Ultra High Performance Liquid Chromatography/Tandem Mass
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Product Insert (PDF)
Product Information Boldenone Cypionate Item No. 15158 CAS Registry No.: 106505-90-2 O Formal Name: 17β-hydroxy-androsta-1,4-dien-3-one O cyclopentanepropionate MF: C27H38O3 FW: 410.6 H Purity: ≥95% Stability: ≥2 years at -20°C H H Supplied as: A crystalline solid λ O UV/Vis.: max: 244 nm Laboratory Procedures For long term storage, we suggest that boldenone cypionate be stored as supplied at -20°C. It should be stable for at least two years. Boldenone cypionate is supplied as a crystalline solid. A stock solution may be made by dissolving the boldenone cypionate in the solvent of choice. Boldenone cypionate is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide, which should be purged with an inert gas. The solubility of boldenone cypionate in these solvents is approximately 15, 5, and 25 mg/ml, respectively. Boldenone cypionate is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, boldenone cypionate should first be dissolved in ethanol and then diluted with the aqueous buffer of choice. Boldenone cypionate has a solubility of approximately 0.3 mg/ml in a 1:2 solution of ethanol:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. Boldenone is an anabolic androgenic steroid and synthetic derivative of testosterone that was originally developed for veterinary use.1 It can increase nitrogen retention, protein synthesis, and appetite, and also stimulates the release of erythropoietin in the kidneys.1 Boldenone cypionate was synthesized as an ester of boldenone in an attempt to alter boldenone’s very long half-life.2 Anabolic androgenic steroid compounds such as boldenone cypionate have been used illicitly by bodybuilders and other athletes.3 This compound is intended for forensic and research purposes only. -
Androgenic-Anabolic Steroid (Boldenone)
Genera of l P l r a a n c r t u i c o e J Kalmanovich et al., J Gen Pract 2014, 2:3 Journal of General Practice DOI: 10.4172/2329-9126.1000153 ISSN: 2329-9126 Case Report Open Access Androgenic-Anabolic Steroid (Boldenone) Abuse as a Cause of Dilated Cardiomyopathy Eran Kalmanovich*, Sa'ar Minha, Marina Leitman, Zvi Vered and Alex Blatt Assaf Harofeh Medical Center, Aviv University, Israel *Corresponding author: Eran Kalmanovich, Department of Cardiology, Assaf Harofeh Medical Center, Zerifin, Sackler School of Medicine, Tel Aviv University, Israel, Tel: +972-50-5191121; E-mail: [email protected] Received date: Feb 27, 2014, Accepted date: Mar 27, 2014, Published date: Apr 3, 2014 Copyright: © 2014 Kalmanovich E, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Case Presentation At admission 1-year follow up A 34-year old, previously healthy male, presented to the ER with EF% 20% 40% worsening dyspnea over a period of three weeks and the appearance of blood tinged sputum. Soon after presentation, the patient was LA diameter (mm) 3.9 3.8 hypoxemic and required mechanical ventilation. Chest X-ray LA area (cm2) 14.0 20 demonstrated bilateral infiltrates and he was admitted to the ICU with the tentative diagnosis of acute respiratory distress syndrome. LVEDD (cm) 6.1 5.6 Investigation by PICCO, Suggested the presence of heart failure were LVESD (cm) 5.1 3.3 and the patient was transferred to the ICCU. -
Steroid Abuse by School Age Children
epartment .D of .S Ju U s t ic U.S. Department of Justice e . n o i Drug Enforcement Administration t a r t is D in Office of Diversion Control r m ug d E t A nforcemen www.dea.gov www.DEAdiversion.usdoj.gov epartment .D of .S Ju U s t ic e . n o i t a r t is D in r m ug d E t A nforcemen Office of Diversion Control www.dea.gov STEROID ABUSE BY SCHOOL AGE CHILDREN nce viewed as a problem strictly associated with body builders, Ofitness “buffs,” and professional athletes, abuse of anabolic steroids by school age children has significantly increased over the past decade. The National Institute on Drug Abuse (NIDA) estimates that more than a half million 8th and 10th grade students are now using these dangerous drugs, and increasing numbers of high school seniors do not believe steroids are risky. Students are acquiring and taking anabolic steroids without any knowledge of the dangers associated with steroid abuse. The short- term adverse physical effects of anabolic steroid abuse are fairly well known. However, the long-term adverse physical effects of anabolic steroid abuse have not been studied, and as such, are not known. In addition, this type of abuse may result in harmful side-effects as well as serious injury and death. The abuser in most cases is unaware of these hidden dangers. Presented as a public service by: This guide will help you understand why steroids are being misused, Drug Enforcement Administration and how you can provide counseling and implement procedures to Office of Diversion Control educate our youth about the dangers of these drugs. -
Ameliorative Effects of Lycopene Against Boldenone Undecylenate Toxicity in Albino Rats
BENHA VETERINARY MEDICAL JOURNAL, VOL. 35, NO. 2: 237-249, DECEMBER , 2018 BENHA UNIVERSITY FACULTY OF VETERINARY MEDICINE Ameliorative Effects of Lycopene against Boldenone Undecylenate Toxicity in Albino Rats Sabra H.M., El-Shawarby R.M., Abosalem M., Nabila M. A., Ibrahim S.S. Department of Forensic Medicine & Toxicology. Faculty of Veterinary. Medicine. Benha University. A B S T R A C T Although anabolic androgenic steroids like boldenone (BOL) may increase lean muscle mass, strength, and the ability to train longer and harder, the serious side effects of steroid are many and may not be reversible. So, the present study was designed to investigate the role of lycopene in improving the oxidative stress of boldenone in male albino rats. Twenty eight male adult rats were equally divided into four groups.1st group (control) that received olive oil once a week (5 mg/kg intramuscularly). 2nd group includes rats received lycopene daily (orally, 60mg/kg body weight). 3rd group includes animals that received intramuscular injections of boldenone once a week (5 mg/Kg body weight). 4th group was co-treated with boldenone and lycopene with the same previous doses of both, the experiment extended for 5 weeks. Intramuscular injection of rats with caused significant increase in total weight gain (TWG), serum total protein and globulin, malandialdehyde (MDA), Lactate dehydrogenase (LDH), creatinine kinase (CK), total protein in skeletal muscle, when compared with the control group. On the other hand, a significant decrease in albumin, Albumin/Globulin (A\G) ratio and superoxide dismutase (SOD) in boldenone group when compared with the control group. -
The Metabolism of Anabolic Agents in the Racing Greyhound
The Metabolism of Anabolic Agents In the Racing Greyhound A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy by Mr. Keith Robert Williams, B.Sc. July 1999 Department of Forensic Medicine & Science University of Glasgow Copyright © 1999 by Keith R. Williams. All rights reserved. No part o f this thesis may be reproduced in any forms or by any means without the written permission o f the author. I ProQuest Number: 13833925 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13833925 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 GLASGOW UNIVERSITY LIBRARY 111-X (coK To my parents for all their help, support and encouragement i Table of Contents i List of Figures V List of Tables VIII Summary IX Chapter 1: Drugs in Sport ...............................................................................................................................1 Introduction ................................................................................................................................................. -
Potential of Guggulsterone, a Farnesoid X Receptor Antagonist, In
Exploration of Targeted Anti-tumor Therapy Open Access Review Potential of guggulsterone, a farnesoid X receptor antagonist, in the prevention and treatment of cancer Sosmitha Girisa , Dey Parama , Choudhary Harsha , Kishore Banik , Ajaikumar B. Kunnumakkara* Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India *Correspondence: Ajaikumar B. Kunnumakkara, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India. [email protected]; [email protected] Academic Editor: Gautam Sethi, National University of Singapore, Singapore Received: August 8, 2020 Accepted: September 14, 2020 Published: October 30, 2020 Cite this article: Girisa S, Parama D, Harsha C, Banik K, Kunnumakkara AB. Potential of guggulsterone, a farnesoid X receptor antagonist, in the prevention and treatment of cancer. Explor Target Antitumor Ther. 2020;1:313-42. https://doi.org/10.37349/ etat.2020.00019 Abstract Cancer is one of the most dreadful diseases in the world with a mortality of 9.6 million annually. Despite the advances in diagnosis and treatment during the last couple of decades, it still remains a serious concern due to the limitations associated with currently available cancer management strategies. Therefore, alternative strategies are highly required to overcome these glitches. The importance of medicinal plants as primary healthcare has been well-known from time immemorial against various human diseases, including cancer. Commiphora wightii that belongs to Burseraceae family is one such plant which has been used to cure various ailments in traditional systems of medicine. -
Steroids and Other Appearance and Performance Enhancing Drugs (Apeds) Research Report
Research Report Revised Febrero 2018 Steroids and Other Appearance and Performance Enhancing Drugs (APEDs) Research Report Table of Contents Steroids and Other Appearance and Performance Enhancing Drugs (APEDs) Research Report Introduction What are the different types of APEDs? What is the history of anabolic steroid use? Who uses anabolic steroids? Why are anabolic steroids misused? How are anabolic steroids used? What are the side effects of anabolic steroid misuse? How does anabolic steroid misuse affect behavior? What are the risks of anabolic steroid use in teens? How do anabolic steroids work in the brain? Are anabolic steroids addictive? How are anabolic steroids tested in athletes? What can be done to prevent steroid misuse? What treatments are effective for anabolic steroid misuse? Where can I get further information about steroids? References Page 1 Steroids and Other Appearance and Performance Enhancing Drugs (APEDs) Research Report Esta publicación está disponible para su uso y puede ser reproducida, en su totalidad, sin pedir autorización al NIDA. Se agradece la citación de la fuente, de la siguiente manera: Fuente: Instituto Nacional sobre el Abuso de Drogas; Institutos Nacionales de la Salud; Departamento de Salud y Servicios Humanos de los Estados Unidos. Introduction Appearance and performance enhancing drugs (APEDs) are most often used by males to improve appearance by building muscle mass or to enhance athletic performance. Although they may directly and indirectly have effects on a user’s mood, they do not produce a euphoric high, which makes APEDs distinct from other drugs such as cocaine, heroin, and marijuana. However, users may develop a substance use disorder, defined as continued use despite adverse consequences. -
Nandrolone Decanoate Enhances Hypothalamic Biogenic Amines in Rats
Nandrolone Decanoate Enhances Hypothalamic Biogenic Amines in Rats 1 1 2 2 TETSURO TAMAKI , TAKEMASA SHIRAISHI , HIROSHI TAKEDA , TERUHIKO MATSUMIYA , 3 3,4 ROLAND R. ROY , and V. REGGIE EDGERTON 1Department of Physiology, Division of Human Structure and Function, and 2Department of Pharmacology, Tokyo Medical College, Tokyo, JAPAN; and 3Brain Research Institute and 4Department of Physiological Science, University of California, Los Angeles, CA ABSTRACT TAMAKI, T., T. SHIRAISHI, H. TAKEDA, T. MATSUMIYA, R. R. ROY, and V. R. EDGERTON. Nandrolone Decanoate Enhances Hypothalamic Biogenic Amines in Rats. Med. Sci. Sports Exerc., Vol. 35, No. 1, pp. 32–38, 2003. Purpose: To identify possible mechanisms for an anabolic-androgenic steroid induced increase in aggressive behavior and work capacity, the levels of some biogenic amines considered to be closely related to a systemic hyper-adrenergic state were measured in selected regions of the brain. Methods: Wistar male rats were divided randomly into five groups: nontreated (control), oil-vehicle-treated (vehicle) or one of three (therapeutic dose and 10- or 100-fold higher dose) anabolic-androgenic steroid-treated (steroid-1, -2, -3) groups. Rats in the steroid and vehicle groups were given a single dose of nandrolone decanoate or oil vehicle, respectively, one week before tissue sampling. The levels of norepinephrine (NE) and its metabolite, 4-hydroxy-3-methoxyphenylglycol (MHPG), serotonin (5-HT) and its metabolite, 5-hydroxy- indole-3-acetic acid (5-HIAA) were measured in the cerebral cortex, hypothalamus and cerebellum by high-performance liquid chromatography. Immunostaining for c-fos was performed as a confirmation of increased neural activity. Results: The levels of NE and MHPG were increased by ~2- and ~7-fold in the hypothalamus of the steroid-2 compared with the control and vehicle groups. -
Agenda Florida Hospital Association 307 Park Lake Circle Orlando, FL July 14, 2016 @ 2:00 P.M
The Florida Board of Nursing Controlled Substances Formulary Committee Agenda Florida Hospital Association 307 Park Lake Circle Orlando, FL July 14, 2016 @ 2:00 p.m. Doreen Cassarino, DNP, ARNP, FNP-BC, BC- ADM, FAANP - Chair Joe Baker, Jr. Executive Director Kathryn L Controlled Substances Formulary Committee Agenda July 14, 2016 @ 2:00 p.m. Committee Members: Doreen Cassarino, DNP, FNP-BC, BC-ADM, FAANP (Chair) Vicky Stone-Gale, DNP, FNP-C, MSN Jim Quinlan, DNP, ARNP Bernardo B. Fernandez, Jr., MD, MBA, FACP Joshua D. Lenchus, DO, RPh, FACP, SFHM Eduardo C. Oliveira, MD, MBA, FCCP Jeffrey Mesaros, PharmD, JD Attorney: Lee Ann Gustafson, Senior Assistant Attorney General Board Staff: Joe Baker, Jr., Executive Director Jessica Hollingsworth, Program Operations Administrator For more information regarding board meetings please visit http://floridasnursing.gov/meeting-information/ Or contact: Florida Board of Nursing 4052 Bald Cypress Way, Bin # C-02 Tallahassee, FL 32399-3252 Direct Line: (850)245-4125/Direct Fax: (850)617-6450 Email: [email protected] Call to Order Roll Call Committee Members: Doreen Cassarino, DNP, FNP-BC, BC-ADM, FAANP (Chair) Vicky Stone-Gale, DNP, FNP-C, MSN Jim Quinlan, DNP, ARNP Bernardo B. Fernandez, Jr., MD, MBA, FACP Joshua D. Lenchus, DO, RPh, FACP, SFHM Eduardo C. Oliveira, MD, MBA, FCCP Jeffrey Mesaros, PharmD, JD Attorney: Lee Ann Gustafson, Senior Assistant Attorney General Board Staff: Joe Baker, Jr., Executive Director Jessica Hollingsworth, Program Operations Administrator I. Review & Approve Minutes from June 29, 2016 Meeting II. Open Discussion A. Recommendations to the Board of Nursing for Rule Promulgation B. Reference Material 1. -
Pharmacopoeial Reference Standards and Their Current Lot Numbers EP, EPISA, ICRS, BP July 2019
Pharmacopoeial reference standards and their current lot numbers EP, EPISA, ICRS, BP July 2019 Mikromol Follow LGC on LinkedIn Dear user, This catalogue includes all pharmacopoeial reference materials from EP, EPISA, ICRS and BP available at LGC, as well as their current lot numbers. We update the catalogue on a monthly basis so that you can use the lot numbers to easily track the expiry dates of your stocked reference materials. We took the lot information from actual data from pharmacopoeias, correct at the time of production. We retained all spelling and information as provided by the pharmacopoeias. The list was compiled with caution, however, errors in this list may be possible, and LGC is not responsible for any consequences as a result of these errors, may it be errors in the original Pharmacopoeial data, or from LGC during compilation of this list. For any questions or orders please contact your local LGC office. You will find all contact details on the last page of this list. Alternatively, you can browse and buy pharmaceutical reference materials online at lgcstandards.com/mikromol. Stay connected via LinkedIn (LGC Mikromol) or Twitter @LGCMikromol. Kind regards Your LGC Standards Team LGC, Queens Road, Teddington, Middlesex, TW11 0LY, United Kingdom Tel: +44 (0)20 8943 8480 Fax: +44 (0)20 8943 7554 E-mail: [email protected] European Pharmacopoeia (EP) Available Current Unit Cat. No. Name What is new? since Batch No. Quantity EPY0001552 Abacavir for peak identification 1 10 mg EPY0001551 Abacavir for system suitability 1 -
LEGISLATIVE ASSEMBLY Question on Notice
LEGISLATIVE ASSEMBLY Question On Notice Thursday, 15 February 2018 2560. Ms M. M Quirk to the Minister for Police; I refer to the commencement of operation of the Road Traffic Amendment Act 2016 in March 2017 which introduced compulsory blood or urine samples to be taken from drivers involved in serious crashes, and I ask: (a) since March 2017 how many such samples have been taken; (b) for what specific substances are those blood or urine samples tested; (c) what are the results of those tests to date; and (d) what percentage of drivers have been found to have ingested more than one substance capable of impairing driving skills? Answer (a) The compulsory taking of blood from all drivers involved in serious crashes commenced on 10 March 2017. Between 10 March 2017 and 22 February 2018 (inclusive) a total of 398 blood test samples have been collected under the provision of the Road Traffic Amendment Act 2016. There have been no urine tests collected. (b) Please see attached table for a list of substances in blood sample that are identifiable in ChemCentre toxicology analysis (Paper Number). (c) Of the 398 blood samples collected, 48 are pending results of ChemCentre analysis. Of the 350 analysed, 259 samples had a specific substance(s) detected and 91 samples had no specific substance detected. d) Of the 259 samples with specific substance(s) detected, 92% were found to have multiple substances (more than one). Detectable Substances in Blood Samples capable of identification by the ChemCentre WA. ACETALDEHYDE AMITRIPTYLINE/NORTRIPTYLINE -
[Application Note]
[application note] SCREENING FOR ANABOLIC STEROIDS AND THEIR ESTERS USING HAIR ANALYZED BY GC TANDEM QUADRUPOLE MS Marie Bresson, Vincent Cirimele, Pascal Kintz, Marion Villain; Laboratoire Chemtox, Illkirch, France Timothy Jenkins, Waters Corporation, Manchester, UK Jean-Marc Joumier, Waters Corporations, St. Quentin en Yvelines, France INTRODUCTION Use of anabolic steroids was officially banned in the mid-1970s by two screening procedures were established: one, very rapid for sports authorities. The first control of anabolic steroids (particu- classic compounds; the second, milder, to test for the ester forms, larly metandienone found in Dianabol) was achieved in Montreal in that will again increase the specificity of the investigation. 1976 during the Olympic games.1 The official detection of anabolic steroid misuse in sports is based on the analysis of urine samples. However, some athletes take long- term treatment of anabolic steroids during the winter months and stop before the competition,2 or will take them for periods ranging from four to 18 weeks, alternating with drug-free periods of one month to one year.3 This is the reason why abusers can be found drug-free. Anabolic steroids are detectable in urine only two to four days after exposure, except for the ester forms. Hair specimens have been used for 20 years in toxicology to docu- ment long-term exposure in various forensic, occupational, and Figure 1. clinical situations.3 Structures of anabolic steroids Hair analysis allows an increase in the detection window (from detected by weeks to months) depending on the hair length. It allows a distinc- GC/MS/MS. tion to be made between a single or a repetitive use, and documents an estimation of consumed quantities.4-7 For this reason, doping during training and abstinence during competition can be detected by hair analysis.