygous variant) and mixed dyslipidaemia (Fredrickson Types IIa and IIb). Fluvastatin is also indicated for the secondary prevention of major adverse cardiac events (cardiac arrest, non-fatal myocardial infarction and coronary revascularisation) in patients with coronary heart disease after coronary transcatheter therapy. 4.2 Posology and method of administration Prior to initiating fluvastatin treatment, secondary causes of hypercholesterolaemia should be excluded and the patient placed on a standard cholesterol-lowering diet. Dietary therapy should be continued during treatment. The capsules must be taken in the evening or at bedtime independently or meals.
    [Show full text]
  • Evaluation of Carcinogenicity Studies of Medicinal Products for Human Use Authorised Via the European Centralised Procedure
    Regulatory Toxicology and Pharmacology xxx (2011) xxx–xxx Contents lists available at ScienceDirect Regulatory Toxicology and Pharmacology journal homepage: www.elsevier.com/locate/yrtph Evaluation of carcinogenicity studies of medicinal products for human use authorised via the European centralised procedure (1995–2009) ⇑ Anita Friedrich a, , Klaus Olejniczak b a Granzer Regulatory Consulting and Services, Zielstattstrasse 44, 81379 Munich, Germany b Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany article info abstract Article history: Carcinogenicity data of medicinal products for human use that have been authorised via the European Received 25 October 2010 centralised procedure (CP) between 1995 and 2009 were evaluated. Carcinogenicity data, either from Available online xxxx long-term rodent carcinogenicity studies, transgenic mouse studies or repeat-dose toxicity studies were available for 144 active substances contained in 159 medicinal products. Out of these compounds, 94 Keywords: (65%) were positive in at least one long-term carcinogenicity study or in repeat-dose toxicity studies. Medicinal products Fifty compounds (35%) showed no evidence of a carcinogenic potential. Out of the 94 compounds with Carcinogenicity positive findings in either carcinogenicity or repeat-dose toxicity studies, 33 were positive in both mice Rodents and rats, 40 were positive in rats only, and 21 were positive exclusively in mice. Long-term carcinogenic- ity studies in two rodent species were available for 116 compounds. Data from one long-term carcinoge- nicity study in rats and a transgenic mouse model were available for eight compounds. For 13 compounds, carcinogenicity data were generated in only one rodent species. One compound was exclu- sively tested in a transgenic mouse model.
    [Show full text]