Commentary Tracking Telomerase
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction of Human Telomerase Reverse Transcriptase to Normal Human Fibroblasts Enhances DNA Repair Capacity
Vol. 10, 2551–2560, April 1, 2004 Clinical Cancer Research 2551 Introduction of Human Telomerase Reverse Transcriptase to Normal Human Fibroblasts Enhances DNA Repair Capacity Ki-Hyuk Shin,1 Mo K. Kang,1 Erica Dicterow,1 INTRODUCTION Ayako Kameta,1 Marcel A. Baluda,1 and Telomerase, which consists of the catalytic protein subunit, No-Hee Park1,2 human telomerase reverse transcriptase (hTERT), the RNA component of telomerase (hTR), and several associated pro- 1School of Dentistry and 2Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California teins, has been primarily associated with maintaining the integ- rity of cellular DNA telomeres in normal cells (1, 2). Telomer- ase activity is correlated with the expression of hTERT, but not ABSTRACT with that of hTR (3, 4). Purpose: From numerous reports on proteins involved The involvement of DNA repair proteins in telomere main- in DNA repair and telomere maintenance that physically tenance has been well documented (5–8). In eukaryotic cells, associate with human telomerase reverse transcriptase nonhomologous end-joining requires a DNA ligase and the (hTERT), we inferred that hTERT/telomerase might play a DNA-activated protein kinase, which is recruited to the DNA role in DNA repair. We investigated this possibility in nor- ends by the DNA-binding protein Ku. Ku binds to hTERT mal human oral fibroblasts (NHOF) with and without ec- without the need for telomeric DNA or hTR (9), binds the topic expression of hTERT/telomerase. telomere repeat-binding proteins TRF1 (10) and TRF2 (11), and Experimental Design: To study the effect of hTERT/ is thought to regulate the access of telomerase to telomere DNA telomerase on DNA repair, we examined the mutation fre- ends (12, 13). -
Telomeres.Pdf
Telomeres Secondary article Elizabeth H Blackburn, University of California, San Francisco, California, USA Article Contents . Introduction Telomeres are specialized DNA–protein structures that occur at the ends of eukaryotic . The Replication Paradox chromosomes. A special ribonucleoprotein enzyme called telomerase is required for the . Structure of Telomeres synthesis and maintenance of telomeric DNA. Synthesis of Telomeric DNA by Telomerase . Functions of Telomeres Introduction . Telomere Homeostasis . Alternatives to Telomerase-generated Telomeric DNA Telomeres are the specialized chromosomal DNA–protein . Evolution of Telomeres and Telomerase structures that comprise the terminal regions of eukaryotic chromosomes. As discovered through studies of maize and somes. One critical part of this protective function is to fruitfly chromosomes in the 1930s, they are required to provide a means by which the linear chromosomal DNA protect and stabilize the genetic material carried by can be replicated completely, without the loss of terminal eukaryotic chromosomes. Telomeres are dynamic struc- DNA nucleotides from the 5’ end of each strand of this tures, with their terminal DNA being constantly built up DNA. This is necessary to prevent progressive loss of and degraded as dividing cells replicate their chromo- terminal DNA sequences in successive cycles of chromo- somes. One strand of the telomeric DNA is synthesized by somal replication. a specialized ribonucleoprotein reverse transcriptase called telomerase. Telomerase is required for both -
Expression of Telomerase Activity, Human Telomerase RNA, and Telomerase Reverse Transcriptase in Gastric Adenocarcinomas Jinyoung Yoo, M.D., Ph.D., Sonya Y
Expression of Telomerase Activity, Human Telomerase RNA, and Telomerase Reverse Transcriptase in Gastric Adenocarcinomas Jinyoung Yoo, M.D., Ph.D., Sonya Y. Park, Seok Jin Kang, M.D., Ph.D., Byung Kee Kim, M.D., Ph.D., Sang In Shim, M.D., Ph.D., Chang Suk Kang, M.D., Ph.D. Department of Pathology, St. Vincent’s Hospital, Catholic University, Suwon, South Korea esis of gastric cancer and may reflect, along with Telomerase is an RNA-dependent DNA polymerase enhanced hTR, the malignant potential of the tu- that synthesizes TTAGGG telomeric DNA onto chro- mor. It is noteworthy that methacarn-fixed tissue mosome ends to compensate for sequence loss dur- cannot as yet substitute for the frozen section in the ing DNA replication. It has been detected in 85–90% TRAP assay. of all primary human cancers, implicating that the telomerase seems to be reactivated in tumors and KEY WORDS: hTR, Stomach cancer, Telomerase, that such activity may play a role in the tumorigenic TERT. process. The purpose of this study was to evaluate Mod Pathol 2003;16(7):700–707 telomerase activity, human telomerase RNA (hTR), and telomerase reverse transcriptase (TERT) in Recent studies of stomach cancer have been di- stomach cancer and to determine their potential rected toward gaining a better understanding of relationships to clinicopathologic parameters. Fro- tumor biology. Molecular analysis has suggested zen and corresponding methacarn-fixed paraffin- that alterations in the structures and functions of embedded tissue samples were obtained from 51 oncogenes and tumor suppressor genes, genetic patients with gastric adenocarcinoma and analyzed instability, as well as the acquisition of cell immor- for telomerase activity by using a TRAPeze ELISA tality may be of relevance in the pathogenesis of kit. -
Hereditary Galactokinase Deficiency J
Arch Dis Child: first published as 10.1136/adc.46.248.465 on 1 August 1971. Downloaded from Alrchives of Disease in Childhood, 1971, 46, 465. Hereditary Galactokinase Deficiency J. G. H. COOK, N. A. DON, and TREVOR P. MANN From the Royal Alexandra Hospital for Sick Children, Brighton, Sussex Cook, J. G. H., Don, N. A., and Mann, T. P. (1971). Archives of Disease in Childhood, 46, 465. Hereditary galactokinase deficiency. A baby with galactokinase deficiency, a recessive inborn error of galactose metabolism, is des- cribed. The case is exceptional in that there was no evidence of gypsy blood in the family concerned. The investigation of neonatal hyperbilirubinaemia led to the discovery of galactosuria. As noted by others, the paucity of presenting features makes early diagnosis difficult, and detection by biochemical screening seems desirable. Cataract formation, of early onset, appears to be the only severe persisting complication and may be due to the biosynthesis and accumulation of galactitol in the lens. Ophthalmic surgeons need to be aware of this enzyme defect, because with early diagnosis and dietary treatment these lens changes should be reversible. Galactokinase catalyses the conversion of galac- and galactose diabetes had been made in this tose to galactose-l-phosphate, the first of three patient (Fanconi, 1933). In adulthood he was steps in the pathway by which galactose is converted found to have glycosuria as well as galactosuria, and copyright. to glucose (Fig.). an unexpectedly high level of urinary galactitol was detected. He was of average intelligence, and his handicaps, apart from poor vision, appeared to be (1) Galactose Gackinase Galactose-I-phosphate due to neurofibromatosis. -
Induction of Uridyl Transferase Mrna-And Dependency on GAL4 Gene Function (In Vitro Translation/Immunoprecipitation/GAL Gene Cluster/Positive Regulation) JAMES E
Proc. Nati. Acad. Sci. USA Vol. 75, No. 6, pp. 2878-2882, June 1978 Genetics Regulation of the galactose pathway in Saccharomyces cerevisiae: Induction of uridyl transferase mRNA-and dependency on GAL4 gene function (in vitro translation/immunoprecipitation/GAL gene cluster/positive regulation) JAMES E. HOPPER*, JAMES R. BROACHt, AND LUCY B. ROWE* * Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02154; and t Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Communicated by Norman H. Giles, April 10,1978 ABSTRACT In Saccharomyces cerevisiae, utilization of Genetic control of the inducible galactose pathway enzymes galactose requires four inducible enzyme activities. Three of involves the four structural genes GALI, GAL10, GAL7, and these activities (galactose-l-phosphate uridyl transferase, EC genes, GAL4, GAL81 (c), GAL80 2.7.7.10; uridine diphosphogalactose 4-epimerase, EC 5.1.3.2; GAL2 and four regulatory and galactokinase, EC 2.7.1.6) are specified by three tightly (i), and GALS.* Mutations in GALl, GAL10, GAL7, and GAL2 linked genes (GAL7, GALlO, and GALI, respectively) on chro- affect the individual appearance of galactokinase, epimerase, mosome II, whereas the fourth, galactose transport, is specified transferase, and galactose transport activities, respectively (6). by a gene (GALS) located on chromosome XIL Although classic Mutations defining the GALl, GAL10, and GAL7 genes have genetic analysis has revealed both positive and negative regu- invariably been recessive, and they map in three tightly linked latory genes that coordinately affect the appearance of ail four complementation groups near the centromere of chromosome enzyme activities, neither the basic events leading to the ap- pearance of enzyme activities nor the roles of the regulatory II (6, 9, 10). -
Fructose Causes Liver Damage, Polyploidy, and Dysplasia in the Setting of Short Telomeres and P53 Loss
H OH metabolites OH Article Fructose Causes Liver Damage, Polyploidy, and Dysplasia in the Setting of Short Telomeres and p53 Loss Christopher Chronowski 1, Viktor Akhanov 1, Doug Chan 2, Andre Catic 1,2 , Milton Finegold 3 and Ergün Sahin 1,4,* 1 Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] (C.C.); [email protected] (V.A.); [email protected] (A.C.) 2 Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] 3 Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA; fi[email protected] 4 Department of Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA * Correspondence: [email protected]; Tel.: +1-713-798-6685; Fax: +1-713-798-4146 Abstract: Studies in humans and model systems have established an important role of short telomeres in predisposing to liver fibrosis through pathways that are incompletely understood. Recent studies have shown that telomere dysfunction impairs cellular metabolism, but whether and how these metabolic alterations contribute to liver fibrosis is not well understood. Here, we investigated whether short telomeres change the hepatic response to metabolic stress induced by fructose, a sugar that is highly implicated in non-alcoholic fatty liver disease. We find that telomere shortening in telomerase knockout mice (TKO) imparts a pronounced susceptibility to fructose as reflected in the activation of p53, increased apoptosis, and senescence, despite lower hepatic fat accumulation in TKO mice compared to wild type mice with long telomeres. The decreased fat accumulation in TKO Citation: Chronowski, C.; Akhanov, is mediated by p53 and deletion of p53 normalizes hepatic fat content but also causes polyploidy, V.; Chan, D.; Catic, A.; Finegold, M.; Sahin, E. -
The Conserved Structure of Plant Telomerase RNA Provides the Missing Link for an Evolutionary Pathway from Ciliates to Humans
The conserved structure of plant telomerase RNA provides the missing link for an evolutionary pathway from ciliates to humans Jiarui Songa, Dhenugen Logeswaranb,1, Claudia Castillo-Gonzáleza,1, Yang Lib, Sreyashree Bosea, Behailu Birhanu Aklilua, Zeyang Mac,d, Alexander Polkhovskiya,e, Julian J.-L. Chenb,2, and Dorothy E. Shippena,2 aDepartment of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843; bSchool of Molecular Sciences, Arizona State University, Tempe, AZ 85287; cNational Maize Improvement Center of China, China Agricultural University, 100193 Beijing, China; dCollege of Agronomy and Biotechnology, China Agricultural University, 100193 Beijing, China; and eCenter of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russian Federation Edited by Thomas R. Cech, University of Colorado Boulder, Boulder, CO, and approved October 24, 2019 (received for review September 4, 2019) Telomerase is essential for maintaining telomere integrity. Although transcribed by RNA polymerase III (Pol III) (6, 7). The La-related telomerase function is widely conserved, the integral telomerase protein P65 in Tetrahymena recognizes the 3′ poly-U tail of TR RNA (TR) that provides a template for telomeric DNA synthesis has and bends the RNA to facilitate telomerase RNP assembly (8, 9). diverged dramatically. Nevertheless, TR molecules retain 2 highly In contrast, fungi maintain much larger TR molecules (900 to conserved structural domains critical for catalysis: a template- 2,400 nt) that are transcribed by RNA polymerase II (Pol II) (3). proximal pseudoknot (PK) structure and a downstream stem-loop The 3′ end maturation of fungal TRs requires components of the structure. Here we introduce the authentic TR from the plant canonical snRNA biogenesis pathway and results in RNP assembly Arabidopsis thaliana, called AtTR, identified through next-generation sequencing of RNAs copurifying with Arabidopsis TERT. -
Role of Glucokinase and Glucose-6 Phosphatase in the Nutritional Regulation of Endogenous Glucose Production G Mithieux
Role of glucokinase and glucose-6 phosphatase in the nutritional regulation of endogenous glucose production G Mithieux To cite this version: G Mithieux. Role of glucokinase and glucose-6 phosphatase in the nutritional regulation of endogenous glucose production. Reproduction Nutrition Development, EDP Sciences, 1996, 36 (4), pp.357-362. hal-00899845 HAL Id: hal-00899845 https://hal.archives-ouvertes.fr/hal-00899845 Submitted on 1 Jan 1996 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Review Role of glucokinase and glucose-6 phosphatase in the nutritional regulation of endogenous glucose production G Mithieux Unité 197 de l’Inserm, faculté de médecine René-Laënnec, rue Guillaume-Paradin, 69372 Lyon cedex 08, France (Received 29 November 1995; accepted 6 May 1996) Summary ― Two specific enzymes, glucokinase (GK) and glucose-6 phosphatase (Gic6Pase) enable the liver to play a crucial role in glucose homeostasis. The activity of Glc6Pase, which enables the liver to produce glucose, is increased during short-term fasting, in agreement with the enhancement of liver gluconeogenesis. During long-term fasting, Glc6Pase activity is increased in the kidney, which con- tributes significantly to the glucose supply at that time. -
The Biochemical Activities of the Saccharomyces Cerevisiae Pif1 Helicase Are Regulated by Its N-Terminal Domain
G C A T T A C G G C A T genes Article The Biochemical Activities of the Saccharomyces cerevisiae Pif1 Helicase Are Regulated by Its N-Terminal Domain David G. Nickens y, Christopher W. Sausen y and Matthew L. Bochman * Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA; [email protected] (D.G.N.); [email protected] (C.W.S.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 31 March 2019; Accepted: 20 May 2019; Published: 28 May 2019 Abstract: Pif1 family helicases represent a highly conserved class of enzymes involved in multiple aspects of genome maintenance. Many Pif1 helicases are multi-domain proteins, but the functions of their non-helicase domains are poorly understood. Here, we characterized how the N-terminal domain (NTD) of the Saccharomyces cerevisiae Pif1 helicase affects its functions both in vivo and in vitro. Removal of the Pif1 NTD alleviated the toxicity associated with Pif1 overexpression in yeast. Biochemically, the N-terminally truncated Pif1 (Pif1DN) retained in vitro DNA binding, DNA unwinding, and telomerase regulation activities, but these activities differed markedly from those displayed by full-length recombinant Pif1. However, Pif1DN was still able to synergize with the Hrq1 helicase to inhibit telomerase activity in vitro, similar to full-length Pif1. These data impact our understanding of Pif1 helicase evolution and the roles of these enzymes in the maintenance of genome integrity. Keywords: DNA helicase; Saccharomyces cerevisiae; Pif1; telomerase; telomere 1. Introduction DNA helicases are enzymes that couple DNA binding and ATP hydrolysis to unwind double-stranded DNA (dsDNA) into its component single strands [1]. -
Terminal Deoxynucleotidyl Transferase Protocol
Certificate of Analysis Terminal Deoxynucleotidyl Transferase, Recombinant: Part No. Size (units) Part# 9PIM187 M828A 300 Revised 4/18 M828C 1,500 Description: This enzyme catalyzes the repetitive addition of mononucleotides to the terminal 3´-OH of a DNA initiator accompanied by the release of inorganic phosphate. Single-stranded DNA is preferred as an initiator. Polymerization is not template-dependent. The addition of 1mM Co2+ (as CoCl2) in the reaction buffer allows the tailing of 3´-ends with varying degrees of efficiency. Enzyme Storage Buffer: Terminal Deoxynucleotidyl Transferase, Recombinant, is supplied in 50mM potassium phosphate *AF9PIM187 0418M187* (pH 6.4), 100mM NaCl, 1mM β-mercaptoethanol, 0.1% Tween® 20 and 50% glycerol. AF9PIM187 0418M187 Source: Recombinant E. coli strain. Storage Conditions: See the Product Information Label for storage recommendations. Avoid multiple freeze-thaw cycles and exposure to frequent temperature changes. See the expiration date on the Product Information Label. Terminal Transferase 5X Buffer (M189A): 500mM cacodylate buffer (pH 6.8), 5mM CoCl2 and 0.5mM DTT. Unit Definition: One unit of activity catalyzes the transfer of 0.5 picomoles of ddATP to oligo(dT)16 per minute at 37°C in 1X Terminal Transferase Buffer. The resulting oligo(dT)17 is measured by HPLC. Usage Notes for 3´-End Labeling Reaction 1. Not all dNTPs are tailed with the same efficiency. Actual concentration of dNTP will depend on the individual application. 2. The provided buffer (5X) is to be used in the tailing reaction. The recommended reaction conditions are as described under Quality Control Assays, 3´-End Labeling Reaction, and in Section III overleaf. -
DNA Bound by the Oxytricha Telomere Protein Is Accessible to Telomerase and Other DNA Polymerases DOROTHY E
Proc. Natl. Acad. Sci. USA Vol. 91, pp. 405-409, January 1994 Biochemistry DNA bound by the Oxytricha telomere protein is accessible to telomerase and other DNA polymerases DOROTHY E. SHIPPEN*, ELIZABETH H. BLACKBURNt, AND CAROLYN M. PRICE0§ tDepartment of Microbiology and Immunology, University of California, San Francisco, CA 94143; and tDepartment of Chemistry, University of Nebraska, Lincoln, NB 68588 Contributed by Elizabeth H. Blackburn, August 25, 1993 ABSTRACT Macronuclear telomeres in Oxytricha exist as oftelomere protein in these two populations is not altered by DNA-protein complexes in which the termini of the G-rich additional nuclease treatment. strands are bound by a 97-kDa telomere protein. During The fragment of DNA bound by the majority of telomere telome'ic DNA replication, the replication machinery must protein molecules corresponds to the most terminal 13 or 14 have access to the G-rich strand. However, given the stability nucleotides of the T4G4T4G4 overhang (4). Dimethyl sulfate of telomere protein binding, it has been unclear how this is footprinting demonstrated that the complex formed between accomplished. In this study we investigated the ability of the telomere protein and the residual DNA fragment retains several different DNA polymerases to access telomeric DNA in the same DNA-protein contacts present at native telomeres Oxytricha telomere protein-DNA complexes. Although DNA (4). Thus, these telomeric DNA-protein complexes are useful bound by the telomere protein is not degraded by micrococcal substrates for in vitro investigations of telomere structure nuclease or labeled by terminal deoxynucleotidyltrnsferase, (10). In this study we have employed the DNA-protein this DNA serves as an efficient primer for the addition of complexes to analyze the interaction of protein-bound telo- telomeric repeats by telomerase, a specialized RNA-dependent meric DNA with components of the DNA replication ma- DNA polymerase (ribonucleoprotein reverse tanscriptase), chinery. -
Telomere and Telomerase in Oncology
Cell Research (2002); 12(1):1-7 http://www.cell-research.com REVIEW Telomere and telomerase in oncology JIAO MU*, LI XIN WEI International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China ABSTRACT Shortening of the telomeric DNA at the chromosome ends is presumed to limit the lifespan of human cells and elicit a signal for the onset of cellular senescence. To continually proliferate across the senescent checkpoint, cells must restore and preserve telomere length. This can be achieved by telomerase, which has the reverse transcriptase activity. Telomerase activity is negative in human normal somatic cells but can be detected in most tumor cells. The enzyme is proposed to be an essential factor in cell immortalization and cancer progression. In this review we discuss the structure and function of telomere and telomerase and their roles in cell immortalization and oncogenesis. Simultaneously the experimental studies of telomerase assays for cancer detection and diagnosis are reviewed. Finally, we discuss the potential use of inhibitors of telomerase in anti-cancer therapy. Key words: Telomere, telomerase, cancer, telomerase assay, inhibitor. Telomere and cell replicative senescence base pairs of the end of telomeric DNA with each Telomeres, which are located at the end of round of DNA replication. Hence, the continual chromosome, are crucial to protect chromosome cycles of cell growth and division bring on progress- against degeneration, rearrangment and end to end ing telomere shortening[4]. Now it is clear that te- fusion[1]. Human telomeres are tandemly repeated lomere shortening is responsible for inducing the units of the hexanucleotide TTAGGG. The estimated senescent phenotype that results from repeated cell length of telomeric DNA varies from 2 to 20 kilo division, but the mechanism how a short telomere base pairs, depending on factors such as tissue type induces the senescence is still unknown.