Conventions in Retroanalysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
11 Triple Loyd
TTHHEE PPUUZZZZLLIINNGG SSIIDDEE OOFF CCHHEESSSS Jeff Coakley TRIPLE LOYDS: BLACK PIECES number 11 September 22, 2012 The “triple loyd” is a puzzle that appears every few weeks on The Puzzling Side of Chess. It is named after Sam Loyd, the American chess composer who published the prototype in 1866. In this column, we feature positions that include black pieces. A triple loyd is three puzzles in one. In each part, your task is to place the black king on the board.to achieve a certain goal. Triple Loyd 07 w________w áKdwdwdwd] àdwdwdwdw] ßwdwdw$wd] ÞdwdRdwdw] Ýwdwdwdwd] Üdwdwdwdw] Ûwdwdpdwd] Údwdwdwdw] wÁÂÃÄÅÆÇÈw Place the black king on the board so that: A. Black is in checkmate. B. Black is in stalemate. C. White has a mate in 1. For triple loyds 1-6 and additional information on Sam Loyd, see columns 1 and 5 in the archives. As you probably noticed from the first puzzle, finding the stalemate (part B) can be easy if Black has any mobile pieces. The black king must be placed to take away their moves. Triple Loyd 08 w________w áwdwdBdwd] àdwdRdwdw] ßwdwdwdwd] Þdwdwdwdw] Ýwdw0Ndwd] ÜdwdPhwdw] ÛwdwGwdwd] Údwdw$wdK] wÁÂÃÄÅÆÇÈw Place the black king on the board so that: A. Black is in checkmate. B. Black is in stalemate. C. White has a mate in 1. The next triple loyd sets a record of sorts. It contains thirty-one pieces. Only the black king is missing. Triple Loyd 09 w________w árhbdwdwH] àgpdpdw0w] ßqdp!w0B0] Þ0ndw0PdN] ÝPdw4Pdwd] ÜdRdPdwdP] Ûw)PdwGPd] ÚdwdwIwdR] wÁÂÃÄÅÆÇÈw Place the black king on the board so that: A. -
Proposal to Encode Heterodox Chess Symbols in the UCS Source: Garth Wallace Status: Individual Contribution Date: 2016-10-25
Title: Proposal to Encode Heterodox Chess Symbols in the UCS Source: Garth Wallace Status: Individual Contribution Date: 2016-10-25 Introduction The UCS contains symbols for the game of chess in the Miscellaneous Symbols block. These are used in figurine notation, a common variation on algebraic notation in which pieces are represented in running text using the same symbols as are found in diagrams. While the symbols already encoded in Unicode are sufficient for use in the orthodox game, they are insufficient for many chess problems and variant games, which make use of extended sets. 1. Fairy chess problems The presentation of chess positions as puzzles to be solved predates the existence of the modern game, dating back to the mansūbāt composed for shatranj, the Muslim predecessor of chess. In modern chess problems, a position is provided along with a stipulation such as “white to move and mate in two”, and the solver is tasked with finding a move (called a “key”) that satisfies the stipulation regardless of a hypothetical opposing player’s moves in response. These solutions are given in the same notation as lines of play in over-the-board games: typically algebraic notation, using abbreviations for the names of pieces, or figurine algebraic notation. Problem composers have not limited themselves to the materials of the conventional game, but have experimented with different board sizes and geometries, altered rules, goals other than checkmate, and different pieces. Problems that diverge from the standard game comprise a genre called “fairy chess”. Thomas Rayner Dawson, known as the “father of fairy chess”, pop- ularized the genre in the early 20th century. -
Multilinear Algebra and Chess Endgames
Games of No Chance MSRI Publications Volume 29, 1996 Multilinear Algebra and Chess Endgames LEWIS STILLER Abstract. This article has three chief aims: (1) To show the wide utility of multilinear algebraic formalism for high-performance computing. (2) To describe an application of this formalism in the analysis of chess endgames, and results obtained thereby that would have been impossible to compute using earlier techniques, including a win requiring a record 243 moves. (3) To contribute to the study of the history of chess endgames, by focusing on the work of Friedrich Amelung (in particular his apparently lost analysis of certain six-piece endgames) and that of Theodor Molien, one of the founders of modern group representation theory and the first person to have systematically numerically analyzed a pawnless endgame. 1. Introduction Parallel and vector architectures can achieve high peak bandwidth, but it can be difficult for the programmer to design algorithms that exploit this bandwidth efficiently. Application performance can depend heavily on unique architecture features that complicate the design of portable code [Szymanski et al. 1994; Stone 1993]. The work reported here is part of a project to explore the extent to which the techniques of multilinear algebra can be used to simplify the design of high- performance parallel and vector algorithms [Johnson et al. 1991]. The approach is this: Define a set of fixed, structured matrices that encode architectural primitives • of the machine, in the sense that left-multiplication of a vector by this matrix is efficient on the target architecture. Formulate the application problem as a matrix multiplication. -
A GUIDE to SCHOLASTIC CHESS (11Th Edition Revised June 26, 2021)
A GUIDE TO SCHOLASTIC CHESS (11th Edition Revised June 26, 2021) PREFACE Dear Administrator, Teacher, or Coach This guide was created to help teachers and scholastic chess organizers who wish to begin, improve, or strengthen their school chess program. It covers how to organize a school chess club, run tournaments, keep interest high, and generate administrative, school district, parental and public support. I would like to thank the United States Chess Federation Club Development Committee, especially former Chairman Randy Siebert, for allowing us to use the framework of The Guide to a Successful Chess Club (1985) as a basis for this book. In addition, I want to thank FIDE Master Tom Brownscombe (NV), National Tournament Director, and the United States Chess Federation (US Chess) for their continuing help in the preparation of this publication. Scholastic chess, under the guidance of US Chess, has greatly expanded and made it possible for the wide distribution of this Guide. I look forward to working with them on many projects in the future. The following scholastic organizers reviewed various editions of this work and made many suggestions, which have been included. Thanks go to Jay Blem (CA), Leo Cotter (CA), Stephan Dann (MA), Bob Fischer (IN), Doug Meux (NM), Andy Nowak (NM), Andrew Smith (CA), Brian Bugbee (NY), WIM Beatriz Marinello (NY), WIM Alexey Root (TX), Ernest Schlich (VA), Tim Just (IL), Karis Bellisario and many others too numerous to mention. Finally, a special thanks to my wife, Susan, who has been patient and understanding. Dewain R. Barber Technical Editor: Tim Just (Author of My Opponent is Eating a Doughnut and Just Law; Editor 5th, 6th and 7th editions of the Official Rules of Chess). -
No Slide Title
112 CONTENTS StrateGems 2011 h#n Award………………………………………. 58 Danka Petkova-90MT Award……………………………………… 59 Repeat the Sounding Joy……………………………………………63 The quest for a King-only proof game…….………………………. 66 Recently Honored US Compositions ……………………….……... 69 Original compositions and SG53 solutions……………………...… 71 StrateGems StrateGems Solving Ladder 2011, Leg 26 ………………...……… 93 StrateGems 2011 Solving Championship………………………….. 95 Four of a Kind……………………………………………………… 95 Petko A. Petkov Jubilee Tourney Award (PAP-70JT)…………….. 96 Recent Tourney Winners……………………………..……………. 103 2012 StrateGems Books Library ................................................................111 EDITORS Chief Editor: Mike Prcic, 2613 Northshore Lane, Westlake Village, CA 91361-3318, [email protected] #2 Editor: Aaron Hirschenson 6 Nizana Street, Metar 85025, Israel, [email protected] #3 Editor: Rauf Aliovsadzade 5600 Randolph St. Lincoln, NE 68510, [email protected] #n Editor: Richard Becker 510 Pleasant Ave. Oregon City, OR, 97045, [email protected] Studies Editor: Franjo Vrabec Blåkullagatan 31C, 25457 Helsingborg, Sweden, [email protected] Helpmates Editor: Nikola Stolev Buković 3a, n. Lisice, 1000 Skopje, Macedonia, [email protected] Series-Movers and Stalemates Editor: Radovan Tomašević Djure Salaja 19b/4, SRB-19000 Zajecar, Serbia, [email protected] Selfmates and Fairies Editor: Petko A. Petkov Janko Sakazov N 38, whod W, 1504-Sofia, Bulgaria, [email protected] nN Retros and Proof Games Editor: Kostas Prentos Kleanthous 23, GR-54453 Thessaloniki, Greece, [email protected] Solutions Editor: Danny Dunn 6717 Lahontan, Ft. Worth, TX 76132, [email protected] Consultant: Dan Meinking; StrateGems Web site: www.Strategems.org Language Editor: Virginia Prcic, Contributor: Bob Lincoln SUBSCRIPTION INFORMATION StrateGems. U.S. subscribers $35 per year. Other countries $40. Good Companions Fellow $50. -
PUBLIC SUBMISSION Status: Pending Post Tracking No
As of: January 02, 2020 Received: December 20, 2019 PUBLIC SUBMISSION Status: Pending_Post Tracking No. 1k3-9dz4-mt2u Comments Due: January 10, 2020 Submission Type: Web Docket: PTO-C-2019-0038 Request for Comments on Intellectual Property Protection for Artificial Intelligence Innovation Comment On: PTO-C-2019-0038-0002 Intellectual Property Protection for Artificial Intelligence Innovation Document: PTO-C-2019-0038-DRAFT-0009 Comment on FR Doc # 2019-26104 Submitter Information Name: Yale Robinson Address: 505 Pleasant Street Apartment 103 Malden, MA, 02148 Email: [email protected] General Comment In the attached PDF document, I describe the history of chess puzzle composition with a focus on three intellectual property issues that determine whether a chess composition is considered eligible for publication in a magazine or tournament award: (1) having one unique solution; (2) not being anticipated, and (3) not being submitted simultaneously for two different publications. The process of composing a chess endgame study using computer analysis tools, including endgame tablebases, is cited as an example of the partnership between an AI device and a human creator. I conclude with a suggestion to distinguish creative value from financial profit in evaluating IP issues in AI inventions, based on the fact that most chess puzzle composers follow IP conventions despite lacking any expectation of financial profit. Attachments Letter to USPTO on AI and Chess Puzzle Composition 35 - Robinson second submission - PTO-C-2019-0038-DRAFT-0009.html[3/11/2020 9:29:01 PM] December 20, 2019 From: Yale Yechiel N. Robinson, Esq. 505 Pleasant Street #103 Malden, MA 02148 Email: [email protected] To: Andrei Iancu Director of the U.S. -
New Directions in Enumerative Chess Problems to Richard Stanley on the Occasion of His 60Th Birthday
New directions in enumerative chess problems to Richard Stanley on the occasion of his 60th birthday Noam D. Elkies Department of Mathematics Harvard University Cambridge, MA 02138 [email protected] Submitted: Jun 30, 2005; Accepted: Aug 1, 2005; Published: Aug 24, 2005 Mathematics Subject Classifications: 05A10, 05A15, 05E10, 97A20 Abstract Normally a chess problem must have a unique solution, and is deemed unsound even if there are alternatives that differ only in the order in which the same moves are played. In an enumerative chess problem, the set of moves in the solution is (usually) unique but the order is not, and the task is to count the feasible permutations via an isomorphic problem in enumerative combinatorics. Almost all enumerative chess problems have been \series-movers", in which one side plays an uninterrupted series of moves, unanswered except possibly for one move by the opponent at the end. This can be convenient for setting up enumeration problems, but we show that other problem genres also lend themselves to composing enumerative problems. Some of the resulting enumerations cannot be shown (or have not yet been shown) in series-movers. This article is based on a presentation given at the banquet in honor of Richard Stanley's 60th birthday, and is dedicated to Stanley on this occasion. 1 Motivation and overview Normally a chess problem must have a unique solution, and is deemed unsound even if there are alternatives that differ only in the order in which the same moves are played. In an enumerative chess problem, the set of moves in the solution is (usually) unique but the order is not, and the task is to count the feasible permutations via an isomorphic problem in enumerative combinatorics. -
Synthetic Games
S\TII}IETIC GAh.fES Synthetic Garnes Play a shortest possible game leading tCI ... G. P. Jelliss September 1998 page I S1NTHETIC GAI\{ES CONTENTS Auto-Surrender Chess BCM: British Chess Magazine, Oppo-Cance llati on Che s s CA'. ()hess Amafeur, EP: En Part 1: Introduction . .. .7 5.3 Miscellaneous. .22 Passant, PFCS'; Problemist Fairy 1.1 History.".2 Auto-Coexi s tence Ches s Chess Supplement, UT: Ultimate 1.2 Theon'...3 D3tnamo Chess Thernes, CDL' C. D" I,ocock, GPJ: Gravitational Chess G. P. Jelliss, JA: J. Akenhead. Part 2: 0rthodox Chess . ...5 Madrssi Chess TGP: T. G. Pollard, TRD: 2. I Checknrates.. .5 Series Auto-Tag Chess T. R. Dar,vson. 2.2 Stalernates... S 2.3 Problem Finales. I PART 1 I.I HISTOR,Y 2.4 Multiple Pawns... l0 INTRODUCTIOT{ Much of my information on the 2.,5 Kings and Pawns".. l1 A'synthetic game' is a sequence early history comes from articles 2.6 Other Pattern Play...13 of moves in chess, or in any form by T. R. Dar,vson cited below, of variant chess, or indesd in any Chess Amsteur l9l4 especially. Part 3. Variant Play . ...14 other garne: which simulates the 3.1 Exact Play... 14 moves of a possible, though Fool's Mste 3 .2 Imitative Direct. l 5 usually improbable, actual game? A primitive example of a 3.3 Imitative Oblique.. " l6 and is constructed to show certain synthetic game in orthodox chess 3.4 Maximumming...lT specified events rvith fewest moves. is the 'fool's mate': l.f3l4 e6l5 3.5 Seriesplay ...17 The following notes on history 2.g4 Qh4 mate. -
English Chess Problems
cuuuuuuuuCH. J. C. Andrews {WDWDNDbD} {DWDWhWDW} {WDWDnDWI} {!pgW0k)N} {WDWDWDW)} {DpDPDBDP} {qDWDrDrD} {GWDWDWDW} WhitevllllllllV to play and mate in four moves ENGLISH CHESS PROBLEMS edited by James Pierce and W. Timbrell Pierce [1876] “Look what is best; that best I wish in thee.” Shakspeare “Keen to track “Suggestion to her inmost cell.” Tennyson An Electronic Edition Anders Thulin, Linköping · 1999-04-12 DEDICATION To FRANK HEALEY, Esq. Dear Sir, You have, by so many masterpieces of Chess strategy, rendered your name, and thereby English Chess Problem Composi- tion, famous all over the world, that we feel there is a peculiar fitness in availing ourselves of your kind permission to dedicate such a work as this to yourself. Without your support we should certainly not have undertaken the task, but we have received such ample and cordial help both from you and from others almost equally distinguished, that we feel sure that the work will be of great value, not only to living compos- ers, but also to those who may come after, marking as it unmistakably does the character which the art has assumed at the present time. The most superficial student may see in what striking contrast it stands to the composition of previous periods, and without question this is due mainly to yourself, as the pioneer of new and suggestive ideas, as re- markable for their depth and beauty, as for their neat and elegant con- struction. We are, Dear Sir, Yours faithfully, THE EDITORS. February 1876. v PREFACE TO ELECTRONIC EDITION The present edition of English Chess Problems follows the original edi- tion, published by Longmans, Green & Co., London, in 1876, as closely as possible as far as contents is concerned. -
Solving a Hypothetical Chess Problem: a Comparative Analysis of Computational Methods and Human Reasoning
Revista Brasileira de Computação Aplicada, Abril, 2019 DOI: 10.5335/rbca.v11i1.9111 Vol. 11, No 1, pp. 96–103 Homepage: seer.upf.br/index.php/rbca/index ORIGINALPAPER Solving a hypothetical chess problem: a comparative analysis of computational methods and human reasoning Léo Pasqualini de Andrade1, Augusto Cláudio Santa Brígida Tirado1, Valério Brusamolin1 and Mateus das Neves Gomes1 1Instituto Federal do Paraná, campus Paranaguá *[email protected]; [email protected]; [email protected]; [email protected] Received: 2019-02-15. Revised: 2019-02-27. Accepted: 2019-03-15. Abstract Computational modeling has enabled researchers to simulate tasks which are very often impossible in practice, such as deciphering the working of the human mind, and chess is used by many cognitive scientists as an investigative tool in studies on intelligence, behavioral patterns and cognitive development and rehabilitation. Computer analysis of databases with millions of chess games allows players’ cognitive development to be predicted and their behavioral patterns to be investigated. However, computers are not yet able to solve chess problems in which human intelligence analyzes and evaluates abstractly without the need for many concrete calculations. The aim of this article is to describe and simulate a chess problem situation proposed by the British mathematician Sir Roger Penrose and thus provide an opportunity for a comparative discussion by society of human and articial intelligence. To this end, a specialist chess computer program, Fritz 12, was used to simulate possible moves for the proposed problem. The program calculated the variations and reached a dierent result from that an amateur chess player would reach after analyzing the problem for only a short time. -
A Case Study of a Chess Conjecture
Logical Methods in Computer Science Volume 15, Issue 1, 2019, pp. 34:1–34:37 Submitted Jan. 24, 2018 https://lmcs.episciences.org/ Published Mar. 29, 2019 COMPUTER-ASSISTED PROVING OF COMBINATORIAL CONJECTURES OVER FINITE DOMAINS: A CASE STUDY OF A CHESS CONJECTURE PREDRAG JANICIˇ C´ a, FILIP MARIC´ a, AND MARKO MALIKOVIC´ b a Faculty of Mathematics, University of Belgrade, Serbia e-mail address: fjanicic,fi[email protected] b Faculty of Humanities and Social Sciences, University of Rijeka, Croatia e-mail address: marko@ffri.hr Abstract. There are several approaches for using computers in deriving mathematical proofs. For their illustration, we provide an in-depth study of using computer support for proving one complex combinatorial conjecture { correctness of a strategy for the chess KRK endgame. The final, machine verifiable result presented in this paper is that there is a winning strategy for white in the KRK endgame generalized to n × n board (for natural n greater than 3). We demonstrate that different approaches for computer-based theorem proving work best together and in synergy and that the technology currently available is powerful enough for providing significant help to humans deriving some complex proofs. 1. Introduction Over the last several decades, automated and interactive theorem provers have made huge advances which changed the mathematical landscape significantly. Theorem provers are already widely used in many areas of mathematics and computer science, and there are already proofs of many extremely complex theorems developed within proof assistants and with many lemmas proved or checked automatically [25, 31, 33]. We believe there are changes still to come, changes that would make new common mathematical practices and proving process will be more widely supported by tools that automatically and reliably prove some conjectures and even discover new theorems. -
Glossary of Chess
Glossary of chess See also: Glossary of chess problems, Index of chess • X articles and Outline of chess • This page explains commonly used terms in chess in al- • Z phabetical order. Some of these have their own pages, • References like fork and pin. For a list of unorthodox chess pieces, see Fairy chess piece; for a list of terms specific to chess problems, see Glossary of chess problems; for a list of chess-related games, see Chess variants. 1 A Contents : absolute pin A pin against the king is called absolute since the pinned piece cannot legally move (as mov- ing it would expose the king to check). Cf. relative • A pin. • B active 1. Describes a piece that controls a number of • C squares, or a piece that has a number of squares available for its next move. • D 2. An “active defense” is a defense employing threat(s) • E or counterattack(s). Antonym: passive. • F • G • H • I • J • K • L • M • N • O • P Envelope used for the adjournment of a match game Efim Geller • Q vs. Bent Larsen, Copenhagen 1966 • R adjournment Suspension of a chess game with the in- • S tention to finish it later. It was once very common in high-level competition, often occurring soon af- • T ter the first time control, but the practice has been • U abandoned due to the advent of computer analysis. See sealed move. • V adjudication Decision by a strong chess player (the ad- • W judicator) on the outcome of an unfinished game. 1 2 2 B This practice is now uncommon in over-the-board are often pawn moves; since pawns cannot move events, but does happen in online chess when one backwards to return to squares they have left, their player refuses to continue after an adjournment.