Evaluation of Carcinogenicity Studies of Medicinal Products for Human Use Authorised Via the European Centralised Procedure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Angiotensin-Converting Enzyme Inhibitors Or Angiotensin II Receptor Blockers and the Risk of Developing Rheumatoid Arthritis in Antihypertensive Drug Users
Jong, H.J.I. de, Vandebriel, R.J., Saldi, S.R.F., Dijk, L. van, Loveren, H. van, Cohen Tervaert, J.W., Klungel, O.H. Angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers and the risk of developing rheumatoid arthritis in antihypertensive drug users. Pharmacoepidemiology and Drug Safety: 2012, 21(8), 835-843 Postprint Version 1.0 Journal website http://dx.doi.org/10.1002/pds.3291 Pubmed link http://www.ncbi.nlm.nih.gov/pubmed/22674737 DOI 10.1002/pds.3291 This is a NIVEL certified Post Print, more info at http://www.nivel.eu Angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers and the risk of developing rheumatoid arthritis in antihypertensive drug users†‡ HILDA J. I. DE JONG1,2,3, ROB J. VANDEBRIEL1, SITI R. F. SALDI3, LISET VAN DIJK4, HENK VAN LOVEREN1,2, JAN WILLEM COHEN TERVAERT5, OLAF H. KLUNGEL3,* ABSTRACT Purpose: Angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) are effective in the treatment of cardiovascular disease. Next to effects on hypertension and cardiac function, these drugs have anti-inflammatory and immunomodulating properties which may either facilitate or protect against the development of autoimmunity, potentially resulting in autoimmune diseases. Therefore, we determined in the current study the association between ACE inhibitor and ARB use and incident rheumatoid arthritis (RA). Methods: A matched case–control study was conducted among patients treated with antihypertensive drugs using the Netherlands Information Network of General Practice (LINH) database in 2001–2006. Cases were patients with a first-time diagnosis of RA. Each case was matched to five controls for age, sex, and index date, which was selected 1 year before the first diagnosis of RA. -
Injectable PLGA Adefovir Microspheres; the Way for Long Term Therapy of T Chronic Hepatitis-B ⁎ Margrit M
European Journal of Pharmaceutical Sciences 118 (2018) 24–31 Contents lists available at ScienceDirect European Journal of Pharmaceutical Sciences journal homepage: www.elsevier.com/locate/ejps Injectable PLGA Adefovir microspheres; the way for long term therapy of T chronic hepatitis-B ⁎ Margrit M. Ayouba, , Neveen G. Elantounyb, Hanan M. El-Nahasa, Fakhr El-Din S. Ghazya a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt b Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt ARTICLE INFO ABSTRACT Keywords: For patient convenience, sustained release Adefovir Poly-d,l-lactic-co-glycolic acid (PLGA) microspheres were Adefovir formulated to relieve the daily use of the drug which is a problem for patients treated from chronic hepatitis-B. Biodegradable microspheres PLGA microspheres were prepared and characterized by entrapment efficiency, particle size distribution and Poly-lactic-co-glycolic acid scanning electron microscopy (SEM). In-vitro release and in-vivo studies were carried out. Factors such as drug: Entrapment efficiency polymer ratio, polymer viscosity and polymer lactide content were found to be important variables for the preparation of PLGA Adefovir microspheres. Fourier transform infrared (FTIR) analysis and differential scanning calorimetry (DSC) were performed to determine any drug-polymer interactions. One way analysis of variance (ANOVA) was employed to analyze the pharmacokinetic parameters after intramuscular injection of the pure drug and the selected PLGA microspheres into rats. FTIR and DSC revealed a significant interaction between the drug and the polymer. Reports of SEM before and after 1 and 24 h release showed that the microspheres had nonporous smooth surface even after 24 h release. -
Treatment of Nausea in Pregnancy
Heitmann et al. BMC Pregnancy and Childbirth (2015) 15:321 DOI 10.1186/s12884-015-0746-2 RESEARCH ARTICLE Open Access Treatment of nausea in pregnancy: a cross- sectional multinational web-based study of pregnant women and new mothers Kristine Heitmann1*, Lone Holst1, Angela Lupattelli2, Caroline Maltepe3 and Hedvig Nordeng2,4 Abstract Background: The factors related to the treatment of nausea during pregnancy have not yet been investigated in several countries simultaneously. The present study aimed to describe differences in self-reported nausea during pregnancy and the patterns of use for both conventional and herbal medicines across countries. The factors related to nausea and its treatment and the relationships between different self-reported co-morbidities and nausea were also investigated. Methods: This cross-sectional study used data collected by a web-based questionnaire distributed between October 2011 and February 2012 in several countries within five regions: Western, Northern, and Eastern Europe, North America, and Australia. Women who were pregnant or had a child less than one year old were eligible to participate. Results: A total of 9113 women were included in the study, whereof 6701 (73.5 %) had experienced nausea during pregnancy. Among respondents with nausea, conventional medicines were used by 1201 (17.9 %) women and herbal medicines by 556 (8.3 %) women. The extent of self-reported nausea and its treatment varied by country. Education, working status, and folic acid use were significantly associated with the use of conventional medicines against nausea. Respondents who had nausea also had a high burden of co-morbidity. Conclusion: The prevalence of nausea was high across all participating countries but its treatment varied, possibly due to cultural differences and differences in attitudes towards medicines. -
Hepsera, INN- Defovir Dipivoxil
SCIENTIFIC DISCUSSION This module reflects the initial scientific discussion for the approval of Hepsera. For information on changes after approvalplease refer to module 8B 1. Chemical, pharmaceutical and biological aspects Composition Hepsera is presented as an immediate release tablet containing 10 mg of adefovir dipivoxil, as active substance. The other ingredients in this formulation are commonly used in tablets Hepsera is supplied in high-density polyethylene bottle (HDPE), with silica gel desiccant canisters or sachets, and polyester fiber packing material. The closure system consists of a child-resistant polypropylene screw cap lined with an induction activated aluminium foil liner. Active substance Adefovir dipivoxil is an ester prodrug of the nucleotide analogue, adefovir. A structural modification of the parent drug has been carried out in order to increase the lipophilicity and to enhance the oral bioavailability of adefovir. The active substance is a white to off-white crystalline powder. It is soluble in ethanol, sparingly soluble in 0.1N HCl and very slightly soluble in water adjusted to pH 7.2 but relatively highly soluble at physiological pH. The active substance does not contain any chiral center and does not exhibit any optical isomerism. In laboratory studies the anhydrate crystal form has been observed to convert gradually into a dihydrate crystal form when adefovir dipivoxil was exposed to high humidity conditions (75% R.H., 25ºC) over an approximately one-month period. However, the only crystal form produced during the active substance synthesis and utilised in non-clinical and clinical studies has been the anhydrous crystal form. Adefovir dipivoxil undergoes also hydrolysis in aqueous solution and to a smaller degree in the solid state after exposure to humidity and heat for extended periods. -
In Silico Methods for Drug Repositioning and Drug-Drug Interaction Prediction
In silico Methods for Drug Repositioning and Drug-Drug Interaction Prediction Pathima Nusrath Hameed ORCID: 0000-0002-8118-9823 Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy Department of Mechanical Engineering THE UNIVERSITY OF MELBOURNE May 2018 Copyright © 2018 Pathima Nusrath Hameed All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm or any other means without written permission from the author. Abstract Drug repositioning and drug-drug interaction (DDI) prediction are two fundamental ap- plications having a large impact on drug development and clinical care. Drug reposi- tioning aims to identify new uses for existing drugs. Moreover, understanding harmful DDIs is essential to enhance the effects of clinical care. Exploring both therapeutic uses and adverse effects of drugs or a pair of drugs have significant benefits in pharmacology. The use of computational methods to support drug repositioning and DDI prediction en- able improvements in the speed of drug development compared to in vivo and in vitro methods. This thesis investigates the consequences of employing a representative training sam- ple in achieving better performance for DDI classification. The Positive-Unlabeled Learn- ing method introduced in this thesis aims to employ representative positives as well as reliable negatives to train the binary classifier for inferring potential DDIs. Moreover, it explores the importance of a finer-grained similarity metric to represent the pairwise drug similarities. Drug repositioning can be approached by new indication detection. In this study, Anatomical Therapeutic Chemical (ATC) classification is used as the primary source to determine the indications/therapeutic uses of drugs for drug repositioning. -
The Role of Non-Selective Β-Blockers in Compensated Cirrhotic Patients Without Major Complications
medicina Article The Role of Non-Selective β-Blockers in Compensated Cirrhotic Patients without Major Complications Wen-Shuo Yeh 1, Shih-Cheng Yang 1, Chih-Ming Liang 1 , Yu-Chi Li 1, Wei-Chen Tai 1, Chen-Hsiang Lee 2, Yao-Hsu Yang 3,4,5, Chien-Ning Hsu 6,7, Tzu-Hsien Tsai 8, Seng-Kee Chuah 1 and Cheng-Kun Wu 1,* 1 Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83330, Taiwan; [email protected] (W.-S.Y.); [email protected] (S.-C.Y.); [email protected] (C.-M.L.); [email protected] (Y.-C.L.); [email protected] (W.-C.T.); [email protected] (S.-K.C.) 2 Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83330, Taiwan; [email protected] 3 Department of Traditional Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; [email protected] 4 Health Information and Epidemiology Laboratory of Chang Gung Memorial Hospital, Chiayi 61363, Taiwan 5 School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan 6 Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83330, Taiwan; [email protected] 7 School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80700, Taiwan 8 Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83330, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-7-731-7123 (ext. -
Summary of Product Characteristics
Proposed var 24 psusa cilazapril SUMMARY OF PRODUCT CHARACTERISTICS 1. NAME OF THE MEDICINAL PRODUCT [Fosinopril sodium 10 mg, tablets] [Fosinopril sodium 20 mg, tablets] 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each tablet contains 10 or 20 mg fosinopril sodium. Excipient with known effect: Each tablet fosinopril sodium 10 mg contains 87 mg of lactose, anhydrous. Each tablet fosinopril sodium 20 mg contains 174 mg of lactose, anhydrous. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Tablet. The 10 mg tablets are white and shaped like a capsule with indents. On one side they are engraved with the letters “APO” and on the other side with “FOS-10”. The 20 mg tablets are white and their shape is oval. On one side they are engraved with the letters “APO” and on the other side with “FOS-20”. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications - Treatment of hypertension. - Treatment of symptomatic heart failure. 4.2 Posology and method of administration Posology Fosinopril sodium should be administered orally in a single daily dose. As with all other medicinal products taken once daily, it should be taken at approximately the same time each day. The absorption of fosinopril sodium is not affected by food. The dose should be individualised according to patient profile and blood pressure response (see section 4.4). Hypertension: Fosinopril sodium may be used as a monotherapy or in combination with other classes of antihypertensive medicinal products (see section 4.3, 4.4, 4.5 and 5.1). Hypertensive patients not being treated with diuretics: Starting dose The initial recommended dose is 10 mg once a day. -
Deliverable 5.A Interim Report on the Study Results APPENDIX 2
Deliverable 5.a Interim report on the study results APPENDIX 2: Algorithms used to identify study variables for service contract EMA/2011/38/CN ‐ PIOGLITAZONE November 28th 2012 D5.a Interim report on the study results (Appendix 2) for Service Contract EMA/2011/38/CN PIOGLITAZONE Author(s): Vera Ehrenstein (AUH‐AS) APPENDIX 2. ALGORITHMS USED TO IDENTIFY STUDY VARIABLES Algorithms for AU Database DISEASE/CONDITION ICD-8 CODE (1977-1993) ICD-10 CODE (1994-) Diabetes type 2 250.00; 250.06; 250.07; 250.09 E11.0; E11.1; E11.9 Cancer of bladder 188 C67 Haematuria N/A R31 Haematuria, unspecified B18, K70.0–K70.3, K70.9, K71, K73, Mild hepatic impairment 571, 573.01, 573.04 K74, K76.0 Moderate to severe hepatic 070.00, 070.02, 070.04, 070.06, B15.0, B16.0, B16.2, B19.0, K70.4, impairment 070.08, 573.00, 456.00–456.09 K72, K76.6, I85 Acute myocardial infarction 410 I21-I23 Acute coronary syndrome 410, 413 I20-I24 Ischemic heart disease 410-414 I20-I25 427.09, 427.10, 427.11, 427.19, Congestive heart failure I50, I11.0, I13.0,I13.2 428.99, 782.49; Acute renal failure N/A N17 Diabetic coma N/A E10.0, E11.0, E12.0,E13.0, E14.0 Diabetic acidosis N/A E10.1, E11.1, E12.1,E13.1, E14.1 F10.1-F10.9, G31.2, G62.1, G72.1, Alcoholism 291, 303, 577.10, 571.09, 571.10 I42.6, K29.2, K86.0, Z72.1 Obesity 277.99 E65-E66 D5.a Interim report on the study results (Appendix 2) for Service Contract EMA/2011/38/CN PIOGLITAZONE Author(s): Vera Ehrenstein (AUH‐AS) Algorithms for defining acute events in Denmark, ICD-10 code Event ICD-10 code I21.x, I23.x http://apps.who.int/classifications/icd10/browse/2010/en#/I21 -
G Genito Urinary System and Sex Hormones
WHO/EMP/RHT/TSN/2018.2 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Learning clinical pharmacology with the use of INNs and their stems. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.2). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing. -
The Repurposing Drugs in Oncology Database
ReDO_DB: the repurposing drugs in oncology database Pan Pantziarka1,2, Ciska Verbaanderd1,3, Vidula Sukhatme4, Rica Capistrano I1, Sergio Crispino1, Bishal Gyawali1,5, Ilse Rooman1,6, An MT Van Nuffel1, Lydie Meheus1, Vikas P Sukhatme4,7 and Gauthier Bouche1 1The Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium 2The George Pantziarka TP53 Trust, London, UK 3Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium 4GlobalCures Inc., Newton, MA 02459 USA 5Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA 6Oncology Research Centre, Vrije Universiteit Brussel, Brussels, Belgium 7Emory University School of Medicine, Atlanta, GA 30322 USA Correspondence to: Pan Pantziarka. Email: [email protected] Abstract Repurposing is a drug development strategy that seeks to use existing medications for new indications. In oncology, there is an increased level of activity looking at the use of non-cancer drugs as possible cancer treatments. The Repurposing Drugs in Oncology (ReDO) project has used a literature-based approach to identify licensed non-cancer drugs with published evidence of anticancer activity. Data from 268 drugs have been included in a database (ReDO_DB) developed by the ReDO project. Summary results are outlined and an assessment Research of clinical trial activity also described. The database has been made available as an online open-access resource (http://www.redo-project. org/db/). Keywords: drug repurposing, repositioning, ReDO project, cancer drugs, online database Published: 06/12/2018 Received: 27/09/2018 ecancer 2018, 12:886 https://doi.org/10.3332/ecancer.2018.886 Copyright: © the authors; licensee ecancermedicalscience. -
Marie Louise De Bruin Drug Induced Arrhythmias
Marie Louise De Bruin drug induced arrhythmias Quantifying the problem Cover design: Tom Frantzen CIP-gegevens Koninklijke Bibliotheek, Den Haag De Bruin, Marie Louise Drug-induced arrhythmias, quantifying the problem / Marie Louise De Bruin Thesis Utrecht - with ref.- with summary in Dutch ISBN: 90-808203-3-4 © Marie Louise De Bruin drug-induced arrhythmias, quantifying the problem Geneesmiddel-geïnduceerde hartritmestoornissen, kwantificering van het probleem (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Utrecht op gezag van de Rector Magnificus Prof. dr W.H. Gispen, ingevolge het besluit van het College voor Promoties in het openbaar te verdedigen op woensdag 1 december 2004 des namiddags om 14.30 uur door Marie Louise De Bruin Geboren op 1 april 1974 te Haarlem promotores Prof. dr H.G.M. Leufkens Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmaco- epidemiology and Pharmacotherapy, Utrecht University, Utrecht, the Netherlands Prof. dr A.W. Hoes Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands The work in this thesis was performed at the Department of Pharmacoepidemiology and Pharmacotherapy of the Utrecht Institute for Pharmaceutical Sciences (Utrecht) and the Julius Center for Health Sciences and Primary Care (Utrecht), in collabo- ration with the PHARMO Institute (Utrecht), the Netherlands Pharmacovigilance Centre Lareb (‘s-Hertogenbosch), the WHO-Uppsala Monitoring Centre (Uppsala, Sweden) and the Academic Medical Center (Amsterdam). The research presented in this thesis was funded by the Utrecht Institute for Pharmaceutical Sciences, and an unrestricted grant from the Dutch Medicines Evaluation Board. The study presented in chapter 3.1 was funded by an unrestricted grant from Janssen Pharmaceutica NV, Beerse, Belgium. -
Time in Therapeutic Range and Outcomes After Warfarin Initiation in Newly Diagnosed Atrial Fibrillation Patients with Renal Dysfunction
http://www.diva-portal.org This is the published version of a paper published in Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease. Citation for the original published paper (version of record): Szummer, K., Gasparini, A., Eliasson, S., Ärnlöv, J., Qureshi, A R. et al. (2017) time in therapeutic range and outcomes after warfarin initiation in newly diagnosed atrial fibrillation patients with renal dysfunction. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, 6(3): e004925 https://doi.org/10.1161/JAHA.116.004925 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:du-24516 ORIGINAL RESEARCH Time in Therapeutic Range and Outcomes After Warfarin Initiation in Newly Diagnosed Atrial Fibrillation Patients With Renal Dysfunction Karolina Szummer, MD, PhD; Alessandro Gasparini, MSc; Staffan Eliasson, MD; Johan Arnl€ ov,€ MD, PhD; Abdul Rashid Qureshi, MD, PhD; Peter Barany, MD, PhD; Marie Evans, MD, PhD; Leif Friberg, MD, PhD; Juan Jesus Carrero, PharmMed, PhD Background-—It is unknown whether renal dysfunction conveys poor anticoagulation control in warfarin-treated patients with atrial fibrillation and whether poor anticoagulation control associates with the risk of adverse outcomes in these patients. Methods and Results-—This was an observational study from the Stockholm CREatinine Measurements (SCREAM) cohort including all newly diagnosed atrial fibrillation patients initiating treatment with warfarin (n=7738) in Stockholm, Sweden, between 2006 and 2011. Estimated glomerular filtration rate (eGFR; mL/min per 1.73 m2) was calculated from serum creatinine.