Improving Time- and Cost-Efficiency in Doping Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Improving Time- and Cost-Efficiency in Doping Analysis ISBN 978-87-7209-334-5 Amalie Solheim Sara Improving time- and cost-efficiency in doping analysis time- and cost-efficiency Improving Improving time- and cost-efficiency in doping analysis PhD Thesis Sara Amalie Solheim December 2019 UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE Improving time- and cost-efficiency in doping analysis PhD thesis Sara Amalie Solheim This thesis has been submitted to the PhD School of the Faculty of Science, University of Copenhagen ImprovingImproving time time-- and and cost cost-efficiency-efficiency in indoping doping analysis analysis PhDPhD thesis thesis 2019 2019 © © Sara Sara Amalie Amalie Solheim Solheim / ISBN: DepartmentPrinted by: of Nutrition, Exercise and Sports FacultyFront & of back Science cover design: Ditte Toft Clausen, Anti Doping Denmark University of Copenhagen, Copenhagen, Denmark Department of Nutrition, Exercise and Sports, SupervisorsFaculty of Science , AssociateUniversity Professor of Copenhagen, Nikolai Baastrup Copenhagen, Nordsborg Denmark Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark Supervisors Associate Professor Nikolai Baastrup Nordsborg Dr. Jakob Mørkeberg Department of Nutrition, Exercise and Sports, Anti Doping Denmark, Brøndby, Denmark University of Copenhagen, Copenhagen, Denmark Dr. Yvette Dehnes Dr. Jakob Mørkeberg Norwegian Doping Control Laboratory, Anti Doping Denmark, Brøndby, Denmark Oslo University Hospital, Oslo, Norway AssessmentDr. Yvette Dehnescommittee AssociateNorwegian Professor Doping Thomas Control Elbenhardt Laboratory, Jensen (chairman) DepartmentOslo University of Nutrition, Hospital, Exercise Oslo, Norway and Sport s, University of Copenhagen, Copenhagen, Denmark Assessment committee Dr.Associate Jenny Schulze Professor Thomas Elbenhardt Jensen (chairman) SDepartmentwedish Anti- Doping,of Nutrition, Exercise and Sports, SwedishUniversity Sports of Copenhagen, Confederation, Copenhagen, Stockholm, SwedenDenmark ProfDr. essorJenny Per Schulze Aaagaard Department of Sports Science and Clinical Biomechanics Swedish Anti-Doping, University of Southern Denmark, Odense, Denmark Swedish Sports Confederation, Stockholm, Sweden ISBN 978-87-7209-334-5 PrintedProfessor by SLPer grafik, Aaagaard Frederiksberg, Denmark (slgrafik.dk) Front & back cover design by Ditte Toft Clausen, Anti Doping Denmark Department of Sports Science and Clinical Biomechanics 2 University of Southern Denmark, Odense, Denmark 2 Improving time- and cost-efficiency in doping analysis PhD thesis 2019 © Sara Amalie Solheim / ISBN: Table of contents Printed by: LIST OF PAPERS ......................................................................................................................... 5 Front & back cover design: Ditte Toft Clausen, Anti Doping Denmark ACKNOWLEDGEMENTS .......................................................................................................... 6 Department of Nutrition, Exercise and Sports, ABSTRACT ................................................................................................................................... 7 Faculty of Science, RESUMÉ ....................................................................................................................................... 8 University of Copenhagen, Copenhagen, Denmark ABBREVIATIONS ....................................................................................................................... 9 Supervisors Associate Professor Nikolai Baastrup Nordsborg 1. INTRODUCTION ................................................................................................................... 10 Department of Nutrition, Exercise and Sports, 1.1 Performance-enhancing effects of testosterone ................................................................................................... 10 University of Copenhagen, Copenhagen, Denmark 1.1.1 Ergogenic effects of long-term and short-term testosterone administration ..................................................................... 11 1.1.2 Acute performance-enhancing effects of testosterone ........................................................................................................... 12 Dr. Jakob Mørkeberg 1.2 Performance-enhancing effects of clenbuterol .................................................................................................... 14 Anti Doping Denmark, Brøndby, Denmark 1.2.1 Ergogenic effects of long-term clenbuterol administration................................................................................................... 14 1.2.2 Ergogenic effects of acute clenbuterol administration ........................................................................................................... 15 1.2.3 Summary ......................................................................................................................................................................................... 15 Dr. Yvette Dehnes Norwegian Doping Control Laboratory, 1.3 Actual or potential health risk ............................................................................................................................. 16 Oslo University Hospital, Oslo, Norway 1.4 Indirect detection of doping with testosterone and its synthetic analogues ....................................................... 16 1.4.1 Steroid profile ................................................................................................................................................................................ 16 Assessment committee 1.4.2 Evaluation of the steroid profile ................................................................................................................................................ 19 Associate Professor Thomas Elbenhardt Jensen (chairman) 1.4.3 Future possibilities ........................................................................................................................................................................ 20 Department of Nutrition, Exercise and Sports, 1.5 Direct detection of doping with testosterone and its synthetic analogues .......................................................... 21 University of Copenhagen, Copenhagen, Denmark 1.6 Detection of doping with clenbuterol .................................................................................................................. 22 Dr. Jenny Schulze 1.7 Biological matrices in doping analysis ................................................................................................................ 23 Swedish Anti-Doping, 1.7.1 Microvolume dried matrices........................................................................................................................................................ 24 Swedish Sports Confederation, Stockholm, Sweden 1.7.2 Detectability of testosterone esters and clenbuterol in DBS/DPS ...................................................................................... 29 1.8 Applicability to anti-doping: objectives ............................................................................................................... 30 Professor Per Aaagaard Department of Sports Science and Clinical Biomechanics 2. RESULTS AND DISCUSSION .............................................................................................. 33 University of Southern Denmark, Odense, Denmark 2.1 Acute performance-enhancing effects of testosterone in humans ....................................................................... 33 2.1.1 Acute ergogenic effects of testosterone administration on muscular strength .................................................................. 33 2 3 2.1.2 Acute ergogenic effects of testosterone administration on sprint performance................................................................ 34 2.1.3 Acute ergogenic effects of testosterone administration on vertical jump performance ................................................... 35 2.1.4 Serum testosterone and performance capacities...................................................................................................................... 36 2.1.5 Implications for anti-doping ....................................................................................................................................................... 36 2.1.6 Study limitations ............................................................................................................................................................................ 37 2.2 Indirect detection of testosterone esters ............................................................................................................. 38 2.2.1 The steroid profile......................................................................................................................................................................... 38 2.2.2 The hematological profile ............................................................................................................................................................ 38 2.3 Direct detection of testosterone esters ................................................................................................................ 40 2.3.1 Further development of DBS analysis of testosterone esters ............................................................................................... 40 2.3.3 Detection of testosterone ester administration in DBS ........................................................................................................
Recommended publications
  • Potential of Guggulsterone, a Farnesoid X Receptor Antagonist, In
    Exploration of Targeted Anti-tumor Therapy Open Access Review Potential of guggulsterone, a farnesoid X receptor antagonist, in the prevention and treatment of cancer Sosmitha Girisa , Dey Parama , Choudhary Harsha , Kishore Banik , Ajaikumar B. Kunnumakkara* Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India *Correspondence: Ajaikumar B. Kunnumakkara, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India. [email protected]; [email protected] Academic Editor: Gautam Sethi, National University of Singapore, Singapore Received: August 8, 2020 Accepted: September 14, 2020 Published: October 30, 2020 Cite this article: Girisa S, Parama D, Harsha C, Banik K, Kunnumakkara AB. Potential of guggulsterone, a farnesoid X receptor antagonist, in the prevention and treatment of cancer. Explor Target Antitumor Ther. 2020;1:313-42. https://doi.org/10.37349/ etat.2020.00019 Abstract Cancer is one of the most dreadful diseases in the world with a mortality of 9.6 million annually. Despite the advances in diagnosis and treatment during the last couple of decades, it still remains a serious concern due to the limitations associated with currently available cancer management strategies. Therefore, alternative strategies are highly required to overcome these glitches. The importance of medicinal plants as primary healthcare has been well-known from time immemorial against various human diseases, including cancer. Commiphora wightii that belongs to Burseraceae family is one such plant which has been used to cure various ailments in traditional systems of medicine.
    [Show full text]
  • Nandrolone Decanoate Enhances Hypothalamic Biogenic Amines in Rats
    Nandrolone Decanoate Enhances Hypothalamic Biogenic Amines in Rats 1 1 2 2 TETSURO TAMAKI , TAKEMASA SHIRAISHI , HIROSHI TAKEDA , TERUHIKO MATSUMIYA , 3 3,4 ROLAND R. ROY , and V. REGGIE EDGERTON 1Department of Physiology, Division of Human Structure and Function, and 2Department of Pharmacology, Tokyo Medical College, Tokyo, JAPAN; and 3Brain Research Institute and 4Department of Physiological Science, University of California, Los Angeles, CA ABSTRACT TAMAKI, T., T. SHIRAISHI, H. TAKEDA, T. MATSUMIYA, R. R. ROY, and V. R. EDGERTON. Nandrolone Decanoate Enhances Hypothalamic Biogenic Amines in Rats. Med. Sci. Sports Exerc., Vol. 35, No. 1, pp. 32–38, 2003. Purpose: To identify possible mechanisms for an anabolic-androgenic steroid induced increase in aggressive behavior and work capacity, the levels of some biogenic amines considered to be closely related to a systemic hyper-adrenergic state were measured in selected regions of the brain. Methods: Wistar male rats were divided randomly into five groups: nontreated (control), oil-vehicle-treated (vehicle) or one of three (therapeutic dose and 10- or 100-fold higher dose) anabolic-androgenic steroid-treated (steroid-1, -2, -3) groups. Rats in the steroid and vehicle groups were given a single dose of nandrolone decanoate or oil vehicle, respectively, one week before tissue sampling. The levels of norepinephrine (NE) and its metabolite, 4-hydroxy-3-methoxyphenylglycol (MHPG), serotonin (5-HT) and its metabolite, 5-hydroxy- indole-3-acetic acid (5-HIAA) were measured in the cerebral cortex, hypothalamus and cerebellum by high-performance liquid chromatography. Immunostaining for c-fos was performed as a confirmation of increased neural activity. Results: The levels of NE and MHPG were increased by ~2- and ~7-fold in the hypothalamus of the steroid-2 compared with the control and vehicle groups.
    [Show full text]
  • The Format of This Leaflet Was Determined by the Ministry of Health and Its Content Was Checked and Approved by It on July 2012
    The format of this leaflet was determined by the Ministry of Health and its content was checked and approved by it on July 2012 1. NAME OF THE MEDICINAL PRODUCT PROGYLUTON Tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Calendar-pack containing 11 white tablets of 2 mg estradiol valerate each, plus 10 light brown tablets of 2 mg estradiol valerate and 0.5 mg norgestrel each. 3. PHARMACEUTICAL FORM Coated tablets. 4. CLINICAL PARTICULARS 4.1 Therapeutic indication Two phase preparation for climacteric and cycle disturbances. 4.2 Posology and method of administration Proguluton is a cyclic HRT product. One tablet is to be taken orally once a day for 21 days, followed by a 7 day tablet free interval. Therefore each new pack is started after a 28 day cycle. The white tablets should be taken from days 1 to 11 followed by the brown tablets from days 12 to 21. It is recommended that the tablets are taken at the same time every day For initiation and continuation of treatment of peri- and post-menopausal symptoms the lowest effective dose for the shortest duration (see also Section 4.4) should be used. For women still having periods, the first tablet should be taken on the 5th day of their menstrual period. If menstruation has stopped, or is infrequent or sporadic, then the first tablet can be taken any time If the patient is being transferred from a continuous HRT product, the patient may start Progyluton on any convenient day. For those transferring from a cyclic or sequential product, Progylton should be started following completion of the previous regimen If a tablet is missed, it should be taken as soon as possible, unless it is more than 12 hours late.
    [Show full text]
  • Download News 2/2020
    Polymere und Fluoreszenz Gleichgewicht der 360°-Trinkwasseranalyse Kräfte Trilogie Fluoreszenzspektroskopie von Basispolymeren aus der Leistung und Robustheit in Automatische, simultane Industrie Einklang mit Empfindlichkeit und schnelle Analyse von und Geschwindigkeit Pestiziden INHALT APPLIKATION »Plug und Play«-Lösung für das Krankheits-Screening – MALDI-8020 zum Screening der Sichelzellen anämie 4 Maßgeschneiderte Software- Lösungen für jede Messung – Makro-Programmierung für Shimadzu UV-Vis und FTIR 8 Auf der sicheren Seite: Steroid - nachweis in Arzneimitteln und Nahrungsergänzungsmitteln mit einem LCMS-8045 11 MSn-Analyse nicht-derivatisier- ter und Mtpp-derivatisierter Peptide – Zwei aktuelle Unter- suchungen zur Anwendung von LC-MS-IT-TOF-Geräten 18 Polymere und Fluoreszenz – Teil 2: Wieviel Fluoreszenz zeigt ein Poly mer für eine Qualitäts - kontrolle? 26 PRODUKTE Gleichgewicht der Kräfte – LCMS-8060NX: Leistung und Robustheit mit Empfindlichkeit, und Geschwindigkeit 7 360°-Trinkwasseranalyse: Episode 2 – Automatische, simul- Enrico Davoli mit dem PESI-MS-System – einem Gerät zu reinen Forschungszwecken (research-use only = RUO) tane und schnelle Analyse von Pestiziden mit Online-SPE und UHPLC-MS/MS 14 Vielseitiges Tool für die Automobil - industrie – Neue HMV-G3 Serie 17 Eine globale Lösung Kopfschmerz ade – Anleitung zur Auswahl der idealen C18-Säule 22 Validierte Methode für monoklo- nale Antikörper-Medikamente – dank globaler Bewertung der nSMOL-Methodik in menschlichem Serum 24 AKTUELLES Zusammenarbeit Eine globale Lösung
    [Show full text]
  • Identification of Steroid Esters in Cattle Hair at Ultra-Trace Levels
    Application Note Identification of Steroid Esters in Cattle Hair at Ultra-Trace Levels Emmanuelle Bichon, Lauriane Rambaud, Stephanie Christien, Aurélien Béasse, Stephanie Prevost, Fabrice Monteau, Bruno Le Bizec, Peter Hancock Waters Corporation Abstract The aim of this study is to address some of the analytical challenges previously described when analyzing a wide range of steroid esters (boldenone, nandrolone, estradiol, and testosterone) in cattle hair. Benefits ■ Unambiguous determination of steroid esters at ng/g level in cattle hair ■ Method is five times faster than the established GC-MS/MS method, with all esters included in a single run ■ Provides an efficient and additional confirmatory method to overcome any inconclusive urine analyses ■ Allows the potential to improve the detection of all banned substances in cattle hair by reducing matrix interference ■ Provides the ability to detect and identify compounds for a long time after administration Introduction The safety of our food supply can no longer be taken for granted. As the world changes and populations continue to grow, so will the responsibility of organizations to meet the demand of safe food supplies. One route of human exposure to veterinary substances is through the food chain as a result of malpractice or illegal activities. The steroid esters are one group of substances causing concern, which might still be used as growth promoting agents, but are now forbidden from use in breeding animals in the European Union.1 No residues of these anabolic substances should
    [Show full text]
  • Schwarz, Tamar Imogen (2016) the Origin of Vertebrate Steroids in Molluscs: Uptake, Metabolism and Depuration Studies in the Common Mussel
    Schwarz, Tamar Imogen (2016) The origin of vertebrate steroids in molluscs: uptake, metabolism and depuration studies in the common mussel. PhD thesis. https://theses.gla.ac.uk/7436/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] THE ORIGIN OF VERTEBRATE STEROIDS IN MOLLUSCS: UPTAKE, METABOLISM AND DEPURATION STUDIES IN THE COMMON MUSSEL TAMAR IMOGEN SCHWARZ Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Molecular and Cellular Biology Institute of Molecular, Cell and Systems Biology College of Medical, Veterinary and Life Sciences University of Glasgow In collaboration with the Centre for the Environment, Fisheries and Aquaculture Science (Cefas) April 2016 ©Tamar I. Schwarz, 2016 1 Abstract Many studies have found vertebrate sex steroids, such as testosterone (T), 17 β-oestradiol (E 2) and progesterone (P) to be present in molluscan tissues. The underlying assumption of most, if not all, these studies has been that these steroids are formed endogenously and furthermore, act as reproductive hormones in the same way that they do in vertebrates (i.e.
    [Show full text]
  • Transformations of Steroid Esters by Fusarium Culmorum Alina S´ Wizdor*, Teresa Kołek, and Anna Szpineter
    Transformations of Steroid Esters by Fusarium culmorum Alina S´ wizdor*, Teresa Kołek, and Anna Szpineter Department of Chemistry, Agricultural University, Norwida 25, 50-375 Wrocław, Poland. Fax: 0048-071-3283576. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 61c, 809Ð814 (2006); received April 6/May 15, 2006 The course of transformations of the pharmacological steroids: testosterone propionate, 4-chlorotestosterone acetate, 17-estradiol diacetate and their parent alcohols in Fusarium culmorum AM282 culture was compared. The results show that this microorganism is capable of regioselective hydrolysis of ester bonds. Only 4-ene-3-oxo steroid esters were hydrolyzed at C-17. 17-Estradiol diacetate underwent regioselective hydrolysis at C-3 and as a result, estrone Ð the main metabolite of estradiol Ð was absent in the reaction mixture. The alcohols resulting from the hydrolysis underwent oxidation at C-17 and hydroxylation. The same products (6- and 15α-hydroxy derivatives) as from testosterone were formed by transformation of testosterone propionate, but the quantitative composition of the mixtures obtained after transformations of both substrates showed differences. The 15α-hydroxy deriv- atives were obtained from the ester in considerably higher yield than from the parent alcohol. The presence of the chlorine atom at C-4 markedly reduced 17-saponification in 4-chloro- testosterone acetate. Only 3,15α-dihydroxy-4α-chloro-5α-androstan-17-one (the main prod- uct of transformation of 4-chlorotestosterone) was identified in the reaction mixture. 6- Hydroxy-4-chloroandrostenedione, which was formed from 4-chlorotestosterone, was not de- tected in the extract obtained after conversion of its ester.
    [Show full text]
  • United States Patent (19) 11) Patent Number: 4,507,290 Archer Et Al
    United States Patent (19) 11) Patent Number: 4,507,290 Archer et al. 45) Date of Patent: Mar. 26, 1985 54 ESTERS OF 17 a-ETHYNYL 52 U.S. Cl. ................................. 514/172; 260/397.4; 19-NOR-TESTOSTERONE AND 17 260/.397.5; 514/179 C-ETHYNYL-18 HOMO-19-NOR-TESTOST 58 Field of Search ...................... 260/.397.4; 424/243 ERONE AND PHARMACEUTICAL COMPOSITIONS CONTAINING THE SAME 56) References Cited U.S. PATENT DOCUMENTS 75 Inventors: Sydney Archer, Troy, N.Y.; Giuseppe 3,959,322 5/1976 Hughes et al. ... 260/.397.4 Benagiano, Rome, Italy; Pierre 4,027,019 5/1977 Shroff............. ... 260/397.4 Crabbe, Paris, France; Egon 4,089,952 5/1978 Itil et al. .............................. 424/243 Diczfalusy, Stockholm, Sweden; Carl 4, 119,626 10/1978 Schulze et al. ... 260/397.4 Djerassi, Stanford, Calif.; Josef 4,181,721 1/1980 Speck et al. ......................... 424/243 Fried, Chicago, Ill. Primary Examiner-Elbert L. Roberts 73) Assignee: World Health Organization, Geneva, Attorney, Agent, or Firm-Cushman, Darby & Cushman Switzerland 57 ABSTRACT 21 Appl. No.: 251,914 Esters of 17 a-ethynyl 19-nor-testosterone and 17 a ethynyl-18-homo-19-nor-testosterone and the 3-oximes 22 Filed: Apr. 7, 1981 thereof having long-active contraceptive activity. 51) Int. Cl. .............................................. A61K 31/56 21 Claims, No Drawings 4,507,290 1 2 wherein R2 is acyl derived from an alicyclic carbox ESTERS OF 17 o-ETHYNYL ylic acid wherein the alicyclic moiety can have 19-NOR-TESTOSTERONE AND 17 3-6, preferably 3 and 4, carbon atoms in the ring; o-ETHYNYL-18-HOMO-19-NOR-TESTOSTERONE (d) the corresponding oxime of the ester defined in AND PHARMACEUTICAL COMPOSITIONS 5 (c); CONTAINING THE SAME (e) an ester of levo-norgestrel having the formula (II) above, wherein R2 is acyl derived from an aliphatic BACKGROUND AND SUMMARY OF THE carboxylic acid containing 5 carbon atoms, in ex INVENTION tenso pentanoic acid isomers, i.e.
    [Show full text]
  • PDE7B Is Involved in Nandrolone Decanoate Hydrolysis in Liver Cytosol and Its Transcription Is Up-Regulated by Androgens in Hepg2
    ORIGINAL RESEARCH ARTICLE published: 30 May 2014 doi: 10.3389/fphar.2014.00132 PDE7B is involved in nandrolone decanoate hydrolysis in liver cytosol and its transcription is up-regulated by androgens in HepG2 Emmanuel Strahm , Anders Rane and Lena Ekström* Division of Clinical Pharmaclogy, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden Edited by: Most androgenic drugs are available as esters for a prolonged depot action. However, the Petr Pavek, Charles University, enzymes involved in the hydrolysis of the esters have not been identified. There is one Czech Republic study indicating that PDE7B may be involved in the activation of testosterone enanthate. Reviewed by: The aims are to identify the cellular compartments where the hydrolysis of testosterone Stanislav Yanev, Bulgarian Academy of Sciences, Bulgaria enanthate and nandrolone decanoate occurs, and to investigate the involvement of Andrei Adrian Tica, University of PDE7B in the activation. We also determined if testosterone and nandrolone affect Medicine Craiova Romania, Romania the expression of the PDE7B gene. The hydrolysis studies were performed in isolated *Correspondence: human liver cytosolic and microsomal preparations with and without specific PDE7B Lena Ekström, Division of Clinical inhibitor. The gene expression was studied in human hepatoma cells (HepG2) exposed to Pharmaclogy, Department of Laboratory Medicine, Karolinska testosterone and nandrolone. We show that PDE7B serves as a catalyst of the hydrolysis Institutet, Karolinska University of testosterone enanthate and nandrolone decanoate in liver cytosol. The gene expression Hospital, SE-171 76 Stockholm, of PDE7B was significantly induced 3- and 5- fold after 2 h exposure to 1 µM testosterone Sweden enanthate and nandrolone decanoate, respectively.
    [Show full text]
  • 2021 Equine Prohibited Substances List
    2021 Equine Prohibited Substances List . Prohibited Substances include any other substance with a similar chemical structure or similar biological effect(s). Prohibited Substances that are identified as Specified Substances in the List below should not in any way be considered less important or less dangerous than other Prohibited Substances. Rather, they are simply substances which are more likely to have been ingested by Horses for a purpose other than the enhancement of sport performance, for example, through a contaminated food substance. LISTED AS SUBSTANCE ACTIVITY BANNED 1-androsterone Anabolic BANNED 3β-Hydroxy-5α-androstan-17-one Anabolic BANNED 4-chlorometatandienone Anabolic BANNED 5α-Androst-2-ene-17one Anabolic BANNED 5α-Androstane-3α, 17α-diol Anabolic BANNED 5α-Androstane-3α, 17β-diol Anabolic BANNED 5α-Androstane-3β, 17α-diol Anabolic BANNED 5α-Androstane-3β, 17β-diol Anabolic BANNED 5β-Androstane-3α, 17β-diol Anabolic BANNED 7α-Hydroxy-DHEA Anabolic BANNED 7β-Hydroxy-DHEA Anabolic BANNED 7-Keto-DHEA Anabolic CONTROLLED 17-Alpha-Hydroxy Progesterone Hormone FEMALES BANNED 17-Alpha-Hydroxy Progesterone Anabolic MALES BANNED 19-Norandrosterone Anabolic BANNED 19-Noretiocholanolone Anabolic BANNED 20-Hydroxyecdysone Anabolic BANNED Δ1-Testosterone Anabolic BANNED Acebutolol Beta blocker BANNED Acefylline Bronchodilator BANNED Acemetacin Non-steroidal anti-inflammatory drug BANNED Acenocoumarol Anticoagulant CONTROLLED Acepromazine Sedative BANNED Acetanilid Analgesic/antipyretic CONTROLLED Acetazolamide Carbonic Anhydrase Inhibitor BANNED Acetohexamide Pancreatic stimulant CONTROLLED Acetominophen (Paracetamol) Analgesic BANNED Acetophenazine Antipsychotic BANNED Acetophenetidin (Phenacetin) Analgesic BANNED Acetylmorphine Narcotic BANNED Adinazolam Anxiolytic BANNED Adiphenine Antispasmodic BANNED Adrafinil Stimulant 1 December 2020, Lausanne, Switzerland 2021 Equine Prohibited Substances List . Prohibited Substances include any other substance with a similar chemical structure or similar biological effect(s).
    [Show full text]
  • Metabolic Study of Oxabolone Using Human Liver Microsomes and Humanized Mice
    Lecture MANFRED DONIKE WORKSHOP Lootens L1, Geldof L1, Tudela E1, Meuleman P2, Leroux-Roels G2, Botrè F3, Deventer K1, Van Eenoo P1 Metabolic study of oxabolone using human liver microsomes and humanized mice DoCoLab, Ghent University, Zwijnaarde, Belgium1; Cevac, Ghent University, Ghent, Belgium2; FMSI, Rome, Italy3 Abstract The urinary detection of oxabolone, a 19-nor anabolic steroid and potential doping agent, was investigated by evaluating its metabolic profile. Anabolic androgenic steroids comprise a popular class of performance enhancing products to be abused by athletes. The detection of oxabolone in urine in the framework of doping control is often based only on screening of the parent compound. However, it is well known that most steroids are metabolized in the human body. The liver is the key organ for these metabolic transformations. The formed metabolites are often longer detectable in urine than the parent compound itself. Moreover, the higher the number of markers are included in the initial testing procedure, the more evidence can be found of the illicit use of doping agents. Therefore oxabolone cypionate (esterified steroid) was administered to a chimeric uPA+/+-SCID mouse model with a humanized liver. Additionally, oxabolone was also incubated with human liver microsomes. For the chimeric mouse model pre- and post-administration urine samples were collected over a 24 hour time period. For the in vitro incubations, the data within a time period of 18 hours were evaluated. Both analysis of the extracts of the chimeric mouse urine and the in vitro incubations were performed on GC-MS and on LC-MS, the latter by using precursor ion scan mode and high resolution.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,867,986 B2 Houze (45) Date of Patent: Jan
    US007867986B2 (12) United States Patent (10) Patent No.: US 7,867,986 B2 Houze (45) Date of Patent: Jan. 11, 2011 (54) ENHANCED DRUG DELIVERY IN 5,780,050 A 7/1998 Jain et al. TRANSIDERMAL SYSTEMS 5,811,117 A 9, 1998 Hashimoto et al. 5,849,729 A * 12/1998 Zoumas et al. .............. 514,169 (75) Inventor: David Houze, Coconut Grove, FL (US) 5,898,032 A 4/1999 Hodgen 5,958,446 A * 9/1999 Miranda et al. ............. 424/448 (73) Assignee: Noven Pharmaceuticals, Inc., Miami, 6,024,974 A 2, 2000 Li FL (US) 6,143,319 A 11/2000 Meconi et al. (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 (21) Appl. No.: 10/330,361 FOREIGN PATENT DOCUMENTS (22) Filed: Dec. 30, 2002 CL 49-95 1, 1994 (65) Prior Publication Data US 2003/O152615A1 Aug. 14, 2003 (Continued) Related U.S. Application Data OTHER PUBLICATIONS (63) Continuation of application No. 09/948,107, filed on M.D. Mashkovsky, The Medicaments, Guidelines for Medical Doc Sep. 7, 2001, now abandoned. tors, vol. 1, 2001, 2 pgs... translation provided. (60) Provisional application No. 60/298,381, filed on Jun. (Continued) 18, 2001. Primary Examiner San-ming Hui (51) Int. Cl. 74) Attorney,V, AgAgent, or Firm—Foleyy & Lardner LLP A6 IK3I/56 (2006.01) (52) U.S. Cl. ...................................................... S14/171 (57) ABSTRACT (58) Field of Classification Search ................. 514/170, 514/171, 180 See application file for complete search history. A composition for transdermal administration resulting from an admixture includes: a therapeutically effective amount of (56) References Cited a pharmaceutically active agent that includes a corresponding U.S.
    [Show full text]