A Case Study from Senegal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of Khartoum Graduate College Medical and Health Studies Board Activity
University of Khartoum Graduate College Medical and Health Studies Board Activity- guided Isolation and Structure Determination of Antioxidant and Antidiabetic Compounds from Bauhinia rufescence L. By: Wadah Jamal Ahmed Osman B. Pharm. U of K. (2003) M. Pharm. King Saud University (2012) A thesis submitted in fulfillment of the requirement for the degree of PhD in Pharmacognosy Supervisor Prof.Abdelkhaleig Muddathir, (B.Pharm.M.pharm., PhD) Professor of Pharmacognosy, U.of K. 2014 I Co-Supervisor: Prof. Dr. Hassan Elsubki Khalid B.Pharm., PhD Professor of Pharmacognosy, U.of K. II DEDICATION First of all I thank Almighty Alla for his mercy and wide guidance on a completion of my study. This thesis is dedicated to my parents, who taught me the value of education, to my beloved wife and to my beautiful kids. I express my warmest gratitude to my supervisor Professor Dr Prof. Abdelkhaleig Muddathir and Prof. Dr. Hassan Elsubki for their support, valuable advice, excellent supervision and accurate and abundant comments on the manuscripts taught me a great deal of scientific thinking and writing. In addition, I would like to express my appreciation to all members of the Pharmacognosy Department for their encouragement, support and help throughout this study. Great thanks for Professor Kamal Eldeen El Tahir (King Saud University, Riyadh) and Prof. Sayeed Ahmed (Jamia Hamdard University, India) for their co-operation and scientific support during the laboratory work. Wadah jamal Ahmed July, 2018 III Contents 1. Introduction and Literature review 1.1.Oxidative Stress and Reactive Metabolites 1 1.2. Production Of reactive metabolites 1 1.3. -
Tamarind 1990 - 2004
Tamarind 1990 - 2004 Author A. K. A. Dandjouma, C. Tchiegang, C. Kapseu and R. Ndjouenkeu Title Ricinodendron heudelotii (Bail.) Pierre ex Pax seeds treatments influence on the q Year 2004 Source title Rivista Italiana delle Sostanze Grasse Reference 81(5): 299-303 Abstract The effects of heating Ricinodendron heudelotii seeds on the quality of the oil extracted was studied. The seeds were preheated by dry and wet methods at three temperatures (50, 70 and 90 degrees C) for 10, 20, 30 and 60 minutes. The oil was extracted using the Soxhlet method with hexane. The results showed a significant change in oil acid value when heated at 90 degrees C for 60 minutes, with values of 2.76+or-0.18 for the dry method and 2.90+or-0.14 for the wet method. Heating at the same conditions yielded peroxide values of 10.70+or-0.03 for the dry method and 11.95+or-0.08 for the wet method. Author A. L. Khandare, U. Kumar P, R. G. Shanker, K. Venkaiah and N. Lakshmaiah Title Additional beneficial effect of tamarind ingestion over defluoridated water supply Year 2004 Source title Nutrition Reference 20(5): 433-436 Abstract Objective: We evaluated the effect of tamarind (Tamarindus indicus) on ingestion and whether it provides additional beneficial effects on mobilization of fluoride from the bone after children are provided defluoridated water. Methods: A randomized, diet control study was conducted in 30 subjects from a fluoride endemic area after significantly decreasing urinary fluoride excretion by supplying defluoridated water for 2 wk. -
Introduction
Introduction 1.1-General overview Flavonoids are a large group of phenolic plant constituents. To date, more than 8000 flavonoids have been identified1 , although a much smaller number is important from a dietary point of view. That flavonoids possess bioactive potential has been recognized for long, but until recently, data about their bioavailability, metabolic fate, and health effects were limited. In the 1990s, interest in these compounds truly commenced and has been growing ever since. Flavonoids are potent antioxidants in vitro, and therefore one of the main interests in thecompounds has involved protection against cardiovascular disease. Antioxidation is, however,only one of the many mechanisms through which flavonoids could exert their actions. Flavonoids are divided to several subgroups, and it is important to keep in mind that thebiological and chemical properties of flavonoids belonging to different subgroups can be quite different. Flavonoids consist of 2 benzene rings (A and B), which are connected by an oxygen-containing pyrene ring (C) as shown below: 1 Flavonoids containing a hydroxyl group in position C-3of the C ring are classified as flavonols . Beside this class flavonoids are generally classified into : flavones, chlacones, aurones, flavanones, isoflavones, dihydroflavonols, dihydrochalcones, catechins(flavans) and anthocyanins. The general structures of such classes are outlined in scheme I. Further distinction within these families is based on whether and how additional substituents (hydroxyls or methyls, methoxyls …etc) have been introduced to the different positions of the molecule.In isoflavonoids, the B ring is bound to C-3 of ring C (instead of C-2 as in flavones and flavonols). -
Biochemical Characterization and Nutritional Profile of Jam and Syrup from Saba Senegalensis Fruit in Côte D'ivoire
Journal of Food Research; Vol. 9, No. 6; 2020 ISSN 1927-0887 E-ISSN 1927-0895 Published by Canadian Center of Science and Education Biochemical Characterization and Nutritional Profile of Jam and Syrup from Saba senegalensis fruit in Côte d'Ivoire Hadja M. F. Diabagate1, Souleymane Traore1, Doudjo Soro3, Mohamed Cisse2 & Kouakou Brou1 1 Food Sciences and Technology Department, Laboratory of Nutrition and Food Safety, Nangui Abrogoua University, Abidjan, Côte d’Ivoire 2 Department of Genetic Biochemistry, Peleforo Gon Coulibaly University, Korhogo, Côte d’Ivoire 3 Laboratory of Chemical, Food and Environmental Processes Sciences, INP-HB, Yamoussokro, Côte d’Ivoire Correspondence: Hadja Mawa Fatim Diabagaté, Food Sciences and Technology Department, Laboratory of Nutrition and Food Safety, Nangui Abrogoua University, Abidjan, Côte d’Ivoire. Tel: 225-0632-4164. E-mail: [email protected] Received: September 3, 2020 Accepted: November 6, 2020 Online Published: November 25, 2020 doi:10.5539/jfr.v9n6p67 URL: https://doi.org/10.5539/jfr.v9n6p67 Abstract Saba senegalensis is a plant to the family of Apocynaceae and its fruit called Saba is mainly used as food. For better valorisation, this study aimed to evaluate the nutritional potential of jam and syrup derived of this fruit. The study was carried out on the fruit of Saba senegalensis harvested in the north of Côte d'Ivoire. After jam and syrup formulation, pH, dry matter, ash, macronutrients, vitamins, minerals, phytonutrients, anti-nutritionals factors and nutritional profile have been determined. The results showed that jam and syrup of Saba were acidic with respective pH of 3.11 ± 0.01 and 3.65 ± 0.05. -
Effect of Substrates on the Mycorrhization and Growth of Saba Senegalensis Under Semi-Controlled Conditions
American Journal of Plant Sciences, 2019, 10, 1612-1622 https://www.scirp.org/journal/ajps ISSN Online: 2158-2750 ISSN Print: 2158-2742 Effect of Substrates on the Mycorrhization and Growth of Saba senegalensis under Semi-Controlled Conditions Paul Diouf1, Sire Diedhiou1* , Dioumacor Fall2, Daouda Ngom3, Mariama Dalanda Diallo4, Ibrahima Ndoye3 1Agroforestry Department, Assane Seck University, Ziguinchor, Senegal 2Senegalese Institute of Agricultural Research, Dakar, Senegal 3Plant Biology Department, Cheikh Anta Diop University, Dakar, Senegal 4Agronomic Sciences of Aquaculture and Food Technology UFR, UGB, Saint-Louis, Sénégal How to cite this paper: Diouf, P., Died- Abstract hiou, S., Fall, D., Ngom, D., Diallo, M.D. and Ndoye, I. (2019) Effect of Substrates on the Saba senegalensis is a wild edible fruit plant species with a high economic po- Mycorrhization and Growth of Saba senega- tential which can be used to fight food insecurity in rural areas and to reduce lensis under Semi-Controlled Conditions. poverty. Domestication programs are being carried out to boost production. American Journal of Plant Sciences, 10, 1612- 1622. However, no studies have been done to determine the optimal soil properties https://doi.org/10.4236/ajps.2019.109114 for growing S. senegalensis. This study was carried out to determine the ef- fects of the physical and chemical properties of different substrates on the Received: July 8, 2019 mycorrhization and growth of S. senegalensis under semi-controlled conditions. Accepted: September 16, 2019 Published: September 19, 2019 S. senegalensis seeds were grown for 4 months in the nursery using five sub- strates: S1 (1/2 sand + 1/2 potting soil), S2 (1/3 sand + 2/3 potting soil), S3 (2/3 Copyright © 2019 by author(s) and sand + 1/3 potting soil), S4 (potting soil) and S5 (sand). -
Checklist of Plants Used As Blood Glucose Level Regulators and Phytochemical Screening of Five Selected Leguminous Species
ISSN 2521 – 0408 Available Online at www.aextj.com Agricultural Extension Journal 2019; 3(1):38-57 RESEARCH ARTICLE Checklist of Plants Used as Blood Glucose Level Regulators and Phytochemical Screening of Five Selected Leguminous Species Reham Abdo Ibrahim, Alawia Abdalla Elawad, Ahmed Mahgoub Hamad Department of Agronomy and Horticulture, Faculty of Agricultural, Technology and Fish Sciences, Al Neelain University, Khartoum, Sudan Received: 25-10-2018; Revised: 25-11-2018; Accepted: 10-02-2019 ABSTRACT In the first part of this study, literature survey of plants recorded to regulate glucose level in blood was carried out. Result of this part includes their chemical constitutes and use in the different body disorders other than diabetes. 48 plants species are collected from the available literature and presented in the form of a checklist. The second part of this work is a qualitative phytochemical screening of seeds selected from the family Fabaceae, namely: Bauhinia rufescens, Senna alexandrina, Cicer arietinum, Lupinus albus, and Trigonella foenum-graecum. The studied plants are extracted in petroleum ether, water, and ethanol and different phytochemicals are detected in the extract. Alkaloids are present in all plants in the different extract, but their concentration is high in T. foenum-graecum and B. rufescens. Glycosides are highly detected in S. alexandrina and L. albus. Flavonoid is highly detected in B. rufescens, Senna and C. arietinum, and L. albus. Phenolic compound is not detected in all extract of the five plants. Saponin is observed in all plant put highly detected in L. albus. Tannin detected in Senna alexandrina. Resins are observed in plants but highly detected in C. -
(RET) Trees from Kerala Part of Western Ghats
KFRI Research Report No. 526 ISSN 0970-8103 Population evaluation and development of propagation protocol for three Rare, Endangered and Threatened (RET) trees from Kerala part of Western Ghats By Somen C.K. Jose P.A. Sujanapal P. Sreekumar V.B. Kerala Forest Research Institute, Peechi, Thrissur, Kerala (An Institution under Kerala State Council for Science Technology and Environment, Sasthra Bhavan, Thiruvananthapuram) K F R I KFRI Research Report No. 526 ISSN: 0970-8103 Population evaluation and development of propagation protocol for three Rare, Endangered and Threatened trees from Kerala part of Western Ghats (Final Report of project KFRI 611/11) by Somen, C.K Jose, P.A. Sujanapal, P. Sreekumar, V.B. Kerala Forest Research Institute, Peechi, Thrissur, Kerala. (Research Institution under Kerala State Council for Science Technology and Environment, Sasthra K F R I Bhavan, Thiruvananthapuram) June 2017 Project Particulars 1. Title of the project : Population evaluation and development of propagation protocol for three rare endangered and threatened (RET) trees from Kerala part of Western Ghats 2.Department/ organization : Kerala Forest Research Institute, implementing the project Peechi. 3. Principal Investigator Dr. C.K. Somen Tree Physiology Department Kerala Forest Research Institute 4. Co – investigators Dr. P. A. Jose Dr. P. Sujanapal Dr. V. B. Sreekumar Kerala Forest Research Institute, Peechi, Thrissur. 5. Project Fellow R.R. Rajesh 5. Name of the funding agency Plan Grant of the Kerala Forest Research Institute, Peechi. i Contents Page No. Acknowledgements iii Abstract v 1.0 Introduction 1 1.1 Objectives 3 2.0 Methodology 2.1 Selection of sites and study area 4 2.2 Species description 4 2.3 Survey, selection of plots and sampling 8 2.4 Biodiversity indices 12 2.5. -
Primates: Hominidae) in Senegal Prefer
Journal of Threatened Taxa | www.threatenedtaxa.org | 26 December 2013 | 5(17): 5266–5272 Endangered West African Chimpanzees Pan troglodytes verus (Schwarz, 1934) (Primates: Hominidae) in Senegal prefer Pterocarpus erinaceus, a threatened tree species, to build ISSN Short Communication Short Online 0974–7907 their nests: implications for their conservation Print 0974–7893 Papa Ibnou Ndiaye 1, Anh Galat-Luong 2, Gérard Galat 3 & Georges Nizinski 4 OPEN ACCESS 1 UCAD, Université Cheikh Anta Diop, Département de Biologie animale, B.P 5005, Dakar-Fann, Senegal 2,3 UCAD - IRD, Université Cheikh Anta Diop - Institut de Recherche pour le Développement, Département Ressources vivantes, and IUCN Species Survival Commission, Route des Pères Maristes, Dakar, Senegal 4 IRD, Institut de Recherche pour le Développement, UMR 211 Bioemco, 5 rue du Carbone, 45072 Orléans cedex 2, France 1 [email protected] (corrosponding author), 2 [email protected], 3 [email protected], 4 [email protected] Abstract: The West African Chimpanzee Pan troglodytes verus is Common Chimpanzee (Pan troglodytes Blumenbach, Endangered (A4cd ver 3.1) in Senegal (Humle et al. 2008), mainly due to habitat fragmentation and destruction. Wegathered qualitative and 1799) nest building behaviour has been reported by quantitative data on the tree species preferences of the West African Nissen (1931), Bernstein (1962, 1967, 1969), Goodall Chimpanzee for nest building in order to gain insight into habitat (1962), Sabater Pi (1985), Wrogeman (1992), Barnett et dependence. Between March 1998 and Febrary 2000 we identified tree species in which a sample of 1790 chimpanzee nests had been al. (1994, 1996), Kortlandt (1996), Plumptre & Reynolds built, and ranked species in preference order. -
Index Seminum 2018-2019
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO INDEX SEMINUM 2018-2019 In copertina / Cover “La Terrazza Carolina del Real Orto Botanico” Dedicata alla Regina Maria Carolina Bonaparte da Gioacchino Murat, Re di Napoli dal 1808 al 1815 (Photo S. Gaudino, 2018) 2 UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO INDEX SEMINUM 2018 - 2019 SPORAE ET SEMINA QUAE HORTUS BOTANICUS NEAPOLITANUS PRO MUTUA COMMUTATIONE OFFERT 3 UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO ebgconsortiumindexseminum2018-2019 IPEN member ➢ CarpoSpermaTeca / Index-Seminum E- mail: [email protected] - Tel. +39/81/2533922 Via Foria, 223 - 80139 NAPOLI - ITALY http://www.ortobotanico.unina.it/OBN4/6_index/index.htm 4 Sommario / Contents Prefazione / Foreword 7 Dati geografici e climatici / Geographical and climatic data 9 Note / Notices 11 Mappa dell’Orto Botanico di Napoli / Botanical Garden map 13 Legenda dei codici e delle abbreviazioni / Key to signs and abbreviations 14 Index Seminum / Seed list: Felci / Ferns 15 Gimnosperme / Gymnosperms 18 Angiosperme / Angiosperms 21 Desiderata e condizioni di spedizione / Agreement and desiderata 55 Bibliografia e Ringraziamenti / Bibliography and Acknowledgements 57 5 INDEX SEMINUM UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO Prof. PAOLO CAPUTO Horti Praefectus Dr. MANUELA DE MATTEIS TORTORA Seminum curator STEFANO GAUDINO Seminum collector 6 Prefazione / Foreword L'ORTO BOTANICO dell'Università ha lo scopo di introdurre, curare e conservare specie vegetali da diffondere e proteggere, -
Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D. -
Woody Plant Species Used in Urban Forestry in West Africa: Case Study in Lomé, Capital Town of Togo
International Scholars Journals African Journal of Wood Science and Forestry ISSN 2375-0979 Vol. 7 (8), pp. 001-011, August, 2019. Available online at www.internationalscholarsjournals.org © International Scholars Journals Author(s) retain the copyright of this article. Full Length Research Paper Woody plant species used in urban forestry in West Africa: Case study in Lomé, capital town of Togo Radji Raoufou*, Kokou Kouami and Akpagana Koffi Laboratory of Plant Biology and Ecology, BP 1515 Lomé - Togo. Accepted 13 July, 2019 Many studies have been conducted on the flora of Togo. However, none of them is devoted to the ornamental flora horticulture. This survey aims to establish an inventory of the woody plant species in urban forests of Lomé, the capital town of Togo. It covers the trees planted along the avenues, in the gardens, courtyards, shady trees and trees used as fences for houses or trees at the seaside. In total, 297 plant species belong to 141 genera and 48 families were recorded. They are dominated by 79% of dicotyledonous, 13% of monocotyledonous and 8% of gymnosperms. Families that are best represented in terms of species are those of the Euphorbiaceae, Arecaceae and Acanthaceae. Alien species represent 69% and African species represent 31% out of which 6% are from Togo. According to the current threatening of the natural habitat by human activities, African native plant species could be more useful for ornamental purposes than exotic plants. Key words: Ornamental horticulture, plant flora, green areas, valorisation, native flora. INTRODUCTION Urban forestry refers to trees and forests located in cities, landscape covered with trees for the physical and mental including ornamental and grown trees, street and parkland health has been documented (Ulrich, 1984). -
Ethnobotanical Study of Medicinal Plants in the Blue Nile State, South-Eastern Sudan
Journal of Medicinal Plants Research Vol. 5(17), pp. 4287-4297, 9 September, 2011 Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875 ©2011 Academic Journals Full Length Research Paper Ethnobotanical study of medicinal plants in the Blue Nile State, South-eastern Sudan Musa S. Musa 1,2 , Fathelrhman E. Abdelrasool 2, Elsheikh A. Elsheikh 3, Lubna A. M. N. Ahmed 2, Abdel Latif E. Mahmoud 3 and Sakina M. Yagi 1* 1Department of Botany, Faculty of Science, University of Khartoum, P. O. Box 321, Sudan. 2 Forests National Corporation (Blue Nile), P. O. Box 658, Blue Nile State, Sudan. 3Forest Research Centre, Soba, P. O. Box 7089, Khartoum, Sudan. Accepted 9 June, 2011 Ethnobotanical study of medicinal plants used by traditional healers was carried out in the Blue Nile State, South-eastern Sudan. Information was obtained through conversations with traditional healers with the aid of semi-structured questionnaires. Informant consensus, use value, and fidelity level for each species and use category were calculated. A total of 31 traditional healers participated in the study. Fifty three plant species distributed into 31 families and 47 genera were identified as being used to treat one or more ailments. The major source of remedies came from wild plants. The most frequently mentioned indications were digestive system disorders, infections/infestations, pain, evil eye and respiratory system disorders. The majority of remedies are administered orally and decoctions were the most frequently prepared formulation. The collected data may help to avoid the loss of traditional knowledge on the use of medicinal plants in this area.