For Peer Review Only Journal: BMJ Open

Total Page:16

File Type:pdf, Size:1020Kb

For Peer Review Only Journal: BMJ Open BMJ Open BMJ Open: first published as 10.1136/bmjopen-2016-012003 on 2 November 2016. Downloaded from Therapy discontinuation or substitution in patients with cardiovascular disease, switching among different products of the same off-patent active substance: a “real-world” retrospective cohort study For peer review only Journal: BMJ Open Manuscript ID bmjopen-2016-012003 Article Type: Research Date Submitted by the Author: 21-Mar-2016 Complete List of Authors: Degli Esposti, Luca; CliCon S.r.l, Health, Economics and Outcomes Research, Sangiorgi, Diego; CliCon S.r.l. Health, Economics and Outcomes Research Buda, Stefano; CliCon S.r.l. Health, Economics and Outcomes Research Degli Esposti, Ezio; CliCon S.r.l. Health, Economics and Outcomes Research Scaglione, Francesco ; University of Milan, Medical Biotechnology and Translational Medicine <b>Primary Subject Cardiovascular medicine Heading</b>: Secondary Subject Heading: Public health http://bmjopen.bmj.com/ Keywords: Simvastatin, Amlodipine, Ramipril, Switching, Adherence to treatment on September 24, 2021 by guest. Protected copyright. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml Page 1 of 23 BMJ Open BMJ Open: first published as 10.1136/bmjopen-2016-012003 on 2 November 2016. Downloaded from 1 2 3 4 5 Therapy discontinuation or substitution in patients with cardiovascular disease, 6 7 switching among different products of the same off-patent active substance: a “real- 8 9 world” retrospective cohort study 10 11 12 13 14 Luca Degli Esposti,1 Diego Sangiorgi,1 Stefano Buda,1 Ezio Degli Esposti,1 Francesco 15 For peer review only 16 2 17 Scaglione 18 19 20 21 22 1CliCon S.r.l. Health, Economics and Outcomes Research, Ravenna, Italy 23 24 2 25 Department of Medical Biotechnology and Translational Medicine, University of Milan, 26 27 Milan, Italy 28 29 30 31 32 Correspondence to 33 34 http://bmjopen.bmj.com/ 35 Luca Degli Esposti, EconD., CliCon S.r.l, Health, Economics and Outcomes Research, Via 36 37 Salara, 36 - 48100 Ravenna, Italy 38 39 40 Tel +39 544 38393 - Fax +39 544 212699. [email protected] 41 42 on September 24, 2021 by guest. Protected copyright. 43 44 45 Keywords 46 47 48 Simvastatin, Amlodipine, Ramipril, Switching, Adherence to treatment 49 50 51 52 53 Word count: 2,452 54 55 56 57 58 59 60 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml BMJ Open Page 2 of 23 BMJ Open: first published as 10.1136/bmjopen-2016-012003 on 2 November 2016. Downloaded from 1 2 3 4 ABSTRACT 5 6 Objective: The present study investigated the effects of switching to different products of the 7 8 same off-patent active substance (brand-name or generic) on therapy discontinuation or 9 10 11 substitution with another molecule of the same class, in patients with cardiovascular disease 12 13 treated with statins and antihypertensives in clinical practice. 14 15 For peer review only 16 Design: A retrospective cohort study in a “real-world” setting. 17 18 Setting: Analysis of data performed by integrating administrative databases from three 19 20 21 Italian Local Health Units located in three different regions with a total population of about 22 23 21 million. 24 25 Participants: All patients aged ≥18 years with at least one prescription of simvastatin, 26 27 st st 28 ramipril or amlodipine in the period January 1 to December 31 2010 were included and 29 30 followed-up for two years. 31 32 33 Main outcome measures: Prescription refills occurring during follow-up were evaluated. 34 http://bmjopen.bmj.com/ 35 Frequency of discontinuation of therapy or substitution with another molecule of the same 36 37 class (for example, from simvastatin to a different statin) during follow-up was identified. 38 39 40 Results: During follow-up, therapy discontinuation or substitution was found to be more 41 42 frequent in patients switching to a different product of the same active substance compared on September 24, 2021 by guest. Protected copyright. 43 44 with non-switching patients (11.5% vs 10.8% and 22.2% vs 20.8% [p=0.002], respectively, 45 46 in the simvastatin group; 7.6% vs 7.8% and 19.2% vs 17.0% [p<0.001], respectively, in the 47 48 49 ramipril group; 4.0% vs 3.5% and 24.6% vs 22.7% [p<0.001], respectively, in the amlodipine 50 51 group). These findings were confirmed by multivariate analysis. 52 53 54 Conclusions: Switches among products of the same active substance are quite common in 55 56 patients with cardiovascular disease. Our study suggests that switching may expose patients 57 58 to a higher risk of therapy discontinuation or substitution. 59 60 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml Page 3 of 23 BMJ Open BMJ Open: first published as 10.1136/bmjopen-2016-012003 on 2 November 2016. Downloaded from 1 2 3 4 5 6 7 STRENGTHS AND LIMITATIONS OF THIS STUDY 8 9 • This study, in a “real-world” setting, is one of only a few studies to investigate 10 11 12 clinical differences related to switching among different products of the same active 13 14 substance in the cardiovascular setting. Until now, most research has focused only on 15 For peer review only 16 comparing brand-name and generic drugs. 17 18 19 • Sample size was relatively limited, and although we used three healthcare databases 20 21 from regions with a total population of about 21 million, large studies are needed to 22 23 confirm and to enhance the generalizability of the findings, and in different 24 25 populations. 26 27 28 • In common with other retrospective, observational studies, reasons for switch, non- 29 30 adherence or discontinuation of treatment were not retrievable from the data set. 31 32 33 34 http://bmjopen.bmj.com/ 35 36 37 38 39 40 41 42 on September 24, 2021 by guest. Protected copyright. 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml BMJ Open Page 4 of 23 BMJ Open: first published as 10.1136/bmjopen-2016-012003 on 2 November 2016. Downloaded from 1 2 3 4 INTRODUCTION 5 6 7 Cardiovascular diseases (CVD) are the leading cause of death worldwide, accounting for 8 9 approximately one third of all deaths.[1] Combination therapy with antihypertensive drugs 10 11 12 and serum cholesterol-lowering drugs is effective in prevention, and it is estimated that a high 13 14 level of adherence to treatment will reduce the risk of CVD by approximately 80%.[2] A 15 For peer review only 16 number of studies have demonstrated that patients often discontinue long-term treatment or 17 18 take less than prescribed, and that such non-adherence reduces the potential preventive 19 20 benefits.[3] 21 22 23 Many reasons contribute to patient non-adherence to medical therapy, such as ageing, 24 25 comorbidities, polypharmacy, poor relationship between patient and physician, poor memory, 26 27 28 and patients’ low perception of disease severity.[4] On the other hand, it is unlikely that side 29 30 effects are the main cause of poor adherence to preventive treatment, as there seems to be 31 32 little direct relationship between adherence and drug class.[3] Furthermore, some studies 33 34 have demonstrated that switching between different products of the same active substance http://bmjopen.bmj.com/ 35 36 can have an impact on adherence to medication, because variation in packaging and pill 37 38 39 appearance may reduce adherence, especially for chronic diseases.[5, 6] 40 41 There is a perception among patients and physicians alike that frequent changes between 42 on September 24, 2021 by guest. Protected copyright. 43 44 branded and unbranded products (as well as between generics), all containing the same active 45 46 substance, and especially if patients are older and on multi-drug regimens, may cause patients 47 48 to become anxious when the appearance of their drugs changes.[7-9] This can lead to an 49 50 increased risk of patients making mistakes or double medicating, which flows on to increased 51 52 53 drug non-adherence.[10, 11] 54 55 56 57 58 59 60 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml Page 5 of 23 BMJ Open BMJ Open: first published as 10.1136/bmjopen-2016-012003 on 2 November 2016. Downloaded from 1 2 3 4 Few studies have investigated clinical differences related to switching among different 5 6 products of the same active substance in the cardiovascular setting. Until now, most research 7 8 has focused only on comparing brand-name and generic drugs.[12-16] 9 10 11 The aim of the present study was to investigate the effects of switching to different 12 13 products of the same off-patent active substance (brand-name or generic) on therapy 14 15 For peer review only 16 discontinuation or substitution with another molecule of the same class, in patients with CVD 17 18 treated with statins and antihypertensives in clinical practice. 19 20 21 A version of this article has been previously published as a journal supplement in the 22 23 Italian language.[17] 24 25 26 METHODS 27 28 29 Data collection 30 31 The data used for the analysis were obtained from the administrative databases of three Local 32 33 Health Units (LHUs), including a total population of about two million health-assisted 34 http://bmjopen.bmj.com/ 35 36 individuals, in the Italian regions of Lombardy, Lazio and Campania.
Recommended publications
  • Ezetimibe: a Novel Selective Cholesterol Absorption Inhibitor by Michele Koder, Pharm.D
    OREGON DUR BOARD NEWSLETTER A N E VIDENCE B ASED D RUG T HERAPY R ESOURCE COPYRIGHT 2003 OREGON STATE UNIVERSITY. ALL RIGHTS RESERVED Volume 5, Issue 2 Also available on the web and via e-mail list-serve at February 2003 http://pharmacy.orst.edu/drug_policy/newsletter_email.html Ezetimibe: A novel selective cholesterol absorption inhibitor By Michele Koder, Pharm.D. , OSU College of Pharmacy Ezetimibe (Zetia) is a novel selective cholesterol absorption inhibitor that was approved by the FDA in October 2002. Unlike statins (HMG-CoA reductase inhibitors) and bile acid sequestrants, ezetimibe does not inhibit hepatic cholesterol synthesis or increase bile acid secretion. In contrast, ezetimibe selectively inhibits the uptake of dietary cholesterol from enterocytes in the brush border of the intestinal lumen resulting in a decrease in the delivery of dietary cholesterol to the liver and a subsequent decrease in hepatic cholesterol stores and increased cholesterol clearance from the blood.1 Ezetimibe’s unique action has generated interest in its use in combination with other cholesterol-lowering agents. It is indicated for the treatment of primary hypercholesterolemia as monotherapy and in combination with a statin. Ezetimibe is also approved for homozygous familial hypercholesterolemia and homozygous sitosterolemia. TABLE 1: EZETIMIBE CLINICAL TRIAL SUMMARY Study / Design Population Treatment % Change LDL % Change HDL % Change TG Bays et al3 N=432 EZ 5 mg -15.7 +2.9 MC, R, DB, PC LDL 130-250mg/dl EZ 10 mg -18.5 +3.5 NS 12 wk; Phase II TG
    [Show full text]
  • Fenofibrate Ezetimibe Studies
    FenofibrateFenofibrate EzetimibeEzetimibe SurrogateSurrogate TrialsTrials ThomasThomas Dayspring,Dayspring, MD,MD, FACPFACP Clinical Assistant Professor of Medicine University of Medicine and Dentistry of New Jersey Attending in Medicine: St Joseph’s Hospital, Paterson, NJ Certified Menopause Practitioner: North American Menopause Society North Jersey Institute of Menopausal Lipidology PharmacokineticPharmacokinetic DataData FenofibrateFenofibrate –– EzetimibeEzetimibe PharmacodynamicPharmacodynamic andand PharmacokineticPharmacokinetic InteractionInteraction StudyStudy Placebo (n = 8) Ezetimibe 10 mg (n = 8) Patients have no physical 30 activity and are on a high Fenofibrate 200 mg (n = 8) carbohydrate low fat diet which lowers HDL-C 20 Fenofibrate 200mg + 10 Ezetimibe 10 mg (n = 8) 0 -10 -20 -30 Change from Baseline (%) -40 -50 TC LDL-C HDL-C TG Mean (SE) percentage change from baseline in serum lipids on day 14 following oral administration of fenofibrate monotherapy, ezetimibe monotherapy, fenofibrate-ezetimibe co- administration therapy or placebo once daily to 14 healthy subjects with hypercholesterolemia Kosoglou T et al. Curr Med Res & Opin 2004;20:1185-1195 FenofibrateFenofibrate –– EzetimibeEzetimibe PharmacodynamicPharmacodynamic andand PharmacokineticPharmacokinetic InteractionInteraction StudyStudy Placebo (n = 8) 30 Ezetimibe 10 mg (n = 8) Fenofibrate 200 mg (n = 8) Combination therapy 20 produced significantly Fenofibrate 200mg + 10 Ezetimibe 10 mg (n = 8) greater reductions in 0 LDL-C and in small LDL-III -10 Levels of
    [Show full text]
  • Dyslipidemia in Newfoundland: Findings from Canadian Primary Care Sentinel Surveillance Network in Newfoundland and Labrador
    Dyslipidemia in Newfoundland: Findings from Canadian Primary Care Sentinel Surveillance Network in Newfoundland and Labrador By Justin D. Oake A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science in Medicine Clinical Epidemiology Program, Faculty of Medicine, Memorial University of Newfoundland St. John’s, NL May 2019 Abstract Newfoundland and Labrador (NL) has a higher level of cardiovascular disease (CVD) mortality than any other Canadian province. One factor which may explain this trend is the lipid profile pattern in this province. Given the limited lipid profile data which has been reported from NL, we organized three studies in this thesis to describe the lipid profile of Newfoundlanders. The first study was a secondary analysis of Canadian Primary Care Sentinel Surveillance Network (CPCSSN) data to document single and mixed dyslipidemia in NL. The second study compared lipid profiles and the prevalence of dyslipidemia between NL CPCSSN data and the Canadian Health Measures Survey (CHMS). The third study used electronic medical record (EMR) data in assessing the validity of ICD codes for identifying patients with dyslipidemia. This was a secondary analysis of EMR data in NL. Most recent lipid profile scores, co-morbidities, and demographic information were extracted from the CPCSSN database. We demonstrated that single and mixed dyslipidemia are quite prevalent in the NL population. Unhealthy levels of HDL were also more prevalent in NL men, compared to the Canadian sample. Of importance, the use of the ICD coding, either alone or in combination with laboratory data or lipid-lowering medication records, was an inaccurate indicator in identifying dyslipidemia.
    [Show full text]
  • SUMMARY of the PRODUCT CHARACTERISTICS 1. NAME of the MEDICINAL PRODUCT <Invented Name> 10 Mg/10 Mg Film-Coated Tablets
    SUMMARY OF THE PRODUCT CHARACTERISTICS 1. NAME OF THE MEDICINAL PRODUCT <Invented name> 10 mg/10 mg film-coated tablets <Invented name> 20 mg/10 mg film-coated tablets <Invented name> 40 mg/10 mg film-coated tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION <Invented name> 10 mg/10 mg: Each film-coated tablet contains 10 mg of rosuvastatin (as rosuvastatin calcium) and 10 mg of ezetimibe. <Invented name> 20 mg/10 mg: Each film-coated tablet contains 20 mg of rosuvastatin (as rosuvastatin calcium) and 10 mg of ezetimibe. <Invented name> 40 mg/10 mg: Each film-coated tablet contains 40 mg of rosuvastatin (as rosuvastatin calcium) and 10 mg of ezetimibe. Excipient with known effect: <Invented name> 10 mg/10 mg: Each film-coated tablet contains 111.2 mg of lactose (as lactose monohydrate). <Invented name> 20 mg/10 mg: Each film-coated tablet contains 168.6 mg of lactose (as lactose monohydrate). <Invented name> 40 mg/10 mg: Each film-coated tablet contains 286.0 mg of lactose (as lactose monohydrate). For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Film-coated tablet (tablet) <Invented name> 10 mg/10 mg: white to off-white oblong film-coated tablets. <Invented name> 20 mg/10 mg: yellow to light yellow oblong film-coated tablets. <Invented name> 40 mg/10 mg: pink oblong film-coated tablets. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Primary Hypercholesterolaemia/Homozygous Familial Hypercholesterolaemia (HoFH) <Invented name> is indicated for substitution therapy in adult patients who are adequately controlled with rosuvastatin and ezetimibe given concurrently at the same dose level as in the fixed combination, but as separate products, as adjunct to diet for treatment of primary hypercholesterolaemia (heterozygous familial and non-familial) or homozygous familial hypercholesterolaemia.
    [Show full text]
  • Zetia® (Ezetimibe) Tablets
    29480958T REV 14 ZETIA® (EZETIMIBE) TABLETS DESCRIPTION ZETIA (ezetimibe) is in a class of lipid-lowering compounds that selectively inhibits the intestinal absorption of cholesterol and related phytosterols. The chemical name of ezetimibe is 1-(4-fluorophenyl)- 3(R)-[3-(4-fluorophenyl)-3(S)-hydroxypropyl]-4(S)-(4-hydroxyphenyl)-2-azetidinone. The empirical formula is C24H21F2NO3. Its molecular weight is 409.4 and its structural formula is: OH OH S SR N F F O Ezetimibe is a white, crystalline powder that is freely to very soluble in ethanol, methanol, and acetone and practically insoluble in water. Ezetimibe has a melting point of about 163°C and is stable at ambient temperature. ZETIA is available as a tablet for oral administration containing 10 mg of ezetimibe and the following inactive ingredients: croscarmellose sodium NF, lactose monohydrate NF, magnesium stearate NF, microcrystalline cellulose NF, povidone USP, and sodium lauryl sulfate NF. CLINICAL PHARMACOLOGY Background Clinical studies have demonstrated that elevated levels of total cholesterol (total-C), low density lipoprotein cholesterol (LDL-C) and apolipoprotein B (Apo B), the major protein constituent of LDL, promote human atherosclerosis. In addition, decreased levels of high density lipoprotein cholesterol (HDL-C) are associated with the development of atherosclerosis. Epidemiologic studies have established that cardiovascular morbidity and mortality vary directly with the level of total-C and LDL-C and inversely with the level of HDL-C. Like LDL, cholesterol-enriched triglyceride-rich lipoproteins, including very-low- density lipoproteins (VLDL), intermediate-density lipoproteins (IDL), and remnants, can also promote atherosclerosis. The independent effect of raising HDL-C or lowering triglycerides (TG) on the risk of coronary and cardiovascular morbidity and mortality has not been determined.
    [Show full text]
  • Effects of Generic Substitution on Refill Adherence to Statin Therapy: a Nationwide Population-Based Study Henrik Trusell1 and Karolina Andersson Sundell1,2*
    Trusell and Andersson Sundell BMC Health Services Research 2014, 14:626 http://www.biomedcentral.com/1472-6963/14/626 RESEARCH ARTICLE Open Access Effects of generic substitution on refill adherence to statin therapy: a nationwide population-based study Henrik Trusell1 and Karolina Andersson Sundell1,2* Abstract Background: Several countries have introduced generic substitution, but few studies have assessed its effect on refill adherence. This study aimed to analyse whether generic substitution influences refill adherence to statin treatment. Methods: Between 1 July 2006 and 30 June 2007, new users of simvastatin (n = 108,806) and atorvastatin (n = 7,464) were identified in the Swedish Prescribed Drug Register . The present study included atorvastatin users as an unexposed control group because atorvastatin was patent-protected and thus not substitutable. We assessed refill adherence using continuous measure of medication acquisition (CMA). To control for potential confounders, we used analysis of covariance (ANCOVA). Differences in CMA associated with generic substitution and generic substitution at first-time statin purchase were analysed. Results: Nine of ten simvastatin users were exposed to generic substitution during the study period, and their adherence rate was higher than that of patients without substitution [84.6% (95% CI 83.5-85.6) versus 59.9% (95% CI 58.4-61.4), p < 0.001]. CMA was higher with increasing age (60–69 years 16.7%, p < 0.0001 and 70–79 years 17.8%, p < 0.0001, compared to 18–39 years) and secondary prevention (12.8%, p < 0.0001). CMA was lower among patients who were exposed to generic substitution upon initial purchase, compared to those who were exposed to a generic substitution subsequently [80.4% (95% CI 79.4-90.9) versus 89.8% (88.7-90.9), p < 0.001].
    [Show full text]
  • Regulation of Pharmaceutical Prices: Evidence from a Reference Price Reform in Denmark
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Kaiser, Ulrich; Mendez, Susan J.; Rønde, Thomas Working Paper Regulation of pharmaceutical prices: Evidence from a reference price reform in Denmark ZEW Discussion Papers, No. 10-062 Provided in Cooperation with: ZEW - Leibniz Centre for European Economic Research Suggested Citation: Kaiser, Ulrich; Mendez, Susan J.; Rønde, Thomas (2010) : Regulation of pharmaceutical prices: Evidence from a reference price reform in Denmark, ZEW Discussion Papers, No. 10-062, Zentrum für Europäische Wirtschaftsforschung (ZEW), Mannheim This Version is available at: http://hdl.handle.net/10419/41440 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Dis cus si on Paper No. 10-062 Regulation of Pharmaceutical Prices: Evidence from a Reference Price Reform in Denmark Ulrich Kaiser, Susan J.
    [Show full text]
  • Efficacy of Combination Therapy of Rosuvastatin and Ezetimibe Vs
    Original Article DOI: 10.7860/JCDR/2017/30458.11004 Efficacy of Combination Therapy Internal Medicine Section of Rosuvastatin and Ezetimibe vs Rosuvastatin Monotherapy on Lipid Profile of Patients with Coronary Artery Disease SANDEEP JOSHI1, RUBY SHARMA2, HARBIR KAUR RAO3, UDIT NARANG4, NITIN GUPTA5 ABSTRACT baseline investigations and lifestyle modifications, Group I Introduction: Dyslipidaemia is one of the most important was started on rosuvastatin 10 mg once daily, while Group modifiable risk factor for the development of Coronary II was started on rosuvastatin 10 mg+ezetimibe 10 mg daily. Artery Disease (CAD). Although, statins are established as The fasting serum lipid profile was repeated initially after first line lipid-lowering therapy, they may not be able to 12 weeks and then after 24 weeks. The two groups were achieve treatment goals in significant number of patients. observed for side effects which were noted. Combination therapy of statin with a non-statin drug like Results: The combination therapy of rosuvastatin and Ezetimibe is a therapeutic option. ezetimibe resulted in significantly higher change in all Aim: To compare the efficacy and safety of Rosuvastatin/ lipid parameters (LDL-C, TC, TG, HDL-C) as compared to Ezetimibe combination therapy vs Rosuvastatin alone on the treatment with rosuvastatin alone. There was no difference in lipid profile of patients with CAD in Northern India. the adverse effects seen after treatment in the two groups. Materials and Methods: This randomized prospective Conclusion: Our study showed that combination therapy study was conducted on 80 patients of CAD presenting of ezetimibe with rosuvastatin can be used as an effective to Department of Medicine, Government Medical College, and safe therapy in high risk patients of CAD, especially in Patiala, Punjab, India.
    [Show full text]
  • Protective Lipid-Lowering Genetic Variants in Healthy Older Individuals Without Coronary
    medRxiv preprint doi: https://doi.org/10.1101/2021.02.16.21251811; this version posted February 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . TITLE PAGE Title: Protective lipid-lowering genetic variants in healthy older individuals without coronary heart disease Running title: Lacaze - Protective lipid-lowering variants Authors: Paul Lacaze, PhD1*, Moeen Riaz, PhD1, Robert Sebra, PhD2, Amanda J Hooper, PhD3,4, Jing Pang, PhD3, Jane Tiller, LLB, MSc GenCoun1, Galina Polekhina, PhD1, Andrew M Tonkin, PhD1, Christopher M Reid, PhD1,5, Sophia Zoungas, MD, PhD1, Anne M Murray, MD, MSc6, Stephen J Nicholls MD, PhD7, Gerald F Watts, MD, PhD4,8, Eric Schadt, PhD2 & John J McNeil, MD, PhD1 Departments and institutions: 1 Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia. 2 Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, USA. 3 School of Medicine, Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, Australia 4 Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia. 5 School of Public Health, Curtin University, Perth, WA, Australia 6 Berman Center for Outcomes and Clinical Research, Hennepin Healthcare Research Institute, Hennepin Healthcare, Minneapolis, MN, USA 7 Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia; 1 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
    [Show full text]
  • CP.PMN.237 Bempedoic Acid (Nexletol)
    Clinical Policy: Bempedoic Acid (Nexletol), Bempedoic Acid/Ezetimibe (Nexlizet) Reference Number: CP.PMN.237 Effective Date: 09.01.20 Last Review Date: 02.21 Revision Log Line of Business: Commercial, HIM, Medicaid See Important Reminder at the end of this policy for important regulatory and legal information. Description The following are adenosine triphosphate-citrate lyase (ACL) inhibitors requiring prior authorization: bempedoic acid (Nexletol™) and bempedoic acid/ezetimibe (Nexlizet™). Nexlizet contains ezetimibe, which is a cholesterol absorption inhibitor. FDA Approved Indication(s) Nexletol and Nexlizet are indicated for use as adjuncts to diet and maximally tolerated statin therapy for the treatment of adults with heterozygous familial hypercholesterolemia (HeFH) or established atherosclerotic cardiovascular disease (ASCVD) who require additional lowering of low-density lipoprotein cholesterol (LDL-C). Limitation(s) of use: The effect of Nexletol and Nexlizet on cardiovascular morbidity and mortality has not been determined. Policy/Criteria Provider must submit documentation (such as office chart notes, lab results or other clinical information) supporting that member has met all approval criteria. It is the policy of health plans affiliated with Centene Corporation® that Nexletol and Nexlizet are medically necessary when the following criteria are met: I. Initial Approval Criteria A. Heterozygous Familial Hypercholesterolemia and Atherosclerotic Cardiovascular Disease (must meet all): 1. Diagnosis of one of the following (a or b): a. ASCVD as evidenced by a history of any one of the following conditions (i-vii): i. Acute coronary syndromes; ii. Clinically significant coronary heart disease (CHD) diagnosed by invasive or noninvasive testing (such as coronary angiography, stress test using treadmill, stress echocardiography, or nuclear imaging); iii.
    [Show full text]
  • Part1 Gendiff.Qxp
    Sex Differences in Health Status, Health Care Use, and Quality of Care: A Population-Based Analysis for Manitoba’s Regional Health Authorities November 2005 Manitoba Centre for Health Policy Department of Community Health Sciences Faculty of Medicine, University of Manitoba Randy Fransoo, MSc Patricia Martens, PhD The Need to KnowTeam (funded through CIHR) Elaine Burland, MSc Heather Prior, MSc Charles Burchill, MSc Dan Chateau, PhD Randy Walld, BSc, BComm (Hons) This report is produced and published by the Manitoba Centre for Health Policy (MCHP). It is also available in PDF format on our website at http://www.umanitoba.ca/centres/mchp/reports.htm Information concerning this report or any other report produced by MCHP can be obtained by contacting: Manitoba Centre for Health Policy Dept. of Community Health Sciences Faculty of Medicine, University of Manitoba 4th Floor, Room 408 727 McDermot Avenue Winnipeg, Manitoba, Canada R3E 3P5 Email: [email protected] Order line: (204) 789 3805 Reception: (204) 789 3819 Fax: (204) 789 3910 How to cite this report: Fransoo R, Martens P, The Need To Know Team (funded through CIHR), Burland E, Prior H, Burchill C, Chateau D, Walld R. Sex Differences in Health Status, Health Care Use and Quality of Care: A Population-Based Analysis for Manitoba’s Regional Health Authorities. Winnipeg, Manitoba Centre for Health Policy, November 2005. Legal Deposit: Manitoba Legislative Library National Library of Canada ISBN 1-896489-20-6 ©Manitoba Health This report may be reproduced, in whole or in part, provided the source is cited. 1st Printing 10/27/2005 THE MANITOBA CENTRE FOR HEALTH POLICY The Manitoba Centre for Health Policy (MCHP) is located within the Department of Community Health Sciences, Faculty of Medicine, University of Manitoba.
    [Show full text]
  • Protective Lipid-Lowering Variants in Healthy Older Individuals Without
    Open access Special populations Open Heart: first published as 10.1136/openhrt-2021-001710 on 2 August 2021. Downloaded from Protective lipid- lowering variants in healthy older individuals without coronary heart disease Paul Lacaze ,1 Moeen Riaz,1 Robert Sebra,2 Amanda J Hooper,3,4 Jing Pang ,3 Jane Tiller,1 Galina Polekhina,1 Andrew Tonkin,1 Chris Reid,1,5 Sophia Zoungas,1 Anne M Murray,6 Stephen Nicholls,7 Gerald Watts,4,8 Eric Schadt,2 John J McNeil1 ► Additional supplemental ABSTRACT Key questions material is published online only. Objective Genetic variants that disrupt the function of To view, please visit the journal the PCSK9 (proprotein convertase subtilisin kexin type 9) online (http:// dx. doi. org/ 10. What is already known about this subject? and APOB (apolipoprotein B)genes result in lower serum 1136/ openhrt- 2021- 001710). Loss- of- function genetic variants in the PCSK9 (pro- low- density lipoprotein cholesterol (LDL- C) levels and ► protein convertase subtilisin kexin type 9) and APOB subsequently confer protection against coronary heart To cite: Lacaze P, Riaz M, (apolipoprotein B) genes result in lower serum low- disease (CHD). The objective of this study was to measure Sebra R, et al. Protective lipid- density lipoprotein cholesterol concentrations and lowering variants in healthy the prevalence and selective advantage of such variants subsequently confer protection against coronary older individuals without among healthy older individuals without a history of CHD. heart disease (CHD). coronary heart disease. Open Methods We performed targeted sequencing of the Heart 2021;8:e001710. PCSK9 and APOB genes in 13 131 healthy individuals What does this study add? doi:10.1136/ without CHD aged 70 years or older enrolled into the Our study measured the prevalence and selective openhrt-2021-001710 ► ASPirin in Reducing Events in the Elderly trial.
    [Show full text]