Sea Level Rise
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Australia's Coral Sea - How Much Do We Know?
Proceedings of the 12 th International Coral Reef Symposium, Cairns, Australia, 9-13 July 2012 18E The management of the Coral Sea reefs and sea mounts Australia's Coral Sea - how much do we know? Daniela M. Ceccarelli 1 1PO Box 215, Magnetic Island QLD 4819 Australia Corresponding author: [email protected] Abstract. Recent efforts to implement management zoning to Australia’s portion of the Coral Sea have highlighted the need for a synthesis of information about the area’s physical structure, oceanography and ecology. Current knowledge is hampered by large geographic and temporal gaps in existing research, but nevertheless underpins the determination of areas of ecological value and conservation significance. This review draws together existing research on the Coral Sea’s coral reefs and seamounts and evaluates their potential function at a regional scale. Only four coral reefs, out of a potential 36, have been studied to the point of providing information at a community level; this information exists for none of the 14 mapped seamounts. However, the research volume has increased exponentially in the last decade, allowing a more general analysis of likely patterns and processes. Clear habitat associations are emerging and each new study adds to the’ Coral Sea species list’. Broader research suggests that the reefs and seamounts serve as dispersal stepping stones, potential refugia from disturbances and aggregation hotspots for pelagic predators. Key words: Isolated reefs, Dispersal, Community structure, Refugia. Introduction Australia’s Coral Sea lies to the east of the Great Barrier Reef (GBR) within the Australian EEZ boundaries. Geologically, it is dominated by large plateaux that rise from the abyssal plain and cover approximately half of the seabed area (Harris et al. -
University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript. -
Climate Action Plan Executive Summary
Climate Action Plan Executive Summary Commission on Climate Change August 2008 Executive Summary climate action plan • 3 Report Overview n April 20, 2007, Governor Martin O’Malley signed Executive Order 01.01.2007.07 (the Order) establishing the Maryland Commission on Climate Change (the Commission). Sixteen State agency heads and six members of the General Assembly comprise the Commission. The principal Ocharge of the Commission is to develop a Plan of Action (the Climate Action Plan) to address the drivers of climate change, to prepare for its likely impacts in Maryland, and to establish goals and timetables for implementation. The Order emphasized Maryland’s particular vulnerability to climate change impacts of sea level rise, increased storm intensity, extreme droughts and heat waves, and increased wind and rainfall events. It recognized that human activities such as coastal development, burning of fossil fuels, and increasing greenhouse gas (GHG) emissions are contributing to the causes and consequences of climate change. While noting Maryland’s recent climate initiatives, the Order emphasized that continued leadership by example by Maryland State and local governments is imperative. The Commission is supported by three Working Groups whose members were appointed by the Commission Chair, Shari T. Wilson, Secretary, Maryland Department of the Environment (MDE): Scientific and Technical Working Group (STWG), chaired by Donald Boesch, President, University of Maryland Center for Environmental Science, and co-chaired by Frank W. Dawson, Assistant Secretary of Maryland’s Department of Natural Resources (DNR); Greenhouse Gas and Carbon Mitigation Working Group (MWG), chaired by George (Tad) Aburn, Director of MDE’s Air and Radiation Management Administration, and co-chaired by Malcolm Woolf, Director, Maryland Energy Administration (MEA); and Adaptation and Response Working Group (ARWG), chaired by John R. -
Dustin M. Schroeder
Dustin M. Schroeder Assistant Professor of Geophysics Department of Geophysics, School of Earth, Energy, and Environmental Sciences 397 Panama Mall, Mitchell Building 361, Stanford University, Stanford, CA 94305 [email protected], 440.567.8343 EDUCATION 2014 Jackson School of Geosciences, University of Texas, Austin, TX Doctor of Philosophy (Ph.D.) in Geophysics 2007 Bucknell University, Lewisburg, PA Bachelor of Science in Electrical Engineering (B.S.E.E.), departmental honors, magna cum laude Bachelor of Arts (B.A.) in Physics, magna cum laude, minors in Mathematics and Philosophy PROFESSIONAL EXPERIENCE 2016 – present Assistant Professor of Geophysics, Stanford University 2017 – present Assistant Professor (by courtesy) of Electrical Engineering, Stanford University 2020 – present Center Fellow (by courtesy), Stanford Woods Institute for the Environment 2020 – present Faculty Affiliate, Stanford Institute for Human-Centered Artificial Intelligence 2021 – present Senior Member, Kavli Institute for Particle Astrophysics and Cosmology 2016 – 2020 Faculty Affiliate, Stanford Woods Institute for the Environment 2014 – 2016 Radar Systems Engineer, Jet Propulsion Laboratory, California Institute of Technology 2012 Graduate Researcher, Applied Physics Laboratory, Johns Hopkins University 2008 – 2014 Graduate Researcher, University of Texas Institute for Geophysics 2007 – 2008 Platform Hardware Engineer, Freescale Semiconductor SELECTED AWARDS 2021 Symposium Prize Paper Award, IEEE Geoscience and Remote Sensing Society 2020 Excellence in Teaching Award, Stanford School of Earth, Energy, and Environmental Sciences 2019 Senior Member, Institute of Electrical and Electronics Engineers 2018 CAREER Award, National Science Foundation 2018 LInC Fellow, Woods Institute, Stanford University 2016 Frederick E. Terman Fellow, Stanford University 2015 JPL Team Award, Europa Mission Instrument Proposal 2014 Best Graduate Student Paper, Jackson School of Geosciences 2014 National Science Olympiad Heart of Gold Award for Service to Science Education 2013 Best Ph.D. -
Managing the Risks: International Level and 7 Integration Across Scales
Managing the Risks: International Level and 7 Integration across Scales Coordinating Lead Authors: Ian Burton (Canada), O. Pauline Dube (Botswana) Lead Authors: Diarmid Campbell-Lendrum (Switzerland), Ian Davis (UK), Richard J.T. Klein (Sweden), Joanne Linnerooth-Bayer (USA), Apurva Sanghi (USA), Ferenc Toth (Austria) Review Editors: Joy Jacqueline Pereira (Malaysia), Linda Sygna (Norway) Contributing Authors: Neil Adger (UK), Thea Dickinson (Canada), Kris Ebi (USA), Md. Tarik ul Islam (Canada / Bangladesh), Clarisse Kehler Siebert (Sweden) This chapter should be cited as: Burton, I., O.P. Dube, D. Campbell-Lendrum, I. Davis, R.J.T. Klein, J. Linnerooth-Bayer, A. Sanghi, and F. Toth, 2012: Managing the risks: international level and integration across scales. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp. 393-435. 393 Managing the Risks: International Level and Integration across Scales Chapter 7 Table of Contents Executive Summary .................................................................................................................................396 7.1. The International Level of Risk Management..........................................................................398 -
Second Progress Report on the German Strategy for Adaptation to Climate Change (DAS)
Second Progress Report on the German Strategy for Adaptation to Climate Change (DAS) CONTENTS A. The German Adaptation Strategy (DAS): objectives, principles and processes ............................... 4 A.1. The DAS: principles and objectives ................................................................................................................. 4 A.2. The DAS reporting cycle ................................................................................................................................. 5 A.3. The DAS, APA and Progress Report in review ................................................................................................. 8 A.4. European Union and international integration ............................................................................................ 11 B. Current findings and results ........................................................................................................ 13 B.1. Monitoring: climatic changes, impacts and adaptation responses ............................................................. 13 B.2. Vulnerability assessment ............................................................................................................................. 18 B.3. APA II implementation and APA III preparation process .............................................................................. 33 B.4. Adaptation measures by other actors .......................................................................................................... 35 B.5. Evaluation of -
Englacial Architecture and Age‐Depth Constraints Across 10.1029/2019GL086663 the West Antarctic Ice Sheet Key Points: David W
RESEARCH LETTER Englacial Architecture and Age‐Depth Constraints Across 10.1029/2019GL086663 the West Antarctic Ice Sheet Key Points: David W. Ashmore1 , Robert G. Bingham2 , Neil Ross3 , Martin J. Siegert4 , • We measure and date individual 5 1 isochronal radar internal reflection Tom A. Jordan , and Douglas W. F. Mair horizons across the Weddell Sea 1 2 sector of the West Antarctic Ice School of Environmental Sciences, University of Liverpool, Liverpool, UK, School of GeoSciences, University of Sheet Edinburgh, Edinburgh, UK, 3School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, • – – Horizons dated to 1.9 3.2, 3.5 6.0, UK, 4Grantham Institute and Department of Earth Science and Engineering, Imperial College London, London, UK, and 4.6–8.1 ka are widespread and 5British Antarctic Survey, Cambridge, UK linked to previous radar surveys of the Ross and Amundsen Sea sectors • These form the basis for a wider database of ice sheet architecture for Abstract The englacial stratigraphic architecture of internal reflection horizons (IRHs) as imaged by validating and calibrating ice sheet ice‐penetrating radar (IPR) across ice sheets reflects the cumulative effects of surface mass balance, basal models of West Antarctica melt, and ice flow. IRHs, considered isochrones, have typically been traced in interior, slow‐flowing regions. Here, we identify three distinctive IRHs spanning the Institute and Möller catchments that cover 50% of Supporting Information: • Supporting Information S1 West Antarctica's Weddell Sea Sector and are characterized by a complex system of ice stream tributaries. We place age constraints on IRHs through their intersections with previous geophysical surveys tied to Byrd Ice Core and by age‐depth modeling. -
Integrating Insurance Into Climate Risk Management
INTEGRATING INSURANCE INTO CLIMATE RISK MANAGEMENT Conceptual Framework, Tools and Guiding Questions: Examples from the Agricultural Sector HOSTED BY Authors Gaby Ramm (Munich Climate Insurance Initiative − MCII advisory group member) Kehinde Balogun (Munich Climate Insurance Initiative − MCII) Matthias Range (Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH − GIZ) Co-authors Maxime Souvignet (MCII) We thank our contributors for their • Olu Ajayi (Technical Centre for Agricultural and Rural Cooperation − CTA) strong partnership and dedication • Florent Baarsch ( International Fund for Agricultural Development – IFAD) to provide in-depth feedback as • Daniela Bohl (GIZ) Peer Reviewers to this document: • Toon Bullens (Microinsurance Association Netherlands − MIAN) • Emily Coleman (IFAD) • Massimo Giovanola (IFAD) • Michael Hamp (IFAD) • Rachael Hansen (MCII) • Jon Hellin (International Maize and Wheat Improvement Center − CIMMYT) • Peter Hoeppe (MCII Chairman) • Vilma Hossini (Bundesanstalt Technisches Hilfswerk − THW) • Rhea Katsanakis (United Nations International Strategy for Disaster Reduction − UNISDR) • Nina Koeksalan (Food and Agriculture Organization – FAO) • Soenke Kreft (MCII) • Thomas Loster (Munich Re Foundation) • Jennifer Phillips (MCII) • Sandra Schuster (GIZ) • Mia Thom (Centre for Financial Regulation and Inclusion − CENFRI) • Branko Wehnert (GIZ) • Sebastian Wiegele (GIZ) • Michael Zissener (MCII) • Sabrina Zwick (MCII) 2 Abstract Today, emerging new risks from climate change and increasing GmbH (GIZ) have -
Projected Sea Level Rise and Its Impact on Barrier Islands Along the East Coast, USA Cara Johnson Gettysburg College
Student Publications Student Scholarship Spring 2019 Life without the Beach: Projected Sea Level Rise and its Impact on Barrier Islands Along the East Coast, USA Cara Johnson Gettysburg College Gabrielle N. Kase Gettysburg College Samantha B. Pfeffer Gettysburg College Follow this and additional works at: https://cupola.gettysburg.edu/student_scholarship Part of the Environmental Indicators and Impact Assessment Commons, and the Water Resource Management Commons Share feedback about the accessibility of this item. Johnson, Cara; Kase, Gabrielle N.; and Pfeffer, Samantha B., "Life without the Beach: Projected Sea Level Rise and its Impact on Barrier Islands Along the East Coast, USA" (2019). Student Publications. 707. https://cupola.gettysburg.edu/student_scholarship/707 This is the author's version of the work. This publication appears in Gettysburg College's institutional repository by permission of the copyright owner for personal use, not for redistribution. Cupola permanent link: https://cupola.gettysburg.edu/student_scholarship/ 707 This open access student research paper is brought to you by The uC pola: Scholarship at Gettysburg College. It has been accepted for inclusion by an authorized administrator of The uC pola. For more information, please contact [email protected]. Life without the Beach: Projected Sea Level Rise and its Impact on Barrier Islands Along the East Coast, USA Abstract As climate change is becoming a global issue, the impact of sea level rise is increasingly becoming a threat to humans, wildlife, infrastructure, and ecosystems. To evaluate the effects of sea level rise on barrier islands and coastal regions, we studied future projections of sea level rise at Ocean City and Assateague Island, Maryland. -
CDP Climate Change Questionnaire 2018
CDP Climate Change Questionnaire 2018 Page 1 CDP Climate Change Questionnaire 2018 C0 Introduction Introduction (C0.1) Give a general description and introduction to your organization. Response options This is an open text question. MetLife, Inc. (NYSE: MET), through its subsidiaries and affiliates (“MetLife”), is one of the world’s leading financial services companies, providing insurance, annuities, employee benefits and asset management to help its individual and institutional customers navigate their changing world. Founded in 1868, MetLife has operations in more than 40 countries and holds leading market positions in the United States, Japan, Latin America, Asia, Europe and the Middle East. MetLife is providing the answers to this Questionnaire at the request of CDP. The statements contained herein do not constitute warranties, guarantees, obligations or commitments. Any forward-looking statements contained herein are based on present knowledge and circumstances, may turn out to be incorrect and are not guarantees of future performance. MetLife is not obligated to correct, revise or update information given in this Questionnaire. (C0.2) State the start and end date of the year for which you are reporting data. Response options Please complete the following table. You are able to add rows by using the “Add Row” button at the bottom of the table. 2017-01-01 - 2017-12-31 (C0.3) Select the countries for which you will be supplying data. Response options Please complete the following table: Page 2 Country Hong Kong Greece Select all that apply: India Hungary [Country drop-down list] Japan Ireland Brazil Malaysia Italy Chile Nepal Poland Argentina South Korea Portugal Australia Vietnam Romania Bangladesh Bulgaria Russia Colombia Cyprus Slovakia Ecuador Czech Republic Spain Mexico France Turkey United States of America China Oman Uruguay Ukraine Qatar Egypt United Kingdom Saudi Arabia Jordan Bahrain United Arab Emirates Kuwait Lebanon (C0.4) Select the currency used for all financial information disclosed throughout your response. -
Distinct Benthic Trajectories Call for Monitoring of Mesophotic Reefs
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.01.454664; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Hidden in the deep: distinct benthic trajectories 2 call for monitoring of mesophotic reefs 3 4 5 Hernandez-Agreda A1*, Sahit FM2, Englebert N2, Hoegh-Guldberg O2, Bongaerts P1* 6 7 1 California Academy of Sciences, San Francisco, 94118, CA, USA 8 2 Global Change Institute and School of Biological Sciences, The University of Queensland, St 9 Lucia, 4067 QLD, Australia 10 11 * Corresponding authors: [email protected], [email protected] 12 13 14 15 Running title: Urgent call for mesophotic reefs monitoring 16 17 Keywords: benthic communities, coral bleaching, coral reefs, disturbances, ecosystem 18 recovery, long-term monitoring, Mesophotic Coral Ecosystems (MCEs) 19 20 Abstract: 150 words 21 Whole manuscript: 2859 words 22 References: 40 23 Number of figures: 3 24 Number of tables: NA 25 26 27 28 29 30 31 32 33 34 35 36 37 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.01.454664; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. -
Extinction Is Inevitable in the Globalized World
Extinction is inevitable in the globalized world Aishwarya Maheshwari1 1Banda University of Agriculture and Technology July 23, 2020 Abstract No abstract - Extinction is a natural process and every species on this planet has an expiration date except Homo sapiens because we are extending our expiry at the cost of other species (Brook and Alroy 2017, Pimm et al. 2014, Ceballos et al. 2015). In contrast, biodiversity loss is not natural but a global issue and it is not caused by the globalization, but as a result of human activities at the global level (Pimm et al. 2014, Ceballos et al. 2015). Eventually, severe biodiversity losses lead to anthropogenic die-off and extinction of naturally occurring species (Pimm et al. 2014, Ceballos et al. 2015, DeVos et al. 2014). The previous, current and future extinction rates have been estimated using a variety of measures and their estimation methodologies vary (to be between 100 to 10,000 times higher than the natural extinction rate) but they clearly demonstrate that current extinction rates are far above than the \background" rates (Brook and Alroy 2017, Pimm et al. 2014, Ceballos et al. 2015, DeVos et al. 2014, Lamkin and Miller 2016). Aggravatedly, population declines and extirpations are appearing to be more graving than species extinction and negative cascading consequences on ecosystem services (Ceballosa et al. 2020). Substantial information is available on over-exploitation of natural resources by humans in the globalization perspective (Ceballosa et al. 2020, Millennium Ecosystem Assessment, 2005, Groom et al. 2006, Ehrnfeld 2003) and we have lost an estimated US$ 4-20 trillion per year in ecosystem services owing to land-cover change and US$ 6-11 trillion per year from land degradation during 1997 to 2011 (OECD 2019).