Evolution of the Eccentricity and Orbital Inclination Caused by Planet-Disc Interactions Jean Teyssandier

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of the Eccentricity and Orbital Inclination Caused by Planet-Disc Interactions Jean Teyssandier Evolution of the eccentricity and orbital inclination caused by planet-disc interactions Jean Teyssandier To cite this version: Jean Teyssandier. Evolution of the eccentricity and orbital inclination caused by planet-disc interac- tions. Galactic Astrophysics [astro-ph.GA]. Université Pierre et Marie Curie - Paris VI, 2014. English. NNT : 2014PA066205. tel-01081966 HAL Id: tel-01081966 https://tel.archives-ouvertes.fr/tel-01081966 Submitted on 12 Nov 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité : Physique École doctorale : ASTRONOMIE ET ASTROPHYSIQUE D’ÎLE-DE-FRANCE réalisée à l’Institut d’Astrophysique de Paris présentée par Jean TEYSSANDIER pour obtenir le grade de : DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Sujet de la thèse : Évolution de l’excentricité et de l’inclinaison orbitale due aux interactions planètes-disque soutenue le 16 Septembre 2014 devant le jury composé de : Bruno Sicardy Président Carl Murray Rapporteur Sean Raymond Rapporteur Alessandro Morbidelli Examinateur Clément Baruteau Examinateur Caroline Terquem Directrice de thèse Une mathématique bleue Dans cette mer jamais étale D’où nous remonte peu à peu Cette mémoire des étoiles Léo Ferré, La mémoire et la mer 2 Remerciements Mes remerciements vont tout d’abord à Caroline, pour avoir accepté de diriger cette thèse. Ca a été un plaisir de pouvoir profiter du large spectre de ses con- naissances, et de tant apprendre à son contact. Je lui suis aussi redevable pour la rigueur qu’elle a imposée à mon travail et qui ne pourra que m’être bénéfique pour la suite. Je la remercie enfin de m’avoir laissé une grande liberté dans mes recherches, m’encourageant à explorer mes propres pistes et développer mes idées, et de toujours avoir laissé sa porte ouverte à la discussion. C’est aussi grâce à elle et Steve Balbus que j’ai pu passer deux si belles années à Oxford. Les aléas de la recherche ont parfois du bon! Je remercie aussi Carl Murray et Sean Raymond d’avoir accepté de servir en tant que rapporteurs de cette thèse, ainsi que Bruno Sicardy, Alessandro Mor- bidelli et Clément Baruteau pour avoir accepté d’en être les examinateurs. Je remercie aussi Frederic Rasio et Smadar Naoz de m’avoir accueilli à l’Université de Northwestern durant les stages qui ont précédé ma thèse. Ce sont eux qui m’ont définitivement donné le goût pour la dynamique des exoplanètes. Je remercie aussi John Papaloizou pour la collaboration qu’il a apportée à l’un des papiers publiés dans cette thèse. Cette thèse n’aurait pas été une si belle expérience sans toutes les rencon- tres qu’elle a occasionnées en chemin. Il y a d’abord les anciens du M2 de l’Observatoire, Élodie, Andy, Jessica, Claire-Line, Alex, Élise et les autres. À l’IAP, c’est toujours un plaisir de revenir passer du temps avec Vincent, Flavien et tous les autres doctorants. À Oxford, je remercie Suzanne Aigrain de m’avoir accueilli dans son groupe, avec à la clé les fameux déjeuners du vendredi! C’est un plaisir d’avoir côtoyé ses étudiants, en particulier Tom, Ed et Ruth. Enfin, la vie à Oxford n’aurait pas été la même sans Thibaut, Rich et Shravan. Un grand merci au passage à Rich, pour avoir relu quelques bouts de ma thèse. Plus généralement, ce fut un plaisir de partager durant deux ans la vie du groupe d’astrophysique d’Oxford. 3 4 Peu de choses durant mon séjour à Oxford m’ont fait plus plaisir que de recevoir la visite de mon frère et ma soeur. J’espère qu’ils auront l’occasion de venir à Cambridge voir si les pubs sont si différents de ceux d’Oxford. Enfin, cette thèse est dédiée à mes parents, pour leur soutien inconditionnel durant toute la poursuite de mes études. Si j’en suis arrivé là, c’est surtout grâce à eux. Abstract Since the discovery of the first planet orbiting a main-sequence star outside the solar system in 1995, the field of exoplanet studies has grown rapidly, both from the observational and theoretical sides. Despite the fact that we are still lacking a global picture for the formation and evolution of planetary systems, it is now commonly accepted that planets form in protoplanetary discs and interact with them in the early stages of their evolution. This thesis aims at studying some of these interactions. The observations of extrasolar planets have brought several puzzling results to the attention of the community. One of them is the existence of hot Jupiters, giant gaseous planets which orbit their parent star with a period of a few days only. The commonly accepted scenario is that they formed in the outer parts of the disc and migrated inward. Furthermore, a significant number of planets detected so far, especially by the method of radial velocities, have high eccen- tricities. This is in contrast with our own solar system where giant planets have quasi-circular orbits. Such a distribution of eccentricities may be the signature of strong dynamical interactions between the different components of a same planetary system. Finally, there are short-period planets whose orbits is mis- aligned with the axis of rotation of their host star, which could possibly argue against the smooth migration of planets in their disc. Therefore, it is important to disentangle between the orbital characteristics that planets acquired through mutual dynamical interactions, and the ones they acquired when they interacted with the disc. Firstly, it gives constraints on the physical parameters of protoplanetary discs. Secondly, it is interesting to know the properties of the system of planets after the disc has dissipated, and what sort of initial conditions one can expect when planets start to interact freely one with each other. For instance, one can ask if it is possible for planets to reach large eccentricities and inclinations when the disc was still present, and whether they could maintain them or not. 5 6 The first topic that we study in this thesis is the interaction between a planet and a disc, when the orbit of the planet has a large inclination with respect to the mid-plane of the disc. If the initial inclination of the orbit is larger than some critical value, the gravitational force exerted by the disc on the planet leads to a Kozai cycle in which the eccentricity of the orbit is pumped up to large values and oscillates with time in antiphase with the inclination. On the other hand, both the inclination and the eccentricity are damped by the frictional force that the planet is subject to when it crosses the disc. Typically, Neptune or lower mass planets would remain on inclined and eccentric orbits over the disc lifetime, whereas orbits of Jupiter or higher mass planets would align and circularize. A mechanism that could explain this primordial misalignment between plan- ets and discs, and more generally, the population of planets with large spin-orbit misalignments, is that of resonant migration. When two planets migrate in a disc, it is possible that they enter a configuration where the ratio of their orbital periods is equal to the ratio between two small integers. This configuration is referred to as mean motion resonance. If the resonance is maintained during the migration, the eccentricities can grow to high values. Simulations have shown that, in some cases, the inclinations could also grow to high values. However, the disc tends to damp the eccentricities and inclinations and keep them to low values. In this thesis we study, analytically and numerically, the conditions needed for a system of two migrating planets trapped in a 2:1 mean motion res- onance to enter an inclination–type resonance. We show that this resonance can be achieved only after the eccentricities have reached a critical value. However the maximum value reached by the eccentricities is limited by the disc damp- ing. We show that the criterion for triggering an inclination–type resonance is a function of the ratio between the eccentricity damping timescale and the or- bital migration timescale. If this ratio is larger than a few tenths, the system can enter an inclination–type resonance. However, both observations and theory suggest that this ratio probably cannot exceed a few hundredths. We conclude that excitation of inclinations through the type of resonance described here is very unlikely to happen in a system of two planets migrating in a disc. Résumé Depuis la découverte de la première planète orbitant une étoile de la séquence principale autre que le Soleil en 1995, ce champ de recherche a connu une crois- sance vertigineuse, tant au niveau des observations, que des modèles théoriques développés en parallèle. Même si la formation et l’évolution des systèmes planétaires restent encore mal comprises dans leur globalité, Il est à peu près certain que les planètes se forment dans des disques protoplanétaires et inter- agissent avec ces derniers durant la phase primordiale de leur évolution. Cette thèse s’attache à décrire certains aspects de ces interactions. Parmi les problèmes soulevés par les nombreuses observations d’exoplanètes, on peut citer l’existence des Jupiter chaudes, géantes gazeuses dont la révolu- tion autour de leur étoile s’effectue en quelques jours à peine.
Recommended publications
  • Astrodynamics
    Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities
    [Show full text]
  • Seismic Wavefield Polarization
    E3S Web of Conferences 12, 06001 (2016) DOI: 10.1051/e3sconf/20161206001 i-DUST 2016 Seismic wavefield polarization – Part I: Describing an elliptical polarized motion, a review of motivations and methods Claire Labonne1,2, a , Olivier Sèbe1, and Stéphane Gaffet2,3 1 CEA, DAM, DIF, 91297 Arpajon, France 2 Univ. Nice Sophia Antipolis, CNRS, IRD, Observatoire de la côte d’Azur, Géoazur UMR 7329, Valbonne, France 3 LSBB UMS 3538, Rustrel, France Abstract. The seismic wavefield can be approximated by a sum of elliptical polarized motions in 3D space, including the extreme linear and circular motions. Each elliptical motion need to be described: the characterization of the ellipse flattening, the orientation of the ellipse, circle or line in the 3D space, and the direction of rotation in case of non-purely linear motion. Numerous fields of study share the need of describing an elliptical motion. A review of advantages and drawbacks of each convention from electromagnetism, astrophysics and focal mechanism is done in order to thereafter define a set of parameters to fully characterize the seismic wavefield polarization. 1. Introduction The seismic wavefield is a combination of polarized waves in the three-dimensional (3D) space. The polarization is a characteristic of the wave related to the particle motion. The displacement of particles effected by elastic waves shows a particular polarization shape and a preferred direction of polarization depending on the source properties (location and characteristics) and the Earth structure. P-waves, for example, generate linear particle motion in the direction of propagation; the polarization is thus called linear. Rayleigh waves, on the other hand, generate, at the surface of the Earth, retrograde elliptical particle motion.
    [Show full text]
  • Chapter 7 Mapping The
    BASICS OF RADIO ASTRONOMY Chapter 7 Mapping the Sky Objectives: When you have completed this chapter, you will be able to describe the terrestrial coordinate system; define and describe the relationship among the terms com- monly used in the “horizon” coordinate system, the “equatorial” coordinate system, the “ecliptic” coordinate system, and the “galactic” coordinate system; and describe the difference between an azimuth-elevation antenna and hour angle-declination antenna. In order to explore the universe, coordinates must be developed to consistently identify the locations of the observer and of the objects being observed in the sky. Because space is observed from Earth, Earth’s coordinate system must be established before space can be mapped. Earth rotates on its axis daily and revolves around the sun annually. These two facts have greatly complicated the history of observing space. However, once known, accu- rate maps of Earth could be made using stars as reference points, since most of the stars’ angular movements in relationship to each other are not readily noticeable during a human lifetime. Although the stars do move with respect to each other, this movement is observable for only a few close stars, using instruments and techniques of great precision and sensitivity. Earth’s Coordinate System A great circle is an imaginary circle on the surface of a sphere whose center is at the center of the sphere. The equator is a great circle. Great circles that pass through both the north and south poles are called meridians, or lines of longitude. For any point on the surface of Earth a meridian can be defined.
    [Show full text]
  • Up, Up, and Away by James J
    www.astrosociety.org/uitc No. 34 - Spring 1996 © 1996, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. Up, Up, and Away by James J. Secosky, Bloomfield Central School and George Musser, Astronomical Society of the Pacific Want to take a tour of space? Then just flip around the channels on cable TV. Weather Channel forecasts, CNN newscasts, ESPN sportscasts: They all depend on satellites in Earth orbit. Or call your friends on Mauritius, Madagascar, or Maui: A satellite will relay your voice. Worried about the ozone hole over Antarctica or mass graves in Bosnia? Orbital outposts are keeping watch. The challenge these days is finding something that doesn't involve satellites in one way or other. And satellites are just one perk of the Space Age. Farther afield, robotic space probes have examined all the planets except Pluto, leading to a revolution in the Earth sciences -- from studies of plate tectonics to models of global warming -- now that scientists can compare our world to its planetary siblings. Over 300 people from 26 countries have gone into space, including the 24 astronauts who went on or near the Moon. Who knows how many will go in the next hundred years? In short, space travel has become a part of our lives. But what goes on behind the scenes? It turns out that satellites and spaceships depend on some of the most basic concepts of physics. So space travel isn't just fun to think about; it is a firm grounding in many of the principles that govern our world and our universe.
    [Show full text]
  • Positioning: Drift Orbit and Station Acquisition
    Orbits Supplement GEOSTATIONARY ORBIT PERTURBATIONS INFLUENCE OF ASPHERICITY OF THE EARTH: The gravitational potential of the Earth is no longer µ/r, but varies with longitude. A tangential acceleration is created, depending on the longitudinal location of the satellite, with four points of stable equilibrium: two stable equilibrium points (L 75° E, 105° W) two unstable equilibrium points ( 15° W, 162° E) This tangential acceleration causes a drift of the satellite longitude. Longitudinal drift d'/dt in terms of the longitude about a point of stable equilibrium expresses as: (d/dt)2 - k cos 2 = constant Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF EARTH ASPHERICITY VARIATION IN THE LONGITUDINAL ACCELERATION OF A GEOSTATIONARY SATELLITE: Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN & MOON ATTRACTION Gravitational attraction by the sun and moon causes the satellite orbital inclination to change with time. The evolution of the inclination vector is mainly a combination of variations: period 13.66 days with 0.0035° amplitude period 182.65 days with 0.023° amplitude long term drift The long term drift is given by: -4 dix/dt = H = (-3.6 sin M) 10 ° /day -4 diy/dt = K = (23.4 +.2.7 cos M) 10 °/day where M is the moon ascending node longitude: M = 12.111 -0.052954 T (T: days from 1/1/1950) 2 2 2 2 cos d = H / (H + K ); i/t = (H + K ) Depending on time within the 18 year period of M d varies from 81.1° to 98.9° i/t varies from 0.75°/year to 0.95°/year Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN RADIATION PRESSURE Due to sun radiation pressure, eccentricity arises: EFFECT OF NON-ZERO ECCENTRICITY L = difference between longitude of geostationary satellite and geosynchronous satellite (24 hour period orbit with e0) With non-zero eccentricity the satellite track undergoes a periodic motion about the subsatellite point at perigee.
    [Show full text]
  • Orbital Inclination and Eccentricity Oscillations in Our Solar
    Long term orbital inclination and eccentricity oscillations of the planets in our solar system Abstract The orbits of the planets in our solar system are not in the same plane, therefore natural torques stemming from Newton’s gravitational forces exist to pull them all back to the same plane. This causes the inclinations of the planet orbits to oscillate with potentially long periods and very small damping, because the friction in space is very small. Orbital inclination changes are known for some planets in terms of current rates of change, but the oscillation periods are not well published. They can however be predicted with proper dynamic simulations of the solar system. A three-dimensional dynamic simulation was developed for our solar system capable of handling 12 objects, where all objects affect all other objects. Each object was considered to be a point mass which proved to be an adequate approximation for this study. Initial orbital radii, eccentricities and speeds were set according to known values. The validity of the simulation was demonstrated in terms of short term characteristics such as sidereal periods of planets as well as long term characteristics such as the orbital inclination and eccentricity oscillation periods of Jupiter and Saturn. A significantly more accurate result, than given on approximate analytical grounds in a well-known solar system dynamics textbook, was found for the latter period. Empirical formulas were developed from the simulation results for both these periods for three-object solar type systems. They are very accurate for the Sun, Jupiter and Saturn as well as for some other comparable systems.
    [Show full text]
  • A Decade of Growth
    A publication of The Orbital Debris Program Office NASA Johnson Space Center Houston, Texas 77058 October 2000 Volume 5, Issue 4. NEWS A Decade of Growth P. Anz-Meador and Globalstar commercial communication of the population. For example, consider the This article will examine changes in the spacecraft constellations, respectively. Given peak between 840-850 km (Figure 1’s peak low Earth orbit (LEO) environment over the the uncertain future of the Iridium constellation, “B”). This volume is populated by the period 1990-2000. Two US Space Surveillance the spike between 770 and 780 km may change Commonwealth of Independent State’s Tselina- Network (SSN) catalogs form the basis of our drastically or even disappear over the next 2 spacecraft constellation, several US Defense comparison. Included are all unclassified several years. Less prominent is the Orbcomm Meteorological Support Program (DMSP) cataloged and uncataloged objects in both data commercial constellation, with a primary spacecraft, and their associated rocket bodies sets, but objects whose epoch times are “older” concentration between 810 and 820 km altitude and debris. While the region is traversed by than 30 days were excluded from further (peak “A” in Figure 1). Smaller series of many other space objects, including debris, consideration. Moreover, the components of satellites may also result in local enhancements these satellites and rocket boosters are in near the Mir orbital station are 3.0E-08 circular orbits. Thus, any “collectivized” into one group of spacecraft whose object so as not to depict a orbits are tightly January 1990 plethora of independently- 2.5E-08 maintained are capable of orbiting objects at Mir’s A January 2000 producing a spike similar altitude; the International B to that observed with the Space Station (ISS) is 2.0E-08 commercial constellations.
    [Show full text]
  • Sun-Synchronous Satellites
    Topic: Sun-synchronous Satellites Course: Remote Sensing and GIS (CC-11) M.A. Geography (Sem.-3) By Dr. Md. Nazim Professor, Department of Geography Patna College, Patna University Lecture-3 Concept: Orbits and their Types: Any object that moves around the Earth has an orbit. An orbit is the path that a satellite follows as it revolves round the Earth. The plane in which a satellite always moves is called the orbital plane and the time taken for completing one orbit is called orbital period. Orbit is defined by the following three factors: 1. Shape of the orbit, which can be either circular or elliptical depending upon the eccentricity that gives the shape of the orbit, 2. Altitude of the orbit which remains constant for a circular orbit but changes continuously for an elliptical orbit, and 3. Angle that an orbital plane makes with the equator. Depending upon the angle between the orbital plane and equator, orbits can be categorised into three types - equatorial, inclined and polar orbits. Different orbits serve different purposes. Each has its own advantages and disadvantages. There are several types of orbits: 1. Polar 2. Sunsynchronous and 3. Geosynchronous Field of View (FOV) is the total view angle of the camera, which defines the swath. When a satellite revolves around the Earth, the sensor observes a certain portion of the Earth’s surface. Swath or swath width is the area (strip of land of Earth surface) which a sensor observes during its orbital motion. Swaths vary from one sensor to another but are generally higher for space borne sensors (ranging between tens and hundreds of kilometers wide) in comparison to airborne sensors.
    [Show full text]
  • PVO Spinning Spacecraft Coordinates (PVO SSCC)
    PVO Spinning Spacecraft coordinates (PVO_SSCC): Spacecraft coordinates (Xs, Ys, Zs) are used to describe the physical mounting locations of the Sun sensors, the star sensor, and the experiment sensors. The spacecraft coordinate system is centered at the spacecraft center of mass and rotates with the spacecraft. The Xs-Ys plane is parallel to the plane of the spacecraft equipment shelf. The positive Zs axis points out the top of the spacecraft. The positive Ys axis coincides with the split line of the equipment shelf. With no spacecraft wobble or nutation, the spacecraft positive Zs axis will coincide with the spin axis and the equipment shelf will thus be perpendicular to the spin axis. PVO Inertial Spacecraft Coordinates (PVO_ISCC): The inertial spacecraft coordinate system for the PVO spacecraft is same coordinate system as the spinning spacecraft coordinate system (SSCC) except that it does not spin with the spacecraft. Thus the Spin axis or positive Z axis direction is the same in both systems and it points out the top (toward the BAFTA assembly) of the spacecraft. The axes in the spin plane are defined as follows: The X-Z plane is defined to contain the spacecraft-Sun vector with the positive X direction being sunward, and the coordinate system is defined to be right-handed. The transformation from SSCC to ISCC is: _ _ | cos(p) -sin(p) 0 | | sin(p) cos(p) 0 | | 0 0 1 | _ _ where p is the spin phase angle measured in ISSC coordinates. Venus Solar Orbital Coordinates (VSO): The VSO coordinate system is a Cartesian coordinate system centered on Venus.
    [Show full text]
  • Satellite Orbits
    2 Satellite Orbits Learning Objectives After completing this chapter you will be able to understand: y Kepler’s laws. y Determination of orbital parameters. y Eclipse of satellite. y Effects of orbital perturbations on communications. y Launching of satellites into the geostationary orbit. Chapter-02.indd 25 9/3/2009 11:09:29 AM Satellite Orbits 27 The closer the satellite to the earth, the stronger is the effect of earth’s gravitational pull. So, in low orbits, the satellite must travel faster to avoid falling back to the earth. The farther the satellite from the earth, the lower is its orbital speed. The lowest practical earth orbit is approximately 168.3 km. At this height, the satellite speed must be approximately 29,452.5 km/hr in order to stay in orbit. With this speed, the satellite orbits the earth in approximately one and half hours. Communication satellites are usually much farther from the earth, for example, 36,000 km. At this distance, a satellite need to travel only about 11,444.4 km/hr in order to stay in the orbit with a rotation speed of 24 hours. A satellite revolves in an orbit that forms a plane, which passes through the centre of gravity of the earth or geocenter. The direction of the satellite’s revolution may be either in same the direction as earth’s rotation or against the direction of the earth’s rotation. In the former case, the orbit is said to be posigrade and in the latter case, the retrograde. Most orbits are posigrade.
    [Show full text]
  • Analysis of Space Elevator Technology
    Analysis of Space Elevator Technology SPRING 2014, ASEN 5053 FINAL PROJECT TYSON SPARKS Contents Figures .......................................................................................................................................................................... 1 Tables ............................................................................................................................................................................ 1 Analysis of Space Elevator Technology ........................................................................................................................ 2 Nomenclature ................................................................................................................................................................ 2 I. Introduction and Theory ....................................................................................................................................... 2 A. Modern Elevator Concept ................................................................................................................................. 2 B. Climber Concept ............................................................................................................................................... 3 C. Base Station Concept ........................................................................................................................................ 4 D. Space Elevator Astrodynamics ........................................................................................................................
    [Show full text]
  • A Delta-V Map of the Known Main Belt Asteroids
    Acta Astronautica 146 (2018) 73–82 Contents lists available at ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro A Delta-V map of the known Main Belt Asteroids Anthony Taylor *, Jonathan C. McDowell, Martin Elvis Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA, USA ARTICLE INFO ABSTRACT Keywords: With the lowered costs of rocket technology and the commercialization of the space industry, asteroid mining is Asteroid mining becoming both feasible and potentially profitable. Although the first targets for mining will be the most accessible Main belt near Earth objects (NEOs), the Main Belt contains 106 times more material by mass. The large scale expansion of NEO this new asteroid mining industry is contingent on being able to rendezvous with Main Belt asteroids (MBAs), and Delta-v so on the velocity change required of mining spacecraft (delta-v). This paper develops two different flight burn Shoemaker-Helin schemes, both starting from Low Earth Orbit (LEO) and ending with a successful MBA rendezvous. These methods are then applied to the 700,000 asteroids in the Minor Planet Center (MPC) database with well-determined orbits to find low delta-v mining targets among the MBAs. There are 3986 potential MBA targets with a delta- v < 8kmsÀ1, but the distribution is steep and reduces to just 4 with delta-v < 7kms-1. The two burn methods are compared and the orbital parameters of low delta-v MBAs are explored. 1. Introduction [2]. A running tabulation of the accessibility of NEOs is maintained on- line by Lance Benner3 and identifies 65 NEOs with delta-v< 4:5kms-1.A For decades, asteroid mining and exploration has been largely dis- separate database based on intensive numerical trajectory calculations is missed as infeasible and unprofitable.
    [Show full text]