The Science and Applications of Ultrafast, Ultraintense Lasers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Application of the Theory of Laser to Nitrogen Laser Pumped Dye Laser
SD9900039 AN APPLICATION OF THE THEORY OF LASER TO NITROGEN LASER PUMPED DYE LASER FATIMA AHMED OSMAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physics. UNIVERSITY OF KHARTOUM FACULTY OF SCIENCE DEPARTMENT OF PHYSICS MARCH 1998 \ 3 0-44 In this thesis we gave a general discussion on lasers, reviewing some of are properties, types and applications. We also conducted an experiment where we obtained a dye laser pumped by nitrogen laser with a wave length of 337.1 nm and a power of 5 Mw. It was noticed that the produced radiation possesses ^ characteristic^ different from those of other types of laser. This' characteristics determine^ the tunability i.e. the possibility of choosing the appropriately required wave-length of radiation for various applications. DEDICATION TO MY BELOVED PARENTS AND MY SISTER NADI A ACKNOWLEDGEMENTS I would like to express my deep gratitude to my supervisor Dr. AH El Tahir Sharaf El-Din, for his continuous support and guidance. I am also grateful to Dr. Maui Hammed Shaded, for encouragement, and advice in using the computer. Thanks also go to Ustaz Akram Yousif Ibrahim for helping me while conducting the experimental part of the thesis, and to Ustaz Abaker Ali Abdalla, for advising me in several respects. I also thank my teachers in the Physics Department, of the Faculty of Science, University of Khartoum and my colleagues and co- workers at laser laboratory whose support and encouragement me created the right atmosphere of research for me. Finally I would like to thank my brother Salah Ahmed Osman, Mr. -
Near-Infrared Optical Modulation for Ultrashort Pulse Generation Employing Indium Monosulfide (Ins) Two-Dimensional Semiconductor Nanocrystals
nanomaterials Article Near-Infrared Optical Modulation for Ultrashort Pulse Generation Employing Indium Monosulfide (InS) Two-Dimensional Semiconductor Nanocrystals Tao Wang, Jin Wang, Jian Wu *, Pengfei Ma, Rongtao Su, Yanxing Ma and Pu Zhou * College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; [email protected] (T.W.); [email protected] (J.W.); [email protected] (P.M.); [email protected] (R.S.); [email protected] (Y.M.) * Correspondence: [email protected] (J.W.); [email protected] (P.Z.) Received: 14 May 2019; Accepted: 3 June 2019; Published: 7 June 2019 Abstract: In recent years, metal chalcogenide nanomaterials have received much attention in the field of ultrafast lasers due to their unique band-gap characteristic and excellent optical properties. In this work, two-dimensional (2D) indium monosulfide (InS) nanosheets were synthesized through a modified liquid-phase exfoliation method. In addition, a film-type InS-polyvinyl alcohol (PVA) saturable absorber (SA) was prepared as an optical modulator to generate ultrashort pulses. The nonlinear properties of the InS-PVA SA were systematically investigated. The modulation depth and saturation intensity of the InS-SA were 5.7% and 6.79 MW/cm2, respectively. By employing this InS-PVA SA, a stable, passively mode-locked Yb-doped fiber laser was demonstrated. At the fundamental frequency, the laser operated at 1.02 MHz, with a pulse width of 486.7 ps, and the maximum output power was 1.91 mW. By adjusting the polarization states in the cavity, harmonic mode-locked phenomena were also observed. To our knowledge, this is the first time an ultrashort pulse output based on InS has been achieved. -
Pulse Shaping and Ultrashort Laser Pulse Filamentation for Applications in Extreme Nonlinear Optics Antonio Lotti
Pulse shaping and ultrashort laser pulse filamentation for applications in extreme nonlinear optics Antonio Lotti To cite this version: Antonio Lotti. Pulse shaping and ultrashort laser pulse filamentation for applications in extreme nonlinear optics. Optics [physics.optics]. Ecole Polytechnique X, 2012. English. pastel-00665670 HAL Id: pastel-00665670 https://pastel.archives-ouvertes.fr/pastel-00665670 Submitted on 2 Feb 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITA` DEGLI STUDI DELL’INSUBRIA ECOLE´ POLYTECHNIQUE THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF PHILOSOPHIÆ DOCTOR IN PHYSICS Pulse shaping and ultrashort laser pulse filamentation for applications in extreme nonlinear optics. Antonio Lotti Date of defense: February 1, 2012 Examining committee: ∗ Advisor Daniele FACCIO Assistant Prof. at University of Insubria Advisor Arnaud COUAIRON Senior Researcher at CNRS Reviewer John DUDLEY Prof. at University of Franche-Comte´ Reviewer Danilo GIULIETTI Prof. at University of Pisa President Antonello DE MARTINO Senior Researcher at CNRS Paolo DI TRAPANI Associate Prof. at University of Insubria Alberto PAROLA Prof. at University of Insubria Luca TARTARA Assistant Prof. at University of Pavia ∗ current position: Reader in Physics at Heriot-Watt University, Edinburgh Abstract English abstract This thesis deals with numerical studies of the properties and applications of spatio-temporally coupled pulses, conical wavepackets and laser filaments, in strongly nonlinear processes, such as harmonic generation and pulse reshap- ing. -
Autocorrelation and Frequency-Resolved Optical Gating Measurements Based on the Third Harmonic Generation in a Gaseous Medium
Appl. Sci. 2015, 5, 136-144; doi:10.3390/app5020136 OPEN ACCESS applied sciences ISSN 2076-3417 www.mdpi.com/journal/applsci Article Autocorrelation and Frequency-Resolved Optical Gating Measurements Based on the Third Harmonic Generation in a Gaseous Medium Yoshinari Takao 1,†, Tomoko Imasaka 2,†, Yuichiro Kida 1,† and Totaro Imasaka 1,3,* 1 Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; E-Mails: [email protected] (Y.T.); [email protected] (Y.K.) 2 Laboratory of Chemistry, Graduate School of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540, Japan; E-Mail: [email protected] 3 Division of Optoelectronics and Photonics, Center for Future Chemistry, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-92-802-2883; Fax: +81-92-802-2888. Academic Editor: Takayoshi Kobayashi Received: 7 April 2015 / Accepted: 3 June 2015 / Published: 9 June 2015 Abstract: A gas was utilized in producing the third harmonic emission as a nonlinear optical medium for autocorrelation and frequency-resolved optical gating measurements to evaluate the pulse width and chirp of a Ti:sapphire laser. Due to a wide frequency domain available for a gas, this approach has potential for use in measuring the pulse width in the optical (ultraviolet/visible) region beyond one octave and thus for measuring an optical pulse width less than 1 fs. -
Ultrafast Fiber Lasers Enabled by Highly Nonlinear Pulse Evolutions
ULTRAFAST FIBER LASERS ENABLED BY HIGHLY NONLINEAR PULSE EVOLUTIONS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Walter Pupin Fu August 2019 c 2019 Walter Pupin Fu ALL RIGHTS RESERVED ULTRAFAST FIBER LASERS ENABLED BY HIGHLY NONLINEAR PULSE EVOLUTIONS Walter Pupin Fu, Ph.D. Cornell University 2019 Ultrafast lasers have had tremendous impact on both science and applications, far beyond what their inventors could have imagined. Commercially-available solid-state lasers can readily generate coherent pulses lasting only a few tens of femtoseconds. The availability of such short pulses, and the huge peak in- tensities they enable, has allowed scientists and engineers to probe and manip- ulate materials to an unprecedented degree. Nevertheless, the scope of these advances has been curtailed by the complexity, size, and unreliability of such devices. For all the progress that laser science has made, most ultrafast lasers remain bulky, solid-state systems prone to misalignments during heavy use. The advent of fiber lasers with capabilities approaching that of traditional, solid-state lasers offers one means of solving these problems. Fiber systems can be fully integrated to be alignment-free, while their waveguide structure en- sures nearly perfect beam quality. However, these advantages come at a cost: the tight confinement and long interaction lengths make both linear and non- linear effects significant in shaping pulses. Much research over the past few decades has been devoted to harnessing and managing these effects in the pur- suit of fiber lasers with higher powers, stronger intensities, and shorter pulse durations. -
Population Inversion X-Ray Laser Oscillator
Population inversion X-ray laser oscillator Aliaksei Halavanaua, Andrei Benediktovitchb, Alberto A. Lutmanc , Daniel DePonted, Daniele Coccoe , Nina Rohringerb,f, Uwe Bergmanng , and Claudio Pellegrinia,1 aAccelerator Research Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025; bCenter for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg 22607, Germany; cLinac & FEL division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025; dLinac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025; eLawrence Berkeley National Laboratory, Berkeley, CA 94720; fDepartment of Physics, Universitat¨ Hamburg, Hamburg 20355, Germany; and gStanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 Contributed by Claudio Pellegrini, May 13, 2020 (sent for review March 23, 2020; reviewed by Roger Falcone and Szymon Suckewer) Oscillators are at the heart of optical lasers, providing stable, X-ray free-electron lasers (XFELs), first proposed in 1992 transform-limited pulses. Until now, laser oscillators have been (8, 9) and developed from the late 1990s to today (10), are a rev- available only in the infrared to visible and near-ultraviolet (UV) olutionary tool to explore matter at the atomic length and time spectral region. In this paper, we present a study of an oscilla- scale, with high peak power, transverse coherence, femtosecond tor operating in the 5- to 12-keV photon-energy range. We show pulse duration, and nanometer to angstrom wavelength range, that, using the Kα1 line of transition metal compounds as the but with limited longitudinal coherence and a photon energy gain medium, an X-ray free-electron laser as a periodic pump, and spread of the order of 0.1% (11). -
A Laser (From the Acronym Light Amplification by Stimulated Emission of Radiation) Is an Optical Source That Emits Photons in a Coherent Beam
LASER A laser (from the acronym Light Amplification by Stimulated Emission of Radiation) is an optical source that emits photons in a coherent beam. The verb to lase means "to produce coherent light" or possibly "to cut or otherwise treat with coherent light", and is a back- formation of the term laser. Laser light is typically near-monochromatic, i.e. consisting of a single wavelength or color, and emitted in a narrow beam. This is in contrast to common light sources, such as the incandescent light bulb, which emit incoherent photons in almost all directions, usually over a wide spectrum of wavelengths. Laser action is explained by the theories of quantum mechanics and thermodynamics. Many materials have been found to have the required characteristics to form the laser gain medium needed to power a laser, and these have led to the invention of many types of lasers with different characteristics suitable for different applications. The laser was proposed as a variation of the maser principle in the late 1950's, and the first laser was demonstrated in 1960. Since that time, laser manufacturing has become a multi- billion dollar industry, and the laser has found applications in fields including science, industry, medicine, and consumer electronics. Contents [hide] 1 Physics 2 History 2.1 Recent innovations 3 Uses 3.1 Popular misconceptions 3.2 "LASER" 3.3 Scientific misconceptions 4 Laser safety 5 Categories 5.1 By type 5.2 By output power 6 See also 7 Further reading 7.1 Books 7.2 Periodicals 8 References 9 External links [edit] Physics See also: Laser science Principal components: 1. -
14. Measuring Ultrashort Laser Pulses I: Autocorrelation the Dilemma the Goal: Measuring the Intensity and Phase Vs
14. Measuring Ultrashort Laser Pulses I: Autocorrelation The dilemma The goal: measuring the intensity and phase vs. time (or frequency) Why? The Spectrometer and Michelson Interferometer 1D Phase Retrieval Autocorrelation 1D Phase Retrieval E(t) Single-shot autocorrelation E(t–) The Autocorrelation and Spectrum Ambiguities Third-order Autocorrelation Interferometric Autocorrelation 1 The Dilemma In order to measure an event in time, you need a shorter one. To study this event, you need a strobe light pulse that’s shorter. Photograph taken by Harold Edgerton, MIT But then, to measure the strobe light pulse, you need a detector whose response time is even shorter. And so on… So, now, how do you measure the shortest event? 2 Ultrashort laser pulses are the shortest technological events ever created by humans. It’s routine to generate pulses shorter than 10-13 seconds in duration, and researchers have generated pulses only a few fs (10-15 s) long. Such a pulse is to one second as 5 cents is to the US national debt. Such pulses have many applications in physics, chemistry, biology, and engineering. You can measure any event—as long as you’ve got a pulse that’s shorter. So how do you measure the pulse itself? You must use the pulse to measure itself. But that isn’t good enough. It’s only as short as the pulse. It’s not shorter. Techniques based on using the pulse to measure itself are subtle. 3 Why measure an ultrashort laser pulse? To determine the temporal resolution of an experiment using it. To determine whether it can be made even shorter. -
Femtosecond Pulse Generation
Femto-UP 2020-21 School Femtosecond Pulse Generation Adeline Bonvalet Laboratoire d’Optique et Biosciences CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France 1 Definitions Electric field of a 10-fs 800-nm pulse nano 10-9 sec pico 10-12 femto 10-15 2,7 fs atto 10-18 10 fs time 2 Many properties Electric field of a 10-fs 800-nm pulse High peaki power (Energy /Duration) Ultrashorti Duration Spectral Properties i (Frequency Comb) time 3 Time-resolved spectroscopy Electric field of a 10-fs 800-nm pulse Ultrashorti Duration Time-resolved spectroscopy Direct observation of ultrafast motions time Ahmed Zewail, Nobel Prize in chemistry 1999, femtochemistry 4 Imaging Electric field of a 10-fs 800-nm pulse High peaki power (Energy /Duration) Nonlinear microscopy time 5 Material processing Electric field of a 10-fs 800-nm pulse High peaki power (Energy /Duration) Laser matter interaction Drilling, cutting, etching,… time Areas of applications : aeronautics, electronics, medical,6 optics… Light matter interaction Electric field of a 10-fs 800-nm pulse High peaki power (Energy /Duration) Ability to reach extreme conditions (amplified system) Applications : Sources of intense particles beams, X-rays, high energy density science, laboratory astroprophysics … time 7 Metrology Electric field of a 10-fs 800-nm pulse Spectral Properties i (Frequency Comb) Nobel Prize 2005 "for their contributions to the development of laser-based time precision spectroscopy, including the optical frequency comb technique." 8 Outline -
Chirped-Pulse Amplification Ultrahigh Peak Power Production from Compact Short-Pulse Laser Systems
TUTORIAL Chirped-Pulse Amplification Ultrahigh peak power production from compact short-pulse laser systems Introduction of chirped-pulse ampli- It turns out that the hint to a solution THE AUTHOR fication (CPA) enabled the latest revolu- of this problem can be found as early as tion in production of high peak powers the time of the demonstration of the first from lasers through amplification of very laser, but the idea has been initially pro- IGOR JOVANOVIC posed to overcome a different issue – the short (femtosecond) laser pulses to pulse Igor Jovanovic is an power limitations of radars [1]. In 1985 it energies previously available only from Associate Professor of was realized by the group at the University long-pulse lasers. CPA has rapidly bridged Nuclear Engineering at of Rochester led by Gérard Mourou that the gap from its initial modest demon- Penn State University. this technique, termed chirped-pulse am- strations to multi-terawatt and petawatt- He received his undergraduate degree plification (CPA) [2], can also be applied in scale systems in research facilities and from the University of Zagreb in 1997 the optical domain, with revolutionary con- universities, as well as numerous lower- and his Ph.D. from the University of sequences for laser science and technology California, Berkeley in 2001. He is one of power scientific and industrial applica- and its applications. The idea of CPA is in- the pioneers of the technique of optical tions. deed simple and beautiful: given the limita- parametric chirped-pulse amplification. tions encountered by ultrashort laser pulses After receiving his Ph.D. -
EXPERIMENT on SUPPRESSION of SPONTANEOUS UNDULATOR RADIATION at ATF* Vladimir N
MOPC82 Proceedings of FEL2009, Liverpool, UK EXPERIMENT ON SUPPRESSION OF SPONTANEOUS UNDULATOR * RADIATION AT ATF Vladimir N. Litvinenko† and Vitaly Yakimenko, Brookhaven National Laboratory, Upton, USA Center for Accelerator Science and Education, Stony Brook University, and BNL Abstract We propose undertaking a demonstration experiment on SHOT-NOISE SUPPRESSOR suppressing spontaneous undulator radiation from an Fig. 1 is a schematic of the proof-of-principle for a electron beam at BNL’s Accelerator Test Facility (ATF). laser-based suppressor of shot-noise and spontaneous We describe the method, the proposed layout, and a radiation for a relativistic electron beam. The shot-noise possible schedule. (spontaneous radiation) suppressor system comprises of two short wigglers tuned at the wavelength of a INTRODUCTION broadband laser-amplifier, a transport system for the There are several advantages in strongly suppressing electron beam around the laser, and the buncher. shot noise in the electron beam, and the corresponding The suppressor works as follows: The electron beam spontaneous radiation. passes through the first wiggler where it spontaneously The self-amplified spontaneous (SASE) emission emits radiation proportional to the local values of shot originating from shot noise in the electron beam is the noise. Then, this radiation traverses a high-gain, main source of noise in high-gain FEL amplifiers. It may broadband laser amplifier. In the second wiggler, an negatively affect several HG FEL applications ranging electron interacts with the amplified radiation induced by from single- to multi-stage HGHG FELs [1]. SASE the neighboring electrons, and accordingly, its energy is saturation also imposes a fundamental hard limit on the changed. -
Ultrashort Laser Pulses I
Ultrashort Laser Pulses I Description of pulses Intensity and phase The instantaneous frequency and group delay Zero th and first-order phase Prof. Rick Trebino Georgia Tech The linearly chirped Gaussian pulse www.frog.gatech.edu An ultrashort laser ) t I( t ) ( pulse has an intensity X and phase vs. time. Neglecting the spatial dependence for field Electric now, the pulse electric field is given by: Time [fs] X ∝1 ω −φ + (t )2 I( t ) exp{ it [0 (t) ]} cc. Intensity Carrier Phase frequency A sharply peaked function for the intensity yields an ultrashort pulse. The phase tells us the color evolution of the pulse in time. The real and complex ) t I( t ) pulse amplitudes ( X X Removing the 1/2, the c.c., and the exponential factor with the carrier frequency yields the complex amplitude, E(t), of the pulse: field Electric E(t )∝I( t ) exp{ − i φ(t ) } Time [fs] This removes the rapidly varying part of the pulse electric field and yields a complex quantity, which is actually easier to calculate with. I( t ) is often called the real amplitude, A(t), of the pulse. The Gaussian pulse For almost all calculations, a good first approximation for any ultrashort pulse is the Gaussian pulse (with zero phase). = − τ 2 EtE( )0 exp ( t /HW 1/ e ) = − τ 2 E0 exp 2ln 2( t /FWHM ) = − τ 2 E0 exp 1.38( t /FWHM ) τ τ where HW1/e is the field half-width-half-maximum, and FWHM is the intensity full-width-half-maximum. 2 The intensity is: ∝ − τ 2 ItE()0 exp 4ln2(/ t FWHM ) ∝2 − τ 2 E0 exp 2.76( t /FWHM ) Intensity vs.