Final Environmental Assessment for Issuing a Reentry License To

Total Page:16

File Type:pdf, Size:1020Kb

Final Environmental Assessment for Issuing a Reentry License To Final Environmental Assessment and Finding of No Significant Impact for Issuing a Reentry License to SpaceX for Landing the Dragon Spacecraft in the Gulf of Mexico August 2018 THIS PAGE LEFT INTENTIONALLY BLANK Final Environmental Assessment and Finding of No Significant Impact for Issuing a Reentry License to SpaceX for Landing the Dragon Spacecraft in the Gulf of Mexico AGENCIES: Federal Aviation Administration (FAA), lead Federal agency; National Aeronautics and Space Administration, cooperating agency; United States Air Force, cooperating agency. DEPARTMENT OF TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION: The FAA is evaluating Space Exploration Technologies Corp.'s (SpaceX's) proposal to conduct landings of the Dragon spacecraft (Dragon) in the Gulf of Mexico, which would require the FAA Office of Commercial Space Transportation to issue a reentry license. SpaceX has two versions of Dragon: Dragon-1 and Dragon-2. Dragon-1 is used for cargo missions to the International Space Station (ISS), and SpaceX intends that Dragon-2 will eventually be used to transport astronauts to the ISS. Under the Proposed Action, the FAA would issue a reentry license to SpaceX, which would authorize SpaceX to conduct up to six Dragon landing operations per year in the waters of the Gulf of Mexico. Each landing operation would include orbital reentry, splashdown, and recovery. The Final EA evaluates the potential environmental impacts from the Proposed Action and No Action Alternative on air quality; climate; noise and noise-compatible land use; Department of Transportation Act, Section 4(f); biological resources (including aquatic plants and animals and special status species); coastal resources; water resources; natural resources and energy supply; and hazardous materials, solid waste, and pollution prevention. Potential cumulative impacts are also addressed in this EA. PUBLIC REVIEW PROCESS: In accordance with the applicable requirements, the FAA initiated a public review and comment period for the Draft EA. The 30-day public comment period began with the issuance of the Notice of Availability in the Federal Register on April 5, 2018 and ended on May 4, 2018. The FAA received one public comment submission (refer to Appendix D of this Final EA). CONTACT INFORMATION: Questions regarding the Final EA can be addressed to Mr. Daniel Czelusniak, Environmental Protection Specialist, Federal Aviation Administration, 800 Independence Avenue, SW, Suite 325, Washington, DC 20591; email Daniel.Czelusniak@faa.gov. This environmental assessment becomes a federal document when evaluated, signed, and dated by the responsible FAA official. Responsible FAA Official: Date: Kelvin Coleman Acting Associate Administrator for Commercial Space Transportation THIS PAGE INTENTIONALLY LEFT BLANK DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Office of Commercial Space Transportation Finding of No Significant Impact for Issuing a Reentry License to SpaceX for Landing the Dragon Spacecraft in the Gulf of Mexico Summary The Federal Aviation Administration (FAA) prepared the attached Final Environmental Assessment (EA) to analyze the potential environmental impacts of issuing a reentry license to Space Exploration Technologies Corp. (SpaceX) to conduct landings of the Dragon spacecraft (Dragon) in the Gulf of Mexico. The EA was prepared in accordance with the National Environmental Policy Act of 1969, as amended (NEPA; 42 United States Code [U.S.C.] § 4321 et seq.); Council on Environmental Quality NEPA implementing regulations (40 Code of Federal Regulations [CFR] parts 1500 to 1508); and FAA Order 1050.1F, Environmental Impacts: Policies and Procedures. After reviewing and analyzing available data and information on existing conditions and potential impacts, the FAA has determined the Proposed Action would not significantly affect the quality of the human environment. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and the FAA is issuing this Finding of No Significant Impact (FONSI). The FAA has made this determination in accordance with applicable environmental laws and FAA regulations. The Final EA is incorporated by reference into this FONSI. For any questions or to request a copy of the EA, contact the following FAA Environmental Protection Specialist. A copy of the EA may also be obtained from the FAA’s website: https://www.faa.gov/about/office_org/headquarters_offices/ast/environmental/nepa_docs/review/lau nch/. Daniel Czelusniak Environmental Protection Specialist Federal Aviation Administration 800 Independence Ave., SW, Suite 325 Washington DC 20591 Daniel.Czelusniak@faa.gov (202) 267-5924 Purpose and Need The purpose of FAA’s Proposed Action is to fulfill the FAA’s responsibilities as authorized by Executive Order 12465, Commercial Expendable Launch Vehicle Activities (49 FR 7099, 3 CFR, 1984 Comp., p. 163) and the Commercial Space Launch Act (51 U.S.C. Subtitle V, ch. 509, §§ 50901-50923) for oversight of commercial space launch activities, including licensing and regulating launch and reentry activities. The need for FAA’s Proposed Action results from the statutory direction from Congress under the Commercial Space Launch Act, 51 U.S.C 50901(b) to, in part, “protect the public health and safety, safety of property, and national security and foreign policy interests of the United States” while “strengthening and [expanding] the United States space transportation infrastructure, including the enhancement of United States launch sites and launch-site support facilities, and development of reentry sites, with Government, State, and private sector involvement, to support the full range of United States space-related activities.” Proposed Action The FAA’s Proposed Action is to issue a reentry license to SpaceX that would authorize SpaceX to conduct up to six Dragon landing operations per year in the Gulf of Mexico. SpaceX is currently authorized to conduct Dragon landing operations in the Pacific Ocean and Atlantic Ocean. The Gulf of Mexico would act as a contingency landing site in the event of hazardous conditions in either the Pacific Ocean or Atlantic Ocean. Each landing operation would include orbital reentry, splashdown, and recovery. After completing its mission in space, Dragon would complete a deorbit burn, reenter the atmosphere, and be tracked to a splashdown zone in the Gulf of Mexico. Following splashdown, a recovery vessel would transport Dragon to a port on the Gulf Coast or the Port of Cape Canaveral. Crew and/or cargo would be transported via helicopter from the splashdown location to the nearest airport. Alternatives Alternatives analyzed in the EA include (1) the Proposed Action and (2) the No Action Alternative. Under the No Action Alternative, the FAA would not issue a reentry license to SpaceX for Dragon reentry and splashdown in the Gulf of Mexico. SpaceX would conduct Dragon landing operations in the Pacific Ocean or Atlantic Ocean, as authorized by an FAA reentry license. The No Action Alternative provides the basis for comparing the environmental consequences of the Proposed Action. The No Action Alternative would not satisfy the purpose of and need for the Proposed Action. Public Involvement On April 5, 2018, the FAA published a Notice of Availability of the Draft EA in the Federal Register. The public comment period ended on May 4, 2018. The FAA received one comment submission (see Appendix D of the Final EA for the comment and FAA’s response). No substantive changes to the EA were made as a result of the comment. Environmental Impacts The potential environmental impacts from the Proposed Action and No Action Alternative were evaluated in the attached Final EA for each environmental impact category identified in FAA Order 1050.1F. Chapter 3 of the Final EA describes the affected environment and regulatory setting. In addition, Chapter 3 identifies those environmental impact categories that are not analyzed in detail, explaining why the Proposed Action would have no potential effect on those impact categories. Those impact categories include biological resources (aquatic vegetation, and terrestrial vegetation and wildlife); farmlands; historical, architectural, archaeological and cultural resources; land use; socioeconomics, environmental justice, and children’s environmental health and safety risks; visual effects; and water resources (wetlands, floodplains, inland surface waters, groundwater, and wild and scenic rivers). Chapter 4 of the Final EA provides evaluations of the potential environmental consequences of each alternative for each of the environmental impact categories analyzed in detail, and documents the finding that no significant environmental impacts would result from the Proposed Action. In addition, Chapter 4 addresses the requirements of applicable special purpose laws, regulations, and executive orders. A summary of the documented findings for each impact category analyzed in detail, including requisite findings with respect to relevant special purpose laws, regulations, and executive orders, is presented below. Air Quality, Final EA Section 4.1. Air pollutant emissions under the Proposed Action would not result in violations of Federal or State air quality standards because they would represent a negligible percentage of regional emissions and would not cause an exceedance of any National Ambient Air Quality Standards. As shown in Table 4.1-2 of the EA, estimated emissions from the Proposed Action are well below the General Conformity Rule de minimis thresholds
Recommended publications
  • Spacex Launch Manifest - a List of Upcoming Missions 25 Spacex Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45Th Space Wing Fact Sheet
    COTS 2 Mission Press Kit SpaceX/NASA Launch and Mission to Space Station CONTENTS 3 Mission Highlights 4 Mission Overview 6 Dragon Recovery Operations 7 Mission Objectives 9 Mission Timeline 11 Dragon Cargo Manifest 13 NASA Slides – Mission Profile, Rendezvous, Maneuvers, Re-Entry and Recovery 15 Overview of the International Space Station 17 Overview of NASA’s COTS Program 19 SpaceX Company Overview 21 SpaceX Leadership – Musk & Shotwell Bios 23 SpaceX Launch Manifest - A list of upcoming missions 25 SpaceX Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45th Space Wing Fact Sheet HIGH-RESOLUTION PHOTOS AND VIDEO SpaceX will post photos and video throughout the mission. High-Resolution photographs can be downloaded from: http://spacexlaunch.zenfolio.com Broadcast quality video can be downloaded from: https://vimeo.com/spacexlaunch/videos MORE RESOURCES ON THE WEB Mission updates will be posted to: For NASA coverage, visit: www.SpaceX.com http://www.nasa.gov/spacex www.twitter.com/elonmusk http://www.nasa.gov/nasatv www.twitter.com/spacex http://www.nasa.gov/station www.facebook.com/spacex www.youtube.com/spacex 1 WEBCAST INFORMATION The launch will be webcast live, with commentary from SpaceX corporate headquarters in Hawthorne, CA, at www.spacex.com. The webcast will begin approximately 40 minutes before launch. SpaceX hosts will provide information specific to the flight, an overview of the Falcon 9 rocket and Dragon spacecraft, and commentary on the launch and flight sequences. It will end when the Dragon spacecraft separates
    [Show full text]
  • NASA's Real World: Mathematics
    National Aeronautics and Space Administration NASA’s Real World: Mathematics Educator Guide “Preparing for a Soft Landing” Educational Product Educators & Students Grades 6-8 www.nasa.gov NP-2008-09-106-LaRC Preparing For A Soft Landing Grade Level: 6-8 Lesson Overview: Students are introduced to the Orion Subjects: Crew Exploration Vehicle (CEV) and NASA’s plans Middle School Mathematics to return to the Moon in this lesson. Thinking and acting like Physical Science engineers, they design and build models representing Orion, calculating the speed and acceleration of the models. Teacher Preparation Time: 1 hour This lesson is developed using a 5E model of learning. This model is based upon constructivism, a philosophical framework or theory of learning that helps students con- Lesson Duration: nect new knowledge to prior experience. In the ENGAGE section of the lesson, students Five 55-minute class meetings learn about the Orion space capsule through the use of a NASA eClips video segment. Teams of students design their own model of Orion to be used as a flight test model in the Time Management: EXPLORE section. Students record the distance and time the models fall and make sug- gestions to redesign and improve the models. Class time can be reduced to three 55-minute time blocks During the EXPLAIN section, students answer questions about speed, velocity and if some work is completed at acceleration after calculating the flight test model’s speed and acceleration. home. Working in teams, students redesign the flight test models to slow the models by National Standards increasing air resistance in the EXTEND section of this lesson.
    [Show full text]
  • World Relieved by Safe Splashdown
    COSP' TH2 LI33AH? OF 3 R BOCA BAIOI^ FL*\ 33432 Vol. 15, No. 95 BOCA RATON NEWS Sunday^April 19, 1970 30 Pages 10 Cents Wr? Telegrams pouring in World relieved by safe splashdown By United Press International immediately sent President Nixon boulevards as the spacecraft flashed Hundreds of persons gathered in front downtown Tehran, when the news nations applauded, cheered and raised It was a rare example of world unity "assurance of deep admiration . ." into view on television screens. of the U.S. Embassy to watch a series came. United Nations Secretary General glasses of champagne to toast the born of monumental relief and At the American Embassy in Lon- of placards telling of progress in the hi Moscow, the Soviet news agency United States. gratitude at the safe return Friday of Thant was among the first to send don, callers jammed the switchboard, spacecraft's return. Tass praised the "courage and cool U.S. Apollo 13 astronauts James Nixon his congratulations. congratulating the United States on the In Beirut, roars of approval erupted heads" of the Americans. Moscow Sirens of the Buenos Aires Lovell, Fred Haise and Jack Swigert. "The entire world is thankful and all safe return of the astronauts. from Arab cafes, jammed with people radio cut into its regular domestic newspapers La Prensa, Clarin and La Vatican aides said the Pope had men will long marvel at the un- "Most of the people were so who heard the landing on transistor newscast to report on Apollo 13's Nation blared at the moment the seldom looked so happy.
    [Show full text]
  • March 29, 2021 Ms. Lisa Felice Executive Secretary Michigan
    8 8 KARL L. GOTTING PAULA K. MANIS PLLC JACK C. DAVIS MICHAEL G. OLIVA JAMES R. NEAL JEFFREY L. GREEN8 (1938-2020) mgoliva@loomislaw.com 8 MICHAEL G. OLIVA KELLY REED LUCAS DIRECT DIAL: 517-318-9266 8 MICHAEL H. RHODES RICHARD W. PENNINGS NOTES: MOBILE: 989-798-2650 EFFREY HEUER1 ICHAEL OLMES8 ______________________ J S. T M A. H 1 KEVIN J. RORAGEN YING BEHER8 ALSO LICENSED IN MD 2 REPLY TO LANSING OFFICE ED OZEBOOM ARREN EAN5,8 ALSO LICENSED IN FL T S. R W T. D 3 7,8 ALSO LICENSED IN CT SARA L. CUNNINGHAM JACK L. HOFFMAN 4 2 7,8 ALSO LICENSED IN NY JAMES F. ANDERTON, V HOLLY L. JACKSON 5 ALSO LICENSED IN OH 6 DOMINIC R. RIOS ALSO LICENSED BY USPTO 3,4,6 MIKHAIL MURSHAK 7 GRAND RAPIDS OFFICE GABRIELLE C. LAWRENCE 8 OF COUNSEL ALAN G. ABOONA6 AMIA A. BANKS HANNAH E. BUZOLITS March 29, 2021 Ms. Lisa Felice Executive Secretary Michigan Public Service Commission 7109 W. Saginaw Highway Lansing, MI 48917 Re: Starlink Services, LLC Application for CLEC License MPSC Case No U-21035 Dear Ms. Felice: Enclosed for filing on behalf of Starlink Services, LLC please find: • Application Of Starlink Services, LLC For A Temporary And Permanent License To Provide Basic Local Exchange Service In Michigan • Prefiled Testimony of Matt Johnson • Exhibits SLS-1, SLS-2, SLS-3 and Confidential Exhibit SLS-4 Confidential Exhibit SLS-4 is not being filed electronically, but a sealed copy of Confidential Exhibit SLS-4 is being delivered via overnight mail to the Commission’s offices.
    [Show full text]
  • Splashdown and Post-Impact Dynamics of the Huygens Probe : Model Studies
    SPLASHDOWN AND POST-IMPACT DYNAMICS OF THE HUYGENS PROBE : MODEL STUDIES Ralph D Lorenz(1,2) (1)Lunar and Planetary Lab, University of Arizona, Tucson, AZ 85721-0092, USA email: rlorenz@lpl.arizona.edu (2)Planetary Science Research Institute, The Open University, Milton Keynes, UK ABSTRACT Computer simulations and scale model drop tests are performed to evaluate the splashdown loads of a capsule in nonaqueous liquids, in anticipation of the descent of the ESA Huygens probe on Saturn's moon Titan which may have lakes and seas of liquid hydrocarbons. Deceleration profiles in liquids of low and high viscosity are explored, and how the deceleration record may be inverted to recover fluid physical properties is studied. 1. INTRODUCTION Fig.1 Impression of the Huygens probe descending to a splashdown in a hydrocarbon lake under Titan’s ruddy sky. While the splashdown scenario may be realistic, Saturn's moon Titan appears to be partly covered by the vista is not – Saturn will be on the other side of lakes and seas of organic liquids [1]. The short Titan during Huygens’ descent. Artwork by Mark photochemical lifetime of methane in the atmosphere, Robertson-Tessi and Ralph Lorenz. See which is close to its triple point just as water is on http:://www.lpl.arizona.edu/~rlorenz/titanart/titan1.html Earth, suggests that its continued presence in the atmosphere requires replenishment from a surface or subsurface reservoir. Furthermore, the dominant Little work, however, has been published on spacecraft product of methane photolysis is ethane, which is also splashdown dynamics since the Apollo era ; one a liquid at Titan's 94K surface temperature, and models notable exception being a study of the impact of the predict that an equivalent of several hundred meters Challenger crew module after its disintegration after global depth of ethane should have accumulated over launch.
    [Show full text]
  • Planetary Basalt Construction Field Project of a Lunar Launch/Landing Pad – PISCES/NASA KSC Project Update R. P. Mueller1 and R
    47th Lunar and Planetary Science Conference (2016) 1009.pdf Planetary Basalt Construction Field Project of a Lunar Launch/Landing Pad – PISCES/NASA KSC Project Update R. P. Mueller1 and R. M. Kelso2, R. Romo2, C. Andersen2 1 National Aeronautics & Space Administration (NASA), Kennedy Space Center (KSC), Swamp Works Labora- tory, ) Mail Stop: UB-R, KSC, Florida, 32899, PH (321)867-2557; email: rob.mueller@nasa.gov 2 Pacific International Space Center for Exploration System (PISCES), 99 Aupuni St, Hilo, HI 96720, PH (808)935-8270; email: rkelso54@gmail.com, rfvromo@gmail.com, canderse@hawaii.edu. Introduction: odologies for constructing infrastructure and facilities Recently, NASA Headquarters invited PISCES to on the Moon and Mars using in situ materials such as become a strategic partner in a new project called “Ad- planetary basalt material. By using the indigenous ditive Construction with Mobile Emplacement” regolith materials on extra-terrestrial bodies, then the (ACME). The goal of this project is to investigate high mass and corresponding high cost of transporting technologies and methodologies for constructing facili- construction materials (e.g. concrete) can be avoided. ties and surface systems infrastructure on the Moon and At approximately $10,000 per kg launched to Low Mars using planetary basalt material. The first phase of Earth Orbit (LEO) this is a significant cost savings this project is to robotically-build a 20 meter (65-ft) which will make the future expansion of human civili- diameter vertical takeoff, vertical landing (VTVL) zation into space more achievable. Part of the first pad out of local basalt material on the Big Island of phase of the ACME project is to robotically-build a 20 Hawaii.
    [Show full text]
  • WATER WINGS Story and Photos by Guy R Maher
    OWNERS’ MANUAL: WATER WINGS Story and Photos by Guy R Maher VWDEOLVKHGRQEDVHOHJ,KDYHWKHÀDSVVHW 7XUQLQJ¿QDOWKHÀDSVDUHORZHUHGWRIXOO EDWGHJUHHVRXWRIDSRVVLEOH7KH DQGWKHSRZHULVVHWWRLQFKHVRIPDQLIROG SURSFRQWUROLVVHWWRKLJK5307XUQLQJ¿QDO SUHVVXUH0DLQWDLQLQJDWRNQRW ,PDNHRQHODVWFKHFNRIWKHODQGLQJJHDU DSSURDFKVSHHGIROORZHGE\DJHQWOHÀDUH DQGFRQ¿UPWKDWLWLVGH¿QLWHO\LQWKH³83´ DQGZHVHWWOHQLFHO\LQWRWKHODNH3RZHU SRVLWLRQ<HV\RXUHDGWKDWFRUUHFWO\7KH immediately to idle and full back pressure on ODQGLQJJHDUPXVWEHLQWKH³8S´SRVLWLRQIRU the control wheel after splashdown yields a ,DPDERXWWRODQGRQZDWHU smooth deceleration of this plane now turned ERDW7KDW¶VZKDW,FDOOIXQ 2828 CessnaCCeessssnana PilotsPililotots AssociationAAssssoociciatatiioon | JulyJJullyy 2018201018 VanFleet’s 172XP is equipped with Wipaire, Inc.’s Wipline 2350 amphibious floats. www.cessna.orgwwwww.w ceesssnan ..orgg 299 VanFleet’s 172XP has a modified engine that increases the horsepower from 195 to 210. 7KHDLUSODQH,¶PÀ\LQJLVDEHDXWLIXOUHGDQGZKLWH 6HYHUDO\HDUVODWHUVKHPRYHGWR*HRUJLDWREHFRPHWKH &HVVQD;3HTXLSSHGZLWKDVHWRI:LSDLUH dietitian for Athens Regional Hospital. At last she was ,QF¶V:LSOLQHDPSKLELRXVÀRDWV7KHRULJLQDO able to pursue her lifelong dream - to obtain her private 7&0,2.HQJLQHKDVDOVREHHQPRGL¿HGXSSLQJ SLORWOLFHQVHLQD&HVVQDLQ&KDQJLQJMREVWR WKHKRUVHSRZHUIURPWR7KHRZQHURIWKLV Ross Abbott as a pharmaceutical representative, getting VSHFLDO;3DIIHFWLRQDWHO\FDOOHGSamanthaLV6XVDQ PDUULHGKDYLQJDFKLOGDQGEX\LQJD&HVVQD VanFleet, owner/operator of VanFleet Aviation based in WREXLOGWLPHNHSWWKLQJVEXV\IRU9DQ)OHHW7KH
    [Show full text]
  • Aviation Investigation Report A04w0114 Upset on Water
    Transportation Safety Board Bureau de la sécurité des transports of Canada du Canada AVIATION INVESTIGATION REPORT A04W0114 UPSET ON WATER LANDING BIG RIVER AIR LTD. CESSNA A185F SEAPLANE C-GVYE TALTSON RIVER (FERGUSON’S CABIN) NORTHWEST TERRITORIES 07 JUNE 2004 The Transportation Safety Board of Canada (TSB) investigated this occurrence for the purpose of advancing transportation safety. It is not the function of the Board to assign fault or determine civil or criminal liability. Aviation Investigation Report Upset on Water Landing Big River Air Ltd. Cessna A185F Seaplane C-GVYE Taltson River (Ferguson’s Cabin) Northwest Territories 07 June 2004 Report Number A04W0114 Summary The Cessna A185F seaplane (registration C-GVYE, serial number 18503778) operated by Big River Air Ltd., departed Four Mile Lake, Alberta, on a visual flight rules flight to the Taltson River, Northwest Territories. The purpose of the flight was to transport three passengers to a site on the river known as Ferguson’s Cabin. At approximately 1700 mountain daylight time, as the aircraft was landing on the water near Ferguson’s Cabin, the left float dug in and the left wing struck the water. The aircraft immediately cartwheeled and came to rest floating inverted in the river, with only the bottoms of the floats visible at the surface. The pilot and the front seat passenger sustained serious injuries; however, they managed to exit the submerged and damaged aircraft through a broken window in the left cabin door. Four fishermen in boats responded to the accident, removed the survivors from the cold water, and transported them to a warm shelter.
    [Show full text]
  • Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability L
    Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability L. Pepermans Technische Universiteit Delft Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability by L. Pepermans to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Wednesday October 30, 2019 at 14:30 AM. Student number: 4144538 Project duration: September 1, 2018 – October 30, 2019 Thesis committee: Ir. B.T.C Zandbergen , TU Delft, supervisor Prof. E.K.A Gill, TU Delft Dr.ir. D. Dirkx, TU Delft This thesis is confidential and cannot be made public until October 30, 2019. An electronic version of this thesis is available at http://repository.tudelft.nl/. Cover image: S-IVB upper stage of Skylab 3 mission in orbit [23] Preface Before you lies my thesis to graduate from Delft University of Technology on the feasibility and cost-effectiveness of reusable upper stages. During the accompanying literature study, it was determined that the technology readiness level is sufficiently high for upper stage reusability. However, it was unsure whether a cost-effective system could be build. I have been interested in the field of Entry, Descent, and Landing ever since I joined the Capsule Team of Delft Aerospace Rocket Engineering (DARE). During my time within the team, it split up in the Structures Team and Recovery Team. In September 2016, I became Chief Recovery for the Stratos III student-built sounding rocket. During this time, I realised that there was a lack of fundamental knowledge in aerodynamic decelerators within DARE.
    [Show full text]
  • 1954 Cessna 180 Seaplane
    1976 Cessna A185F Seaplane N185AS Airspeeds Vs0 41*- 40 degrees flaps Vs1 55 Vx 80 Vy 90 Vfe 120 Va 118 Vno 146 Vne 182 Best Glide 80 *All speeds in Knots Engine Specs Continental IO520 D (Horizontally Opposed, 6 cylinder, Air Cooled) 300 HP @ 2850 RPM Max RPM- 2850 RPM Oil Type: Phillips X/C 20W50 or W100 Aeroshell Max oil Capacity: 12 U.S. Quarts Normal Operations: 9-10 U.S. Quarts Propeller Specs Manufacturer: McCaulley Prop Type: Constant Speed Number Blades: 2 Prop Diameter: 86 Fuel Capacity: 80 U.S. gallons – 40 each wing Usable: 74 U.S. gallons Fuel Burn: 16 Gallons Per Hour (average) Fuel Type: 100/130 Aviation fuel or 100 LL Floats Manufacturer: EDO Model: 582-3430 100% Bouyancy per Float: 3515 lbs. Float Airplane Bouyancy Max Floatation Weight 3430 C185 3515 lbs. 3905 lbs. 460 lbs.* <------------------------------- 21' --------------------------------> * without optional items Back Co Weight and Balance Gross Weight: 3525 lbs. Empty Weight: 2156 lbs. Useful Load: 1369 lbs. Float Storage Lockers: 100 lbs. maximum each side Sample Weight and Balance Weight Arm Moment Empty Airplane 2156.15 40.40 87113.40 Front Seats 400 15500 Rear Seats 0 0 Baggage Area 1 10 2000 Baggage area 2 30 3000 Float Compartments 0 0 Fuel 300 14000 Totals 2896.15 41.99 121613.4 EDO 3430 FAA Regulations Each float must have 4 compartments minimum Each float must support 90% of gross weight (both floats support 180%) Must be able to support the aircraft with two compartments flooded Note: The model number “3430” refers to the buoyancy of each float.
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 2 May–June 2019 CONTENTS FOCUS ..................................................................................................................... 1 European industrial leadership at stake ............................................................................ 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 9th EU-ESA Space Council .......................................................................................... 2 Europe’s Martian ambitions take shape ......................................................................... 2 ESA’s advancements on Planetary Defence Systems ........................................................... 2 ESA prepares for rescuing Humans on Moon .................................................................... 3 ESA’s private partnerships ......................................................................................... 3 ESA’s international cooperation with Japan .................................................................... 3 New EU Parliament, new EU European Space Policy? ......................................................... 3 France reflects on its competitiveness and defence posture in space ...................................... 3 Germany joins consortium to support a European reusable rocket.........................................
    [Show full text]
  • Aircraft of Today. Aerospace Education I
    DOCUMENT RESUME ED 068 287 SE 014 551 AUTHOR Sayler, D. S. TITLE Aircraft of Today. Aerospace EducationI. INSTITUTION Air Univ.,, Maxwell AFB, Ala. JuniorReserve Office Training Corps. SPONS AGENCY Department of Defense, Washington, D.C. PUB DATE 71 NOTE 179p. EDRS PRICE MF-$0.65 HC-$6.58 DESCRIPTORS *Aerospace Education; *Aerospace Technology; Instruction; National Defense; *PhysicalSciences; *Resource Materials; Supplementary Textbooks; *Textbooks ABSTRACT This textbook gives a brief idea aboutthe modern aircraft used in defense and forcommercial purposes. Aerospace technology in its present form has developedalong certain basic principles of aerodynamic forces. Differentparts in an airplane have different functions to balance theaircraft in air, provide a thrust, and control the general mechanisms.Profusely illustrated descriptions provide a picture of whatkinds of aircraft are used for cargo, passenger travel, bombing, and supersonicflights. Propulsion principles and descriptions of differentkinds of engines are quite helpful. At the end of each chapter,new terminology is listed. The book is not available on the market andis to be used only in the Air Force ROTC program. (PS) SC AEROSPACE EDUCATION I U S DEPARTMENT OF HEALTH. EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRO OUCH) EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIG INATING IT POINTS OF VIEW OR OPIN 'IONS STATED 00 NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EOU CATION POSITION OR POLICY AIR FORCE JUNIOR ROTC MR,UNIVERS17/14AXWELL MR FORCEBASE, ALABAMA Aerospace Education I Aircraft of Today D. S. Sayler Academic Publications Division 3825th Support Group (Academic) AIR FORCE JUNIOR ROTC AIR UNIVERSITY MAXWELL AIR FORCE BASE, ALABAMA 2 1971 Thispublication has been reviewed and approvedby competent personnel of the preparing command in accordance with current directiveson doctrine, policy, essentiality, propriety, and quality.
    [Show full text]