Development of an Interplanetary Orbital Propagator

Total Page:16

File Type:pdf, Size:1020Kb

Development of an Interplanetary Orbital Propagator Development of an interplanetary orbital propagator Supervisors: Jury member: G. Kerschen G. Rauw L. Dell’Elce Graduation Studies conducted for obtaining the Master’s degree in Aerospace Engineering by Thibault Pichaˆ UNIVERSITY OF LIEGE` FACULTY OF APPLIED SCIENCES ACADEMIC YEAR 2017-2018 Acknowledgements My sincere gratitude goes to my supervisors Prof. Gaetan¨ Kerschen and Dr. Lamberto Dell’Elce, and to my jury member Prof. Gregor Rauw. The door to Prof. Kerschen’s office was always open. He made me wise comments on the redaction of my thesis and spent precious time answering my questions. Dr. Lamberto Dell’Elce’s investment was essential for my daily work. He guided me throughout the thesis and provided me with sound advice on the redaction of my thesis. I am thankful to Prof. Gregor Rauw for its suggestions. Furthermore, I am grateful to Jean-Louis Simon and Gerard´ Franscou from the ‘Institut de Mecanique´ Celeste´ et de Calcul des Ephem´ erides’´ (IMCCE, Paris). They provided the data to vali- date the planetary ephemerides. Finally, I would like to thank my family who has encouraged me throughout my studies. -A- Contents Introduction 1 1 Time and coordinate systems6 1.1 Time systems......................................6 1.2 Coordinate systems...................................7 1.2.1 Earth inertial coordinate system fE1;E2;E3g .................8 1.2.2 Heliocentric inertial coordinate system fX; Y; Zg ...............9 1.2.3 Planetocentric inertial coordinate systems fI; J; Kg .............9 1.3 Orbital elements..................................... 10 2 Ephemerides 13 2.1 Procedure........................................ 14 2.2 Validation........................................ 16 2.3 Results.......................................... 17 2.4 Possible improvements................................. 20 3 Spheres of influence 21 3.1 Properties........................................ 22 3.2 Transformation between heliocentric and planetocentric coordinate systems..... 24 3.3 Leave a sphere of influence............................... 28 3.4 Enter a sphere of influence............................... 28 3.4.1 Lambert’s problem............................... 29 3.4.2 Three-dimensional patched conic method................... 30 4 Perturbations 32 4.1 Perturbed equations of motion: general form...................... 32 4.2 Motion within the spheres of influence......................... 33 4.2.1 J2 perturbation................................. 33 4.2.2 Point Mass Gravity perturbations....................... 36 4.2.3 Solar radiation pressure perturbation...................... 48 4.3 Motion outside the spheres of influence........................ 57 4.3.1 Solar radiation pressure perturbation...................... 57 4.3.2 Point Mass Gravity perturbations....................... 60 4.4 Possible improvements................................. 64 B 5 Main algorithm and application 66 5.1 Main algorithm..................................... 66 5.2 Tolerance and ordinary differential equation solvers.................. 69 5.3 Cassini-Huygens mission................................ 71 Conclusion 76 A Constants i A.1 Planets, Sun, Pluto, Moon constants...........................i B Ephemerides ii B.1 VSOP87 planetary theory: statistical analysis on planetary velocities......... ii C Codes iii C.1 Constants used in IOP ................................. iii C.2 Ephemerides...................................... vii C.2.1 Planets and dwarf planet Pluto......................... vii C.2.2 Moon...................................... xviii C.3 Change of coordinate system.............................. xx C.3.1 Heliocentric and Earth inertial coordinate systems.............. xx C.3.2 Heliocentric to planetocentric coordinate system............... xxi C.3.3 Planetocentric to heliocentric coordinate system................ xxv C.4 Lambert’s problem................................... xxix C.4.1 Newton-Raphson function........................... xxxi C.4.2 Conversion Cartesian position and velocity vectors to Keplerian elements.. xxxii C.5 Main algorithm..................................... xxxv C.5.1 Initialization: conversion Keplerian elements to Cartesian position and ve- locity vectors.................................. xl C.5.2 Motion within the spheres of influence..................... xliii C.5.3 Motion outside the spheres of influence.................... xlix References liii -C- List of Abbreviations IAU International Astronomical Union IOP Interplanetary orbital propagator ISS International Space Station PMG Point mass gravity NASA National Aeronautics and Space Administration SOI Sphere of influence SRP Solar radiation pressure TDB Barycentric Dynamical time TT Terrestrial time VSOP Variation seculaire´ des orbites planetaires.´ -D- Introduction Humanity’s interest is to explore the unknown, discover new worlds, find traces of life and un- derstand the creation of our solar system. Interplanetary orbital propagators are developed in that context. They consist of tools allowing us to predict the spacecraft trajectories in our solar system. Propagators are used to support and design real-world missions. Most of the solar systems consist of one star and the celestial bodies traveling around it. It includes the planets, the moons and the asteroids. There are about tens of billions of solar systems in the Milky Way galaxy [28]. The focus of the thesis is on our solar system. The Sun is the star at the centre of our solar system. Eight planets orbit around it. Mercury is the smallest and the closest planet to the Sun. It is located at 0.4 AU from it. One astronomical unit AU corresponds to 149,597,870 km. Mercury’s orbit is represented in purple in Figure2. It is a highly eccentric orbit compared to other planetary orbits. Venus is the planet situated between Mercury and the Earth. It is located at a distance of 0.7 astronomical unit from the Sun. Venus possesses the most nearly circular orbits. Its eccentricity is very close to 0. The Earth is the third planet from the Sun. The liquid water, the surface temperature and the chemical compounds are key factors allowing life on Earth [28]. Indeed, Earth’s oceans cover 70 percent of the planet’s surface. The Earth lies at one astronomical unit. The next planet is Mars. It is situated at 1.5 AU from the Sun. Mars houses the largest volcano: Olympus Mons. It is three times higher than Mount Everest [28]. Jupiter is the largest planet in our solar system. Jupiter is 5.2 astronomical units away from the Sun. The second largest planet is Saturn. The main feature of Saturn is to possess spectacular rings. A distance of 9.5 astronomical units separates Saturn and the Sun. The seventh planet from the Sun is Uranus: 19.8 AU. Uranus is the only planet whose equator is almost perpendicular to its orbit around the Sun. The last planet is Neptune. It is located at 30 astronomical units away from the Sun and completes one orbit in 165 years. The scaled sizes of the different planets are represented in Figure1. The inner planets (Mercury, Venus, Earth, Mars) have a relative small size compared to the four outermost planets (Jupiter, Saturn, Uranus, Neptune). The inner planets are made up of rock and metal. Due to their large size, the outermost planets are called giant planets. They are mainly made up of liquid, ice and gas. Our solar system does not house only planets. Moons are celestial bodies in orbit around the planets. The giant planets possess a series of moons. A total of 171 moons are observed around these planets [28]. The Earth and Mars only possess one and two moons, respectively. Mercury and Venus do not possess any moons. In addition, five dwarf planets orbit in our solar system. The dwarf planet Pluto is studied in the thesis. It is located farther than Neptune on average. In fact, its orbit has an eccentricity similar to Mercury’s orbit. Therefore, Pluto is closer to the Sun than Neptune at its perihelion. The asteroids are mainly located between Mars and Jupiter. There are celestial bodies in orbit around the Sun. Their diameters vary from 10 m to 530 km. The total mass of all the asteroids combined is less than that of Earth’s moon [28]. 1 Jupiter Saturn Uranus Neptune Earth Venus Mars Mercury Figure 1: Scaled size of the planets. The main objective of the thesis is to develop a high-fidelity orbital propagator for interplanetary space missions. It is implemented in the MATLAB environment. The general mission analysis tool GMAT R2017a developed by NASA is used to validate the results. A feature of GMAT is to simulate trajectories in our solar system. It consists of a high-fidelity orbital propagator. GMAT has supported 8 NASA missions and it is used around the world. The propagator developed in this thesis is named IOP. The functioning of the propagator IOP is described to understand the objectives and the different parts of the thesis. The first 4.5 billion kilometres of our solar system starting from the Sun are represented in Figure2. Let us start by defining the different elements shown in this figure. The Sun is located at the centre. The eight green points represent the planets. The circles draw the trajectories (orbits) followed by each planet over time. Mercury’s orbit departs from a circle due to its eccentricity (≈ 0.2). The planets are trapped by the Sun’s gravitational field. As a result, the planets describe ’again and again’ the same trajectories over time. The solar system is divided into two regions in the propagator. The first region comprises the gray circles surrounding each planet. They are called
Recommended publications
  • Low Thrust Manoeuvres to Perform Large Changes of RAAN Or Inclination in LEO
    Facoltà di Ingegneria Corso di Laurea Magistrale in Ingegneria Aerospaziale Master Thesis Low Thrust Manoeuvres To Perform Large Changes of RAAN or Inclination in LEO Academic Tutor: Prof. Lorenzo CASALINO Candidate: Filippo GRISOT July 2018 “It is possible for ordinary people to choose to be extraordinary” E. Musk ii Filippo Grisot – Master Thesis iii Filippo Grisot – Master Thesis Acknowledgments I would like to address my sincere acknowledgments to my professor Lorenzo Casalino, for your huge help in these moths, for your willingness, for your professionalism and for your kindness. It was very stimulating, as well as fun, working with you. I would like to thank all my course-mates, for the time spent together inside and outside the “Poli”, for the help in passing the exams, for the fun and the desperation we shared throughout these years. I would like to especially express my gratitude to Emanuele, Gianluca, Giulia, Lorenzo and Fabio who, more than everyone, had to bear with me. I would like to also thank all my extra-Poli friends, especially Alberto, for your support and the long talks throughout these years, Zach, for being so close although the great distance between us, Bea’s family, for all the Sundays and summers spent together, and my soccer team Belfiga FC, for being the crazy lovable people you are. A huge acknowledgment needs to be address to my family: to my grandfather Luciano, for being a great friend; to my grandmother Bianca, for teaching me what “fighting” means; to my grandparents Beppe and Etta, for protecting me
    [Show full text]
  • Osculating Orbit Elements and the Perturbed Kepler Problem
    Osculating orbit elements and the perturbed Kepler problem Gmr a = 3 + f(r, v,t) Same − r x & v Define: r := rn ,r:= p/(1 + e cos f) ,p= a(1 e2) − osculating orbit he sin f h v := n + λ ,h:= Gmp p r n := cos ⌦cos(! + f) cos ◆ sinp ⌦sin(! + f) e − X +⇥ sin⌦cos(! + f) + cos ◆ cos ⌦sin(! + f⇤) eY actual orbit +sin⇥ ◆ sin(! + f) eZ ⇤ λ := cos ⌦sin(! + f) cos ◆ sin⌦cos(! + f) e − − X new osculating + sin ⌦sin(! + f) + cos ◆ cos ⌦cos(! + f) e orbit ⇥ − ⇤ Y +sin⇥ ◆ cos(! + f) eZ ⇤ hˆ := n λ =sin◆ sin ⌦ e sin ◆ cos ⌦ e + cos ◆ e ⇥ X − Y Z e, a, ω, Ω, i, T may be functions of time Perturbed Kepler problem Gmr a = + f(r, v,t) − r3 dh h = r v = = r f ⇥ ) dt ⇥ v h dA A = ⇥ n = Gm = f h + v (r f) Gm − ) dt ⇥ ⇥ ⇥ Decompose: f = n + λ + hˆ R S W dh = r λ + r hˆ dt − W S dA Gm =2h n h + rr˙ λ rr˙ hˆ. dt S − R S − W Example: h˙ = r S d (h cos ◆)=h˙ e dt · Z d◆ h˙ cos ◆ h sin ◆ = r cos(! + f)sin◆ + r cos ◆ − dt − W S Perturbed Kepler problem “Lagrange planetary equations” dp p3 1 =2 , dt rGm 1+e cos f S de p 2 cos f + e(1 + cos2 f) = sin f + , dt Gm R 1+e cos f S r d◆ p cos(! + f) = , dt Gm 1+e cos f W r d⌦ p sin(! + f) sin ◆ = , dt Gm 1+e cos f W r d! 1 p 2+e cos f sin(! + f) = cos f + sin f e cot ◆ dt e Gm − R 1+e cos f S− 1+e cos f W r An alternative pericenter angle: $ := ! +⌦cos ◆ d$ 1 p 2+e cos f = cos f + sin f dt e Gm − R 1+e cos f S r Perturbed Kepler problem Comments: § these six 1st-order ODEs are exactly equivalent to the original three 2nd-order ODEs § if f = 0, the orbit elements are constants § if f << Gm/r2, use perturbation theory
    [Show full text]
  • Astrodynamics
    Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities
    [Show full text]
  • Seismic Wavefield Polarization
    E3S Web of Conferences 12, 06001 (2016) DOI: 10.1051/e3sconf/20161206001 i-DUST 2016 Seismic wavefield polarization – Part I: Describing an elliptical polarized motion, a review of motivations and methods Claire Labonne1,2, a , Olivier Sèbe1, and Stéphane Gaffet2,3 1 CEA, DAM, DIF, 91297 Arpajon, France 2 Univ. Nice Sophia Antipolis, CNRS, IRD, Observatoire de la côte d’Azur, Géoazur UMR 7329, Valbonne, France 3 LSBB UMS 3538, Rustrel, France Abstract. The seismic wavefield can be approximated by a sum of elliptical polarized motions in 3D space, including the extreme linear and circular motions. Each elliptical motion need to be described: the characterization of the ellipse flattening, the orientation of the ellipse, circle or line in the 3D space, and the direction of rotation in case of non-purely linear motion. Numerous fields of study share the need of describing an elliptical motion. A review of advantages and drawbacks of each convention from electromagnetism, astrophysics and focal mechanism is done in order to thereafter define a set of parameters to fully characterize the seismic wavefield polarization. 1. Introduction The seismic wavefield is a combination of polarized waves in the three-dimensional (3D) space. The polarization is a characteristic of the wave related to the particle motion. The displacement of particles effected by elastic waves shows a particular polarization shape and a preferred direction of polarization depending on the source properties (location and characteristics) and the Earth structure. P-waves, for example, generate linear particle motion in the direction of propagation; the polarization is thus called linear. Rayleigh waves, on the other hand, generate, at the surface of the Earth, retrograde elliptical particle motion.
    [Show full text]
  • Orbit Options for an Orion-Class Spacecraft Mission to a Near-Earth Object
    Orbit Options for an Orion-Class Spacecraft Mission to a Near-Earth Object by Nathan C. Shupe B.A., Swarthmore College, 2005 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Master of Science Department of Aerospace Engineering Sciences 2010 This thesis entitled: Orbit Options for an Orion-Class Spacecraft Mission to a Near-Earth Object written by Nathan C. Shupe has been approved for the Department of Aerospace Engineering Sciences Daniel Scheeres Prof. George Born Assoc. Prof. Hanspeter Schaub Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Shupe, Nathan C. (M.S., Aerospace Engineering Sciences) Orbit Options for an Orion-Class Spacecraft Mission to a Near-Earth Object Thesis directed by Prof. Daniel Scheeres Based on the recommendations of the Augustine Commission, President Obama has pro- posed a vision for U.S. human spaceflight in the post-Shuttle era which includes a manned mission to a Near-Earth Object (NEO). A 2006-2007 study commissioned by the Constellation Program Advanced Projects Office investigated the feasibility of sending a crewed Orion spacecraft to a NEO using different combinations of elements from the latest launch system architecture at that time. The study found a number of suitable mission targets in the database of known NEOs, and pre- dicted that the number of candidate NEOs will continue to increase as more advanced observatories come online and execute more detailed surveys of the NEO population.
    [Show full text]
  • Navigation of Space Vlbi Missions: Radioastron and Vsop
    https://ntrs.nasa.gov/search.jsp?R=19940019453 2020-06-16T15:35:05+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server NAVIGATION OF SPACE VLBI MISSIONS: RADIOASTRON AND VSOP Jordan Ellis Jet Propulsion Laboratory California Institute of Technology Pasadena, California Abstract Network (DSN) and co-observation and correlation by facilities of the National Radio Astronomy Observatory In the mid 199Os, Russian and Japanese space agencies (NRAO). Extensive international collaboration between will each place into highly elliptic earth orbit a radio the space agencies and between the multi-national VLBI telescope consisting of a a large antenna and radio as- community will be required to maximize the science tronomy receivers. Very Long Baseline Interferometry return. Schedules for an international network of VLBI (VLBI) techniques will be used to obtain high resolu- radio telescopes will be coordinated to ensure the ground tion images of radio sources observed by the space and antennas and spacecraft antenna are simultaneously ob- ground based antennas. Stringent navigation accuracy serving the same sources. An international network of requirements are imposed on the Space VLBI missions ground tracking stations will also support both space- by the need to transfer an ultra stable ground refer- craft. The tracking stations will record science data ence frequency standard to the spacecraft and by the downlinked in real time from the orbiting satellites, demands of the VLBI correlation process. Orbit deter- transfer a stable phase reference and collect two-way mination for the missions will be the joint responsibility doppler for navigation.
    [Show full text]
  • Geodesy Methods Over Time
    Geodesy methods over time GISC3325 - Lecture 4 Astronomic Latitude/Longitude • Given knowledge of the positions of an astronomic body e.g. Sun or Polaris and our time we can determine our location in terms of astronomic latitude and longitude. US Meridian Triangulation This map shows the first project undertaken by the founding Superintendent of the Survey of the Coast Ferdinand Hassler. Triangulation • Method of indirect measurement. • Angles measured at all nodes. • Scaled provided by one or more precisely measured base lines. • First attributed to Gemma Frisius in the 16th century in the Netherlands. Early surveying instruments Left is a Quadrant for angle measurements, below is how baseline lengths were measured. A non-spherical Earth • Willebrod Snell van Royen (Snellius) did the first triangulation project for the purpose of determining the radius of the earth from measurement of a meridian arc. • Snellius was also credited with the law of refraction and incidence in optics. • He also devised the solution of the resection problem. At point P observations are made to known points A, B and C. We solve for P. Jean Picard’s Meridian Arc • Measured meridian arc through Paris between Malvoisine and Amiens using triangulation network. • First to use a telescope with cross hairs as part of the quadrant. • Value obtained used by Newton to verify his law of gravitation. Ellipsoid Earth Model • On an expedition J.D. Cassini discovered that a one-second pendulum regulated at Paris needed to be shortened to regain a one-second oscillation. • Pendulum measurements are effected by gravity! Newton • Newton used measurements of Picard and Halley and the laws of gravitation to postulate a rotational ellipsoid as the equilibrium figure for a homogeneous, fluid, rotating Earth.
    [Show full text]
  • Chapter 7 Mapping The
    BASICS OF RADIO ASTRONOMY Chapter 7 Mapping the Sky Objectives: When you have completed this chapter, you will be able to describe the terrestrial coordinate system; define and describe the relationship among the terms com- monly used in the “horizon” coordinate system, the “equatorial” coordinate system, the “ecliptic” coordinate system, and the “galactic” coordinate system; and describe the difference between an azimuth-elevation antenna and hour angle-declination antenna. In order to explore the universe, coordinates must be developed to consistently identify the locations of the observer and of the objects being observed in the sky. Because space is observed from Earth, Earth’s coordinate system must be established before space can be mapped. Earth rotates on its axis daily and revolves around the sun annually. These two facts have greatly complicated the history of observing space. However, once known, accu- rate maps of Earth could be made using stars as reference points, since most of the stars’ angular movements in relationship to each other are not readily noticeable during a human lifetime. Although the stars do move with respect to each other, this movement is observable for only a few close stars, using instruments and techniques of great precision and sensitivity. Earth’s Coordinate System A great circle is an imaginary circle on the surface of a sphere whose center is at the center of the sphere. The equator is a great circle. Great circles that pass through both the north and south poles are called meridians, or lines of longitude. For any point on the surface of Earth a meridian can be defined.
    [Show full text]
  • Orbit Determination Using Modern Filters/Smoothers and Continuous Thrust Modeling
    Orbit Determination Using Modern Filters/Smoothers and Continuous Thrust Modeling by Zachary James Folcik B.S. Computer Science Michigan Technological University, 2000 SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUNE 2008 © 2008 Massachusetts Institute of Technology. All rights reserved. Signature of Author:_______________________________________________________ Department of Aeronautics and Astronautics May 23, 2008 Certified by:_____________________________________________________________ Dr. Paul J. Cefola Lecturer, Department of Aeronautics and Astronautics Thesis Supervisor Certified by:_____________________________________________________________ Professor Jonathan P. How Professor, Department of Aeronautics and Astronautics Thesis Advisor Accepted by:_____________________________________________________________ Professor David L. Darmofal Associate Department Head Chair, Committee on Graduate Students 1 [This page intentionally left blank.] 2 Orbit Determination Using Modern Filters/Smoothers and Continuous Thrust Modeling by Zachary James Folcik Submitted to the Department of Aeronautics and Astronautics on May 23, 2008 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautics and Astronautics ABSTRACT The development of electric propulsion technology for spacecraft has led to reduced costs and longer lifespans for certain
    [Show full text]
  • Geodetic Position Computations
    GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem.
    [Show full text]
  • Models for Earth and Maps
    Earth Models and Maps James R. Clynch, Naval Postgraduate School, 2002 I. Earth Models Maps are just a model of the world, or a small part of it. This is true if the model is a globe of the entire world, a paper chart of a harbor or a digital database of streets in San Francisco. A model of the earth is needed to convert measurements made on the curved earth to maps or databases. Each model has advantages and disadvantages. Each is usually in error at some level of accuracy. Some of these error are due to the nature of the model, not the measurements used to make the model. Three are three common models of the earth, the spherical (or globe) model, the ellipsoidal model, and the real earth model. The spherical model is the form encountered in elementary discussions. It is quite good for some approximations. The world is approximately a sphere. The sphere is the shape that minimizes the potential energy of the gravitational attraction of all the little mass elements for each other. The direction of gravity is toward the center of the earth. This is how we define down. It is the direction that a string takes when a weight is at one end - that is a plumb bob. A spirit level will define the horizontal which is perpendicular to up-down. The ellipsoidal model is a better representation of the earth because the earth rotates. This generates other forces on the mass elements and distorts the shape. The minimum energy form is now an ellipse rotated about the polar axis.
    [Show full text]
  • World Geodetic System 1984
    World Geodetic System 1984 Responsible Organization: National Geospatial-Intelligence Agency Abbreviated Frame Name: WGS 84 Associated TRS: WGS 84 Coverage of Frame: Global Type of Frame: 3-Dimensional Last Version: WGS 84 (G1674) Reference Epoch: 2005.0 Brief Description: WGS 84 is an Earth-centered, Earth-fixed terrestrial reference system and geodetic datum. WGS 84 is based on a consistent set of constants and model parameters that describe the Earth's size, shape, and gravity and geomagnetic fields. WGS 84 is the standard U.S. Department of Defense definition of a global reference system for geospatial information and is the reference system for the Global Positioning System (GPS). It is compatible with the International Terrestrial Reference System (ITRS). Definition of Frame • Origin: Earth’s center of mass being defined for the whole Earth including oceans and atmosphere • Axes: o Z-Axis = The direction of the IERS Reference Pole (IRP). This direction corresponds to the direction of the BIH Conventional Terrestrial Pole (CTP) (epoch 1984.0) with an uncertainty of 0.005″ o X-Axis = Intersection of the IERS Reference Meridian (IRM) and the plane passing through the origin and normal to the Z-axis. The IRM is coincident with the BIH Zero Meridian (epoch 1984.0) with an uncertainty of 0.005″ o Y-Axis = Completes a right-handed, Earth-Centered Earth-Fixed (ECEF) orthogonal coordinate system • Scale: Its scale is that of the local Earth frame, in the meaning of a relativistic theory of gravitation. Aligns with ITRS • Orientation: Given by the Bureau International de l’Heure (BIH) orientation of 1984.0 • Time Evolution: Its time evolution in orientation will create no residual global rotation with regards to the crust Coordinate System: Cartesian Coordinates (X, Y, Z).
    [Show full text]