2017 Hurricane Season: Review and Analysis

Total Page:16

File Type:pdf, Size:1020Kb

2017 Hurricane Season: Review and Analysis KCC WHITE PAPER 2017 Hurricane Season: Review and Analysis JUNE 2018 KCC White Paper: 2017 Hurricane Season: Review and Analysis ©2018 Karen Clark & Company. All rights reserved. This document may not be reproduced, in whole or part, or transmitted in any form without the express written consent of Karen Clark & Company. RiskInsight® is a registered trademark of Karen Clark & Company. Document Date June 2018 Contact Information If you have any questions regarding this document please contact: Karen Clark & Company 116 Huntington Avenue Boston, MA 02116 T: 617.423.2800 F: 617.423.2808 [email protected] © 2018 Karen Clark & Company | 1 KCC White Paper: 2017 Hurricane Season: Review and Analysis Contents Executive Summary ........................................................................................................... 3 Meteorological Highlights and Forecasts ...................................................................... 3 Modeled Loss Estimates................................................................................................. 5 Hurricane Harvey ............................................................................................................... 6 Meteorological Development ........................................................................................ 6 Real Time Loss Estimation ............................................................................................. 7 Post-Event Damage Survey............................................................................................ 9 Residential Structures ................................................................................................. 9 Commercial structures .............................................................................................. 12 Hurricane Irma ................................................................................................................. 16 Meteorological Development ...................................................................................... 16 Real Time Loss Estimation ........................................................................................... 19 Post-Event Damage Survey.......................................................................................... 20 Residential Structures ............................................................................................... 21 How much does it cost? ............................................................................................. 24 Commercial Structures ............................................................................................. 26 Storm Surge Damage................................................................................................. 27 Damage Observations from the Caribbean ................................................................. 29 Hurricane Maria ................................................................................................................ 31 Meteorological Development ...................................................................................... 31 Real Time Loss Estimation ........................................................................................... 32 Post-Event Damage Survey.......................................................................................... 33 Residential Structures ............................................................................................... 33 Commercial Structures ............................................................................................. 35 Hurricane Nate ................................................................................................................. 42 Meteorological Development ...................................................................................... 42 Real Time Loss Estimation ........................................................................................... 43 Conclusions ...................................................................................................................... 44 © 2018 Karen Clark & Company | 2 KCC White Paper: 2017 Hurricane Season: Review and Analysis Executive Summary The 2017 hurricane season was a notable one in many respects. From a meteorological perspective, several storms exhibited extreme values for intensity, duration, and/or rainfall amounts. Several islands in the Caribbean experienced their worst losses in decades, and there is still uncertainty around the final insured losses. Perhaps most notable was the wide discrepancy in the catastrophe model loss estimates for Harvey, Irma, and Maria (HIM). Meteorological Highlights and Forecasts . 2017 was the most active hurricane season since 2005 based on the Accumulated Cyclonic Energy (ACE) index, which is a measure of seasonal intensity and duration. Ten hurricanes, six of which became major hurricanes, formed in the Atlantic basin. Two major hurricanes made landfall in the US, ending a 13 year drought of major landfalling storms. Every state along the Gulf Coast was impacted by at least one hurricane. Two Category 5 hurricanes impacted Puerto Rico and other Caribbean Islands. Multiple storms, including Jose, Irma, and Maria, exhibited extreme wind speeds and/or duration. Named storms of the 2017 North Atlantic hurricane season. © 2018 Karen Clark & Company | 3 KCC White Paper: 2017 Hurricane Season: Review and Analysis In 2017, sea surface temperatures (SSTs) throughout the Atlantic were above average by 0.5-1.0°C. In addition, in the region most conducive to Atlantic hurricane genesis, SSTs were 0.23°C higher than the rest of the tropics. In May, NOAA forecast a 45 percent probability of an above-average season and a 35 percent probability of a near-average season. El Niño conditions had been anticipated to develop as the season progressed. This would have introduced characteristics, such as increased wind shear and lower SSTs, that would have inhibited storm formation. However, El Niño conditions did not materialize. In August, the outlook was updated to indicate a 60 percent chance of an above- average season. The minimal wind shear over the North Atlantic due to weak trade winds combined with the African Easterly Jet allowed tropical disturbances off the west African coast to gain cyclonic vorticity and increased the likelihood of tropical storm formation. By this time, the 2017 hurricanes were expected to be larger, longer lasting, and more numerous than average seasons. The 2017 North Atlantic hurricane season was characterized by fewer tropical cyclones than projected but there were more hurricanes and major hurricanes than forecast. 2017 Hurricane Season Statistics 20 18 16 14 12 10 8 6 4 2 0 Tropical Storms Hurricanes Major Hurricanes NOAA May Forecast NOAA August Forecast 2017 Season 30 Year Average (1980‐2011) Comparison of NOAA forecasts, the 2017 hurricane season, and the 30 year average. © 2018 Karen Clark & Company | 4 KCC White Paper: 2017 Hurricane Season: Review and Analysis Modeled Loss Estimates Perhaps the biggest surprise of the 2017 hurricane season was the wide disparity between the catastrophe model loss estimates. The chart below shows the three primary modelers’ industry loss estimates for HIM. These numbers are for the US only for Harvey and Irma, and they exclude NFIP losses. Harvey (US) Irma (US) Maria (PR) 80 72 70 60 ? 50 40 35 $ Billions 33 32 30 34 26 25 28 20 20 18 15 10 12 13 >10 0 KCC (9/1) AIR (9/6) RMS (9/9) KCC (9/13) AIR (9/15) RMS (9/20) KCC (9/28) AIR (9/25) RMS (9/29) Comparison of modeled loss estimates for Hurricanes Harvey, Irma, and Maria. Several things are notable about the industry loss estimates. KCC provided a best estimate for each storm; other modelers provided wide ranges. The actual losses aligned well with the KCC projected loss estimates for the industry as a whole and for individual insurers. KCC estimated that the privately insured loss, including the US and Caribbean, would total to $70 billion for the 2017 hurricane season. Hurricane Estimated Industry Loss ($ Billions) Harvey 15 Irma 25 Maria 30 Nate 0.5 Total 70.5 © 2018 Karen Clark & Company | 5 KCC White Paper: 2017 Hurricane Season: Review and Analysis Hurricane Harvey August 17-September 3 . First major landfalling US hurricane since Hurricane Charley (2004). Made landfall near Rockport, Texas, as a Category 4 hurricane with 132 mph winds. The storm’s slow motion, eventual stall, and location near the Gulf of Mexico led to historic flooding in and around Houston with rainfall in excess of 50 inches. Meteorological Development After forming as a tropical depression in the Atlantic, Harvey traveled westward south of the Caribbean and across the Yucatan Peninsula. The storm rapidly intensified over the Gulf of Mexico due to warm SSTs. Prior to making landfall near Rockport, Texas, Harvey became a Category 4 storm with 132 mph sustained wind speeds. KCC inland flood footprint for Hurricane Harvey generated on September 1. Hurricane Harvey’s track through the Caribbean Sea and Gulf of Mexico. High pressure regions over the US and the Atlantic caused Harvey to stall near Houston. Much of the storm’s circulation remained over the Gulf of Mexico, which prolonged the storm’s duration and provided a constant source of moisture for precipitation. Rainfall in excess of 50 inches from August 25-29 produced historic flooding in Houston and the surrounding areas. © 2018 Karen Clark & Company | 6 KCC White Paper: 2017 Hurricane Season: Review and Analysis After four
Recommended publications
  • 4. the TROPICS—HJ Diamond and CJ Schreck, Eds
    4. THE TROPICS—H. J. Diamond and C. J. Schreck, Eds. Pacific, South Indian, and Australian basins were a. Overview—H. J. Diamond and C. J. Schreck all particularly quiet, each having about half their The Tropics in 2017 were dominated by neutral median ACE. El Niño–Southern Oscillation (ENSO) condi- Three tropical cyclones (TCs) reached the Saffir– tions during most of the year, with the onset of Simpson scale category 5 intensity level—two in the La Niña conditions occurring during boreal autumn. North Atlantic and one in the western North Pacific Although the year began ENSO-neutral, it initially basins. This number was less than half of the eight featured cooler-than-average sea surface tempera- category 5 storms recorded in 2015 (Diamond and tures (SSTs) in the central and east-central equatorial Schreck 2016), and was one fewer than the four re- Pacific, along with lingering La Niña impacts in the corded in 2016 (Diamond and Schreck 2017). atmospheric circulation. These conditions followed The editors of this chapter would like to insert two the abrupt end of a weak and short-lived La Niña personal notes recognizing the passing of two giants during 2016, which lasted from the July–September in the field of tropical meteorology. season until late December. Charles J. Neumann passed away on 14 November Equatorial Pacific SST anomalies warmed con- 2017, at the age of 92. Upon graduation from MIT siderably during the first several months of 2017 in 1946, Charlie volunteered as a weather officer in and by late boreal spring and early summer, the the Navy’s first airborne typhoon reconnaissance anomalies were just shy of reaching El Niño thresh- unit in the Pacific.
    [Show full text]
  • The Operational Challenges of Forecasting TC Intensity Change in the Presence of Dry Air and Strong Vertical Shear
    The Operational Challenges of Forecasting TC Intensity Change in the Presence of Dry Air and Strong Vertical Shear Jamie R. Rhome,* and Richard D. Knabb NOAA/NWS/NCEP/Tropical Prediction Center/National Hurricane Center, Miami, FL 1. INTRODUCTION to an incomplete specification of the initial moisture conditions, dynamical model forecasts of middle- to Tropical cyclone (TC) intensity changes involve upper-tropospheric humidity often have large errors. complex interactions between many environmental Beyond the problems with observing and forecasting factors, including vertical wind shear and the humidity, TC intensity forecasts become particularly thermodynamic properties of the ambient atmosphere challenging when dry air is accompanied by moderate to and ocean. While the effects of each factor are not strong vertical shear. completely understood, even less is known about the Much of the current understanding on the response effects of these factors working in tandem. Emanuel et of a TC to vertical shear comes from idealized studies. It al. (2004) proposed that “storm intensity in a sheared has been shown that strong vertical shear typically results environment is sensitive to the ambient humidity” and in the convective pattern of the TC becoming cautioned “against considering the various environmental increasingly asymmetric followed by a downshear tilt of influences on storm intensity as operating independently the vortex (Frank and Ritchie 2001, Bender 1997). To from each other.” Along these lines, Dunion and Velden keep the tilted TC vortex quasi-balanced, the (2004) have examined the combined effects of vertical diabatically-driven secondary circulation aligns itself to shear and dry air on TCs during interactions with the produce an asymmetry in vertical motion that favors Saharan Air Layer (SAL).
    [Show full text]
  • UB Powerpoint Template
    converge.colorado.edu CONVERGE ethical, coordinated, and scientifically rigorous social science, engineering, and interdisciplinary extreme events research Lori Peek Principal Investigator, CONVERGE, SSEER, and ISEEER Director, Natural Hazards Center Professor, Department of Sociology University of Colorado Boulder Session 2: Collecting, Managing, and Archiving Social and Behavioral Science Data Describe opportunities for identifying and coordinating social science researchers so that we can best share information and publish our data as well as data collection protocols using DOIs, repositories, etc. Discuss some of the overarching challenges and concerns with sharing social science data, such as privacy, data management plans and related IRB policies, duplication vs. replication, etc. converge.colorado.edu 4 Things converge.colorado.edu 1. NSF has funded the CONVERGE initiative converge.colorado.edu Why CONVERGE? Why CONVERGE? • identify and coordinate researchers and research teams; • advance hazards and disaster research; • encourage the publication of data and data collection instruments and protocols (DesignSafe Cyberinfrastructure + CONVERGE). • support and accelerate training and mentoring; • fund virtual reconnaissance, field research, and the development of novel research instruments and data collection protocols; • accelerate the development of mobile applications for social science data collection (NHERI RAPID); Why CONVERGE? 2. NSF Supports Extreme Events Research (EER) Networks converge.colorado.edu Why the EER’s? Disciplinary
    [Show full text]
  • Mobile Weather & Marine Almanac 2018
    2018 Mobile Weather and Marine Almanac 2017: A Year of Devastating Hurricanes Prepared by Assisted by Dr. Bill Williams Pete McCarty Coastal Weather Coastal Weather Research Center Research Center www.mobileweatheralmanac.com Christmas Town & Village Collectibles RobertMooreChristmasTown.com • 251-661-3608 4213 Halls Mill Road Mobile, Alabama Mon.-Sat. 10-5 Closed Sunday 2018 Mobile Weather and Marine Almanac© 28th Edition Dr. Bill Williams Pete McCarty TABLE OF CONTENTS Astronomical Events for 2018 ....................................................................... 2 Astronomical and Meteorological Calendar for 2018 .................................. 3 2017 Mobile Area Weather Highlights ........................................................ 15 2017 National Weather Highlights .............................................................. 16 2017 Hurricane Season ............................................................................... 17 2018 Hurricane Tracking Chart ................................................................... 18 2017 Hurricane Season in Review .............................................................. 20 Harvey and Irma - Structurally Different, but Major Impacts .................... 22 Tropical Storms and Hurricanes 1990-2017 .............................................. 24 World Weather Extremes ............................................................................ 26 Mobile Weather Extremes ........................................................................... 28 Alabama Deep Sea
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • ANNUAL SUMMARY Atlantic Hurricane Season of 2005
    MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record.
    [Show full text]
  • The Crisis Informatics of Online Hurricane Risk Communication
    The Crisis Informatics of Online Hurricane Risk Communication by Melissa J. Bica B.S., Santa Clara University, 2014 M.S., University of Colorado Boulder, 2017 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Computer Science 2019 This thesis entitled: The Crisis Informatics of Online Hurricane Risk Communication written by Melissa J. Bica has been approved for the Department of Computer Science Prof. Leysia Palen (chair) Prof. Kenneth M. Anderson Dr. Julie L. Demuth Prof. Brian C. Keegan Prof. Clayton Lewis Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. IRB protocol #19-0077, 19-0109 iii Bica, Melissa J. (Ph.D., Computer Science) The Crisis Informatics of Online Hurricane Risk Communication Thesis directed by Prof. Leysia Palen Social media are increasingly used by both the public and emergency management in disasters. In disasters arising from weather-related hazards such as hurricanes, social media are especially used for communicating about risk in the pre-disaster period when the nature of the hazard is uncertain. This dissertation explores the sociotechnical aspects of hurricane risk communication, especially information diffusion, interpretation, and reaction, as it occurs on social media between members of the public and authoritative weather experts. I first investigate the kinds of hurricane risk information that were shared by authoritative sources on social media during the 2017 Atlantic hurricane season and how different kinds of infor- mation diffuse temporally.
    [Show full text]
  • Regional Overview: Impact of Hurricanes Irma and Maria
    REGIONAL OVERVIEW: IMPACT OF MISSION TO HURRICANES IRMA AND MARIA CONFERENCE SUPPORTING DOCUMENT 1 The report was prepared with support of ACAPS, OCHA and UNDP 2 CONTENTS SITUATION OVERVIEW ......................................................................................................................... 4 KEY FINDINGS ............................................................................................................................................ 5 Overall scope and scale of the impact ....................................................................................... 5 Worst affected sectors ...................................................................................................................... 5 Worst affected islands ....................................................................................................................... 6 Key priorities ......................................................................................................................................... 6 Challenges for Recovery ................................................................................................................. 7 Information Gaps ................................................................................................................................. 7 RECOMMENDATIONS FOR RECOVERY ................................................................................ 10 Infrastructure ......................................................................................................................................
    [Show full text]
  • Hurricane Maria Situation Report #1 As of 9:00Pm Ast on September 20, 2017
    Resilience Way, Lower Estate, St. Michael Tel: (246) 434-4880 Fax: (246) 271-3660 Email: [email protected] Visit our website: www.cdema.org HURRICANE MARIA SITUATION REPORT #1 AS OF 9:00PM AST ON SEPTEMBER 20, 2017 SYNOPSIS OF HURRICANE MARIA Maria, the 13th named hurricane of the 2017 Atlantic Hurricane Season, became a category 5 hurricane near the Leeward Islands on Monday September 18th, 2017. Hurricane Maria impacted Dominica at approximately 9:35pm on September 18th as an extremely strong hurricane with wind speeds of 155 mph. Maria then impacted St. Kitts and Nevis and Antigua and Barbuda on September 19th, 2017 and the Virgin Islands September 19 – 20, 2017. At 800 PM AST (2100 UTC), the eye of Hurricane Maria was located near latitude 18.9 North, longitude 67.5 West. Maria is moving toward the northwest near 12 mph (19 km/h), and this general motion with a decrease in forward speed is expected through Thursday night. Data from an Air Force Reserve Hurricane Hunter aircraft indicate that maximum sustained winds remain 110 mph (175 km/h) with higher gusts. Hurricane-force winds extend outward up to 60 miles (95 km) from the center, and tropical storm- force winds extend outward up to 150 miles (240 km). The minimum central pressure based on data from the Air Force aircraft remains at 958 mb (28.29 inches). PROGNOSIS: The National Hurricane Center (NHC) indicates that on the forecast track, the core of Hurricane Maria will continue to move away from the northwestern coast of Puerto Rico this evening.
    [Show full text]
  • Bridges – Winter 2018
    Brethren Disaster Ministries Rebuilding Homes • Nurturing Children • Responding Globally Vol. 19, Winter 2018 Another record year for INSIDE Children’s Disaster Services CDS 2017 Response Statistics ........2 by Kathy Fry-Miller CDS Spring 2018 workshops ..........3 Children’s Disaster Services (CDS) had Several volunteers served on more CDS 2017 Workshops ....................3 an exceptionally full year again in 2017 than one response in 2017. One repeat Hurricane Maria Response and with a record number of 16 domestic responder, Pat Krabacher, shared, “In Recovery in Puerto Rico ................4 disaster responses, including two critical both California and Texas we saw Rebuild Program Updates................5 responses—the mass casualty shooting in amazing generosity poured out all around Hurricane Response in the U.S. October in Las Vegas, Nev., and the us with ordinary Americans doing Virgin Islands ................................6 Amtrak derailment in Tacoma, Wash., something to help. We were loved by Mission Alive conference ................6 in December. CDS had been able to people who served us and provided food, Volunteering at any age can be build up our volunteer base and a place to lay our heads, and security guys life-changing ..................................7 leadership support over the past few who sat up all night out in the cold while BDM 2017 Rebuild Responses ......7 years with support from the Christian we slept. As we were loved, so we too BDM 2017 Project Expenses ..........8 Church (Disciples of Christ) and United were changed by that love.” BDM 2017 Project Funding ..........8 Methodist Committee on Relief. This Both CDS associate director Kathy BDM 2017 Project Expenses ........8 gave us the capacity to respond to these Fry-Miller and program assistant Sherry Hope is alive in Eureka, Mo.
    [Show full text]
  • Upgrades to the GFDL/GFDN Hurricane Model for 2014 (A JHT Funded Project) Morris A
    Upgrades to the GFDL/GFDN Hurricane Model for 2014 (A JHT Funded Project) Morris A. Bender, Matthew Morin, Timothy Marchok, Isaac Ginis, Biju Thomas, Richard Yablonsky and Robert Tuleya 68th Interdepartmenal Hurricane Conference Tuesday, March 5th GFDL 2014 Hurricane Model Upgrade • Increased horizontal resolution of inner nest from 1/12th to 1/18th degree with reduced damping of gravity waves in advection scheme • Improved specification of surface exchange coefficients (ch, cd) and surface stress computation in surface physics • Improved specification of surface roughness and wetness over land. • Modified PBL with variable Critical Richardson Number. • Advection of individual micro-physics species. (Yet to test impact of Rime Factor Advection) • Improved targeting of initial storm maximum wind and storm structure in initialization. (Reduces negative intensity bias in vortex specification) • Remove vortex specification in Atlantic for storms of 40 knots and less • Upgrade ocean model to 1/12th degree MPI POM with unified trans-Atlantic basin and 3D ocean for Eastern Pacific basin • Remove global_chgres in analysis step (direct interpolation from hybrid to sigma coordinates) New Cd and Ch formulation New Ch New Cd Current HWRF and GFDL Cd Current HWRF Ch Comparison of New cd and ch with Recent Referenced Studies Cd Ch Impact of Bogusing on Intensity Errors For Storms 40 knots or less Bogus No Bogus Bogusing Significantly Atlantic Degraded performance in Atlantic for weak systems No Bogus Bogus Bogusing Eastern Significantly Improved Pacific
    [Show full text]
  • MASARYK UNIVERSITY BRNO Diploma Thesis
    MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION DEPARTMENT OF ENGLISH LANGUAGE AND LITERATURE Presentation Sentences in Wikipedia: FSP Analysis Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský Declaration I declare that I have worked on this thesis independently, using only the primary and secondary sources listed in the bibliography. I agree with the placing of this thesis in the library of the Faculty of Education at the Masaryk University and with the access for academic purposes. Brno, 30th March 2018 …………………………………………. Bc. Lukáš Opavský Acknowledgements I would like to thank my supervisor, doc. Mgr. Martin Adam, Ph.D. for his kind help and constant guidance throughout my work. Bc. Lukáš Opavský OPAVSKÝ, Lukáš. Presentation Sentences in Wikipedia: FSP Analysis; Diploma Thesis. Brno: Masaryk University, Faculty of Education, English Language and Literature Department, 2018. XX p. Supervisor: doc. Mgr. Martin Adam, Ph.D. Annotation The purpose of this thesis is an analysis of a corpus comprising of opening sentences of articles collected from the online encyclopaedia Wikipedia. Four different quality categories from Wikipedia were chosen, from the total amount of eight, to ensure gathering of a representative sample, for each category there are fifty sentences, the total amount of the sentences altogether is, therefore, two hundred. The sentences will be analysed according to the Firabsian theory of functional sentence perspective in order to discriminate differences both between the quality categories and also within the categories.
    [Show full text]