Enhancing Terminal Deoxynucleotidyl Transferase Activity on Substrates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Mutation in DNA Polymerase Α Rescues WEE1KO Sensitivity to HU
International Journal of Molecular Sciences Article A Mutation in DNA Polymerase α Rescues WEE1KO Sensitivity to HU Thomas Eekhout 1,2 , José Antonio Pedroza-Garcia 1,2 , Pooneh Kalhorzadeh 1,2, Geert De Jaeger 1,2 and Lieven De Veylder 1,2,* 1 Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; [email protected] (T.E.); [email protected] (J.A.P.-G.); [email protected] (P.K.); [email protected] (G.D.J.) 2 Center for Plant Systems Biology, VIB, 9052 Gent, Belgium * Correspondence: [email protected] Abstract: During DNA replication, the WEE1 kinase is responsible for safeguarding genomic integrity by phosphorylating and thus inhibiting cyclin-dependent kinases (CDKs), which are the driving force of the cell cycle. Consequentially, wee1 mutant plants fail to respond properly to problems arising during DNA replication and are hypersensitive to replication stress. Here, we report the identification of the pola-2 mutant, mutated in the catalytic subunit of DNA polymerase α, as a suppressor mutant of wee1. The mutated protein appears to be less stable, causing a loss of interaction with its subunits and resulting in a prolonged S-phase. Keywords: replication stress; DNA damage; cell cycle checkpoint Citation: Eekhout, T.; Pedroza- 1. Introduction Garcia, J.A.; Kalhorzadeh, P.; De Jaeger, G.; De Veylder, L. A Mutation DNA replication is a highly complex process that ensures the chromosomes are in DNA Polymerase α Rescues correctly replicated to be passed onto the daughter cells during mitosis. Replication starts WEE1KO Sensitivity to HU. Int. -
Hereditary Galactokinase Deficiency J
Arch Dis Child: first published as 10.1136/adc.46.248.465 on 1 August 1971. Downloaded from Alrchives of Disease in Childhood, 1971, 46, 465. Hereditary Galactokinase Deficiency J. G. H. COOK, N. A. DON, and TREVOR P. MANN From the Royal Alexandra Hospital for Sick Children, Brighton, Sussex Cook, J. G. H., Don, N. A., and Mann, T. P. (1971). Archives of Disease in Childhood, 46, 465. Hereditary galactokinase deficiency. A baby with galactokinase deficiency, a recessive inborn error of galactose metabolism, is des- cribed. The case is exceptional in that there was no evidence of gypsy blood in the family concerned. The investigation of neonatal hyperbilirubinaemia led to the discovery of galactosuria. As noted by others, the paucity of presenting features makes early diagnosis difficult, and detection by biochemical screening seems desirable. Cataract formation, of early onset, appears to be the only severe persisting complication and may be due to the biosynthesis and accumulation of galactitol in the lens. Ophthalmic surgeons need to be aware of this enzyme defect, because with early diagnosis and dietary treatment these lens changes should be reversible. Galactokinase catalyses the conversion of galac- and galactose diabetes had been made in this tose to galactose-l-phosphate, the first of three patient (Fanconi, 1933). In adulthood he was steps in the pathway by which galactose is converted found to have glycosuria as well as galactosuria, and copyright. to glucose (Fig.). an unexpectedly high level of urinary galactitol was detected. He was of average intelligence, and his handicaps, apart from poor vision, appeared to be (1) Galactose Gackinase Galactose-I-phosphate due to neurofibromatosis. -
Induction of Uridyl Transferase Mrna-And Dependency on GAL4 Gene Function (In Vitro Translation/Immunoprecipitation/GAL Gene Cluster/Positive Regulation) JAMES E
Proc. Nati. Acad. Sci. USA Vol. 75, No. 6, pp. 2878-2882, June 1978 Genetics Regulation of the galactose pathway in Saccharomyces cerevisiae: Induction of uridyl transferase mRNA-and dependency on GAL4 gene function (in vitro translation/immunoprecipitation/GAL gene cluster/positive regulation) JAMES E. HOPPER*, JAMES R. BROACHt, AND LUCY B. ROWE* * Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02154; and t Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Communicated by Norman H. Giles, April 10,1978 ABSTRACT In Saccharomyces cerevisiae, utilization of Genetic control of the inducible galactose pathway enzymes galactose requires four inducible enzyme activities. Three of involves the four structural genes GALI, GAL10, GAL7, and these activities (galactose-l-phosphate uridyl transferase, EC genes, GAL4, GAL81 (c), GAL80 2.7.7.10; uridine diphosphogalactose 4-epimerase, EC 5.1.3.2; GAL2 and four regulatory and galactokinase, EC 2.7.1.6) are specified by three tightly (i), and GALS.* Mutations in GALl, GAL10, GAL7, and GAL2 linked genes (GAL7, GALlO, and GALI, respectively) on chro- affect the individual appearance of galactokinase, epimerase, mosome II, whereas the fourth, galactose transport, is specified transferase, and galactose transport activities, respectively (6). by a gene (GALS) located on chromosome XIL Although classic Mutations defining the GALl, GAL10, and GAL7 genes have genetic analysis has revealed both positive and negative regu- invariably been recessive, and they map in three tightly linked latory genes that coordinately affect the appearance of ail four complementation groups near the centromere of chromosome enzyme activities, neither the basic events leading to the ap- pearance of enzyme activities nor the roles of the regulatory II (6, 9, 10). -
DNA Polymerase V Activity Is Autoregulated by a Novel Intrinsic DNA-Dependent
1 2 DNA polymerase V activity is autoregulated by a novel intrinsic DNA-dependent 3 ATPase 4 Aysen L. Erdem1, Malgorzata Jaszczur1, Jeffrey G. Bertram1, Roger Woodgate2, Michael M. Cox3 & 5 Myron F. Goodman1 6 1Departments of Biological Sciences and Chemistry, University of Southern California, University 7 Park, Los Angeles, California 90089-2910, USA. 2Laboratory of Genomic Integrity, National 8 Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 9 Maryland 20892-3371, USA. 3Department of Biochemistry, University of Wisconsin-Madison, 10 Madison, Wisconsin 53706, USA. 11 12 Escherichia coli DNA polymerase V (pol V), a heterotrimeric complex composed of UmuD′2C, 13 is marginally active. ATP and RecA play essential roles in the activation of pol V for DNA 14 synthesis including translesion synthesis (TLS). We have established three features of the roles 15 of ATP and RecA. 1) RecA-activated DNA polymerase V (pol V Mut), is a DNA-dependent 16 ATPase; 2) bound ATP is required for DNA synthesis; 3) pol V Mut function is regulated by 17 ATP, with ATP required to bind primer/template (p/t) DNA and ATP hydrolysis triggering 18 dissociation from the DNA. Pol V Mut formed with an ATPase-deficient RecA E38K/K72R 19 mutant hydrolyzes ATP rapidly, establishing the DNA-dependent ATPase as an intrinsic 20 property of pol V Mut distinct from the ATP hydrolytic activity of RecA when bound to 21 single-stranded (ss)DNA as a nucleoprotein filament (RecA*). No similar ATPase activity or 22 autoregulatory mechanism has previously been found for a DNA polymerase. -
Role of Glucokinase and Glucose-6 Phosphatase in the Nutritional Regulation of Endogenous Glucose Production G Mithieux
Role of glucokinase and glucose-6 phosphatase in the nutritional regulation of endogenous glucose production G Mithieux To cite this version: G Mithieux. Role of glucokinase and glucose-6 phosphatase in the nutritional regulation of endogenous glucose production. Reproduction Nutrition Development, EDP Sciences, 1996, 36 (4), pp.357-362. hal-00899845 HAL Id: hal-00899845 https://hal.archives-ouvertes.fr/hal-00899845 Submitted on 1 Jan 1996 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Review Role of glucokinase and glucose-6 phosphatase in the nutritional regulation of endogenous glucose production G Mithieux Unité 197 de l’Inserm, faculté de médecine René-Laënnec, rue Guillaume-Paradin, 69372 Lyon cedex 08, France (Received 29 November 1995; accepted 6 May 1996) Summary ― Two specific enzymes, glucokinase (GK) and glucose-6 phosphatase (Gic6Pase) enable the liver to play a crucial role in glucose homeostasis. The activity of Glc6Pase, which enables the liver to produce glucose, is increased during short-term fasting, in agreement with the enhancement of liver gluconeogenesis. During long-term fasting, Glc6Pase activity is increased in the kidney, which con- tributes significantly to the glucose supply at that time. -
Terminal Deoxynucleotidyl Transferase Protocol
Certificate of Analysis Terminal Deoxynucleotidyl Transferase, Recombinant: Part No. Size (units) Part# 9PIM187 M828A 300 Revised 4/18 M828C 1,500 Description: This enzyme catalyzes the repetitive addition of mononucleotides to the terminal 3´-OH of a DNA initiator accompanied by the release of inorganic phosphate. Single-stranded DNA is preferred as an initiator. Polymerization is not template-dependent. The addition of 1mM Co2+ (as CoCl2) in the reaction buffer allows the tailing of 3´-ends with varying degrees of efficiency. Enzyme Storage Buffer: Terminal Deoxynucleotidyl Transferase, Recombinant, is supplied in 50mM potassium phosphate *AF9PIM187 0418M187* (pH 6.4), 100mM NaCl, 1mM β-mercaptoethanol, 0.1% Tween® 20 and 50% glycerol. AF9PIM187 0418M187 Source: Recombinant E. coli strain. Storage Conditions: See the Product Information Label for storage recommendations. Avoid multiple freeze-thaw cycles and exposure to frequent temperature changes. See the expiration date on the Product Information Label. Terminal Transferase 5X Buffer (M189A): 500mM cacodylate buffer (pH 6.8), 5mM CoCl2 and 0.5mM DTT. Unit Definition: One unit of activity catalyzes the transfer of 0.5 picomoles of ddATP to oligo(dT)16 per minute at 37°C in 1X Terminal Transferase Buffer. The resulting oligo(dT)17 is measured by HPLC. Usage Notes for 3´-End Labeling Reaction 1. Not all dNTPs are tailed with the same efficiency. Actual concentration of dNTP will depend on the individual application. 2. The provided buffer (5X) is to be used in the tailing reaction. The recommended reaction conditions are as described under Quality Control Assays, 3´-End Labeling Reaction, and in Section III overleaf. -
Human Glucokinase Gene
Proc. Nati. Acad. Sci. USA Vol. 89, pp. 7698-7702, August 1992 Genetics Human glucokinase gene: Isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus (glucose/metabolism/phosphorylation/structure4unctlon/chromosome 7) M. STOFFEL*, PH. FROGUELt, J. TAKEDA*, H. ZOUALItt, N. VIONNET*, S. NISHI*§, I. T. WEBER¶, R. W. HARRISON¶, S. J. PILKISII, S. LESAGEtt, M. VAXILLAIREtt, G. VELHOtt, F. SUNtt, F. lIRSt, PH. PASSAt, D. COHENt, AND G. I. BELL*"** *Howard Hughes Medical Institute, and Departments of Biochemistry and Molecular Biology, and of Medicine, The University of Chicago, 5841 South Maryland Avenue, MC1028, Chicago, IL 60637; §Second Division of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-32, Japan; IDepartment of Pharmacology, Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107; IlDepartment of Physiology and Biophysics, State University of New York, Stony Brook, NY 11794; tCentre d'Etude du Polymorphisme Humain, 27 rue Juliette Dodu, and Service d'Endocrinologie, H6pital Saint-Louis, 75010 Paris, France; and tG6ndthon, 1 rue de l'Internationale, 91000 Evry, France Communicated by Jean Dausset, May 28, 1992 ABSTRACT DNA polymorphisms in the glucokinase gene by maintaining a gradient for glucose transport into these cells have recently been shown to be tightly linked to early-onset thereby regulating hepatic glucose disposal. In (3 cells, glu- non-insulin-dependent diabetes mellitus in "80% of French cokinase is believed to be part of the glucose-sensing mech- families with this form of diabetes. We previously identified a anism and to be involved in the regulation ofinsulin secretion. -
Arthur Kornberg Discovered (The First) DNA Polymerase Four
Arthur Kornberg discovered (the first) DNA polymerase Using an “in vitro” system for DNA polymerase activity: 1. Grow E. coli 2. Break open cells 3. Prepare soluble extract 4. Fractionate extract to resolve different proteins from each other; repeat; repeat 5. Search for DNA polymerase activity using an biochemical assay: incorporate radioactive building blocks into DNA chains Four requirements of DNA-templated (DNA-dependent) DNA polymerases • single-stranded template • deoxyribonucleotides with 5’ triphosphate (dNTPs) • magnesium ions • annealed primer with 3’ OH Synthesis ONLY occurs in the 5’-3’ direction Fig 4-1 E. coli DNA polymerase I 5’-3’ polymerase activity Primer has a 3’-OH Incoming dNTP has a 5’ triphosphate Pyrophosphate (PP) is lost when dNMP adds to the chain E. coli DNA polymerase I: 3 separable enzyme activities in 3 protein domains 5’-3’ polymerase + 3’-5’ exonuclease = Klenow fragment N C 5’-3’ exonuclease Fig 4-3 E. coli DNA polymerase I 3’-5’ exonuclease Opposite polarity compared to polymerase: polymerase activity must stop to allow 3’-5’ exonuclease activity No dNTP can be re-made in reversed 3’-5’ direction: dNMP released by hydrolysis of phosphodiester backboneFig 4-4 Proof-reading (editing) of misincorporated 3’ dNMP by the 3’-5’ exonuclease Fidelity is accuracy of template-cognate dNTP selection. It depends on the polymerase active site structure and the balance of competing polymerase and exonuclease activities. A mismatch disfavors extension and favors the exonuclease.Fig 4-5 Superimposed structure of the Klenow fragment of DNA pol I with two different DNAs “Fingers” “Thumb” “Palm” red/orange helix: 3’ in red is elongating blue/cyan helix: 3’ in blue is getting edited Fig 4-6 E. -
Commentary Tracking Telomerase
Cell, Vol. S116, S83–S86, January 23, 2004 Copyright 2004 by Cell Press Tracking Telomerase Commentary Carol W. Greider1 and Elizabeth H. Blackburn2,* neous size of the fragments in gel electrophoresis was 1Department of Molecular Biology and Genetics the first suggestion of unusual behavior of telomeric Johns Hopkins University School of Medicine DNA. A similar telomere repeat sequence, CCCCAAAA 725 North Wolfe Street was soon found on natural chromosome ends in other Baltimore, Maryland 21205 ciliates (Klobutcher et al., 1981). Another very unusual 2 Department of Biochemistry and Biophysics finding regarding these repeated sequences came in University of California, San Francisco 1982: David Prescott found that these repeated sequences Box 2200 are added de novo to ciliate chromosomes during the San Francisco, California 94143 developmental process of chromosome fragmentation (Boswell et al., 1982). This was the first hint that a special mechanism may exist to add telomere repeats. The Telomere Problem The next clue came from work in yeast. In a remarkable The paper reprinted here, the initial identification of telo- example of functional conservation across phylogenetic merase, resulted from our testing a very specific hypoth- kingdoms, Liz and Jack Szostak (Szostak and Black- esis: that an enzyme existed, then undiscovered, that burn, 1982) showed that the Tetrahymena telomeric se- could add telomeric repeats onto chromosome ends. quences could replace the yeast telomere entirely. A We based this hypothesis on several unexplained facts mini-chromosome with these foreign telomeres main- and creative questions being asked by people who were tained its linear structure and replicated and segregated trying to understand those facts. -
Processivity of DNA Polymerases: Two Mechanisms, One Goal Zvi Kelman1*, Jerard Hurwitz1 and Mike O’Donnell2
Minireview 121 Processivity of DNA polymerases: two mechanisms, one goal Zvi Kelman1*, Jerard Hurwitz1 and Mike O’Donnell2 Replicative DNA polymerases are highly processive Processive DNA synthesis by cellular replicases and the enzymes that polymerize thousands of nucleotides without bacteriophage T4 replicase dissociating from the DNA template. The recently Until recently, the only mechanism for high processivity determined structure of the Escherichia coli bacteriophage that was understood in detail was that utilized by cellular T7 DNA polymerase suggests a unique mechanism that replicases and the replicase of bacteriophage T4. This underlies processivity, and this mechanism may generalize mechanism involves a ring-shaped protein called a ‘DNA to other replicative polymerases. sliding clamp’ that encircles the DNA and tethers the polymerase catalytic unit to the DNA [3,4]. The three- Addresses: 1Department of Molecular Biology, Memorial Sloan- dimensional structures of several sliding clamps have been Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, 2 determined: the eukaryotic proliferating cell nuclear USA and Laboratory of DNA Replication, Howard Hughes Medical β Institute, The Rockefeller University, 1230 York Avenue, New York, NY antigen (PCNA) [5,6]; the subunit of the prokaryotic 10021, USA. DNA polymerase III [7]; and the bacteriophage T4 gene 45 protein (gp45) (J Kuriyan, personal communication) *Corresponding author. (Figure 1). The overall structure of these clamps is very E-mail: [email protected] similar; the PCNA, β subunit and gp45 rings are super- Structure 15 February 1998, 6:121–125 imposable [8]. Each ring has similar dimensions and a http://biomednet.com/elecref/0969212600600121 central cavity large enough to accommodate duplex DNA (Figure 1). -
Original Article from Clinicogenetic Studies of Maturity-Onset Diabetes of the Young to Unraveling Complex Mechanisms of Glucokinase Regulation Jørn V
Original Article From Clinicogenetic Studies of Maturity-Onset Diabetes of the Young to Unraveling Complex Mechanisms of Glucokinase Regulation Jørn V. Sagen,1 Stella Odili,2 Lise Bjørkhaug,1,3 Dorothy Zelent,2 Carol Buettger,2 Jae Kwagh,4 Charles Stanley,4 Knut Dahl-Jørgensen,5 Carine de Beaufort,6 Graeme I. Bell,7 Yi Han,8 Joseph Grimsby,8 Rebecca Taub,8 Anders Molven,9 Oddmund Søvik,1 Pål R. Njølstad,1,3,10 and Franz M. Matschinsky2 Glucokinase functions as a glucose sensor in pancreatic of the young, type 2. Furthermore, based on data obtained -cells and regulates hepatic glucose metabolism. A total of on G264S, we propose that other and still unknown mech- 83 probands were referred for a diagnostic screening of anisms participate in the regulation of glucokinase. mutations in the glucokinase (GCK) gene. We found 11 Diabetes 55:1713–1722, 2006 different mutations (V62A, G72R, L146R, A208T, M210K, Y215X, S263P, E339G, R377C, S453L, and IVS5 ؉ 1G>C) in 14 probands. Functional characterization of recombinant glutathionyl S-transferase–G72R glucokinase showed lucokinase phosphorylates glucose to glucose- slightly increased activity, whereas S263P and G264S had near-normal activity. The other point mutations were inac- 6-phosphate in the first step of glycolysis. Ow- tivating. S263P showed marked thermal instability, ing to its kinetic characteristics, glucokinase is whereas the stability of G72R and G264S differed only Gcapable of phosphorylating glucose over the slightly from that of wild type. G72R and M210K did not physiological range of 3–8 mmol/l. Unique kinetic charac- ϳ respond to an allosteric glucokinase activator (GKA) or teristics are low affinity for the substrate glucose (S0.5 7.5 the hepatic glucokinase regulatory protein (GKRP). -
Y-Glutamyl Transferase Neutrophiles Leucocytes, Cystinotic Human
Pediat. Res. 13: 1058-1064 (1979) Amino acid transport liver y-glutamyl transferase neutrophiles leucocytes, cystinotic human y-Glutamyl Transferase: Studies of Normal and Cystinotic Human Leukocytes, Rabbit Neutrophiles, and Rat Liver A. DESMOND PATRICK, RICHARD D. BERLIN, AND JOSEPH D. SCHULMAN Department of Chemical Pathology, Institute of Child Health, University of London, London, United Kingdom and Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut, and Section on Human Biochemical and Developmental Genetics, National Institute of Child Health and Human Development. National Institutes of Health, Bethesda, Maryland, USA Summary ing the transfer of the y-glutamyl moiety to an amino acid acceptor and the release of cysteinyl-glycine (5, 6, 17, 18, 22). Cysteinyl- Evidence has been obtained in three different cell types, by a glycine is hydrolyzed to its constituent amino acids by a peptidase, combination of biochemical and histologic approaches, that some and y-glutamyl-cyclotransferase (EC 2.3.2.4) acts on the y-gluta- y-glutamyl transferase (EC 2.3.2.2) activity is associated with myl-amino acid to liberate the amino acid and convert the gluta- lysosomes. The distribution of y-glutamyl transferase in subcellu- my1 residue to 5-oxoproline (13). A link between these reactions, lar fractions of human leukocytes and its enrichment in a postnu- and those of glutathione synthesis catalysed by y-glutamylcysteine clear granule fraction were similar to the corresponding findings synthetase (EC 6.3.2.2) and glutathione synthetase (EC 6.3.2.3), for lysosomal marker enzymes. Isopycnic centrifugation of the was provided by the discovery of 5-oxoprolinase that converts 5- postnuclear fraction showed that although the bulk of the y- oxoproline to glutamate in an ATP-dependent step (43).