Guide to Identifying the Order and Family of Larval Fish of the South
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BONY FISHES 602 Bony Fishes
click for previous page BONY FISHES 602 Bony Fishes GENERAL REMARKS by K.E. Carpenter, Old Dominion University, Virginia, USA ony fishes constitute the bulk, by far, of both the diversity and total landings of marine organisms encoun- Btered in fisheries of the Western Central Atlantic.They are found in all macrofaunal marine and estuarine habitats and exhibit a lavish array of adaptations to these environments. This extreme diversity of form and taxa presents an exceptional challenge for identification. There are 30 orders and 269 families of bony fishes presented in this guide, representing all families known from the area. Each order and family presents a unique suite of taxonomic problems and relevant characters. The purpose of this preliminary section on technical terms and guide to orders and families is to serve as an introduction and initial identification guide to this taxonomic diversity. It should also serve as a general reference for those features most commonly used in identification of bony fishes throughout the remaining volumes. However, I cannot begin to introduce the many facets of fish biology relevant to understanding the diversity of fishes in a few pages. For this, the reader is directed to one of the several general texts on fish biology such as the ones by Bond (1996), Moyle and Cech (1996), and Helfman et al.(1997) listed below. A general introduction to the fisheries of bony fishes in this region is given in the introduction to these volumes. Taxonomic details relevant to a specific family are explained under each of the appropriate family sections. The classification of bony fishes continues to transform as our knowledge of their evolutionary relationships improves. -
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra. -
Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’H, F
Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’h, F. and Albouy, C. 2016. Forecasting fine- scale changes in the food-web structure of coastal marine communities under climate change. – Ecography doi: 10.1111/ecog.01937 Supplementary material Forecasting fine-scale changes in the food-web structure of coastal marine communities under climate change by Hattab et al. Appendix 1 List of coastal exploited marine species considered in this study Species Genus Order Family Class Trophic guild Auxis rochei rochei (Risso, 1810) Auxis Perciformes Scombridae Actinopterygii Top predators Balistes capriscus Gmelin, 1789 Balistes Tetraodontiformes Balistidae Actinopterygii Macro-carnivorous Boops boops (Linnaeus, 1758) Boops Perciformes Sparidae Actinopterygii Basal species Carcharhinus plumbeus (Nardo, 1827) Carcharhinus Carcharhiniformes Carcharhinidae Elasmobranchii Top predators Dasyatis pastinaca (Linnaeus, 1758) Dasyatis Rajiformes Dasyatidae Elasmobranchii Top predators Dentex dentex (Linnaeus, 1758) Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Dentex maroccanus Valenciennes, 1830 Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Diplodus annularis (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Forage species Diplodus sargus sargus (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Macro-carnivorous (Geoffroy Saint- Diplodus vulgaris Hilaire, 1817) Diplodus Perciformes Sparidae Actinopterygii Basal species Engraulis encrasicolus (Linnaeus, 1758) Engraulis -
Appendix 1. (Online Supplementary Material) Species, Gliding Strategies
Appendix 1. (Online Supplementary Material) Species, gliding strategies, species distributions, geographic range sizes, habitat, and egg buoyancy characteristics used for concentrated changes tests. Species Gliding strategy Species distribution (reference #) Geographic range size Habitat (reference #) Egg buoyancy (reference #) Cheilopogon abei (Parin, 1996) 4 wings Indian, Indo-Pacific (1) 2 or more ocean basins meroepipelagic (1) Buoyant (2) Cheilopogon atrisignis (Jenkins, 1903) 4 wings Indian, Pacific (1) 2 or more ocean basins meroepipelgic (3) Buoyant (4) Cheilopogon cyanopterus (Valenciennes, 1847) 4 wings Atlantic, Indo-Pacific (2) 2 or more ocean basins meroepipelgic (3) Non-Buoyant (5) Cheilopogon dorsomacula (Fowler, 1944) 4 wings Pacific (1) within 1 ocean basin holoepipelagic (1) Buoyant (2) Cheilopogon exsiliens (Linnaeus, 1771) 4 wings Atlantic (2) within 1 ocean basin holoepipelagic (3) Buoyant (2,5) Cheilopogon furcatus (Mitchill, 1815) 4 wings Atlantic, Indian, Pacific (6) 2 or more ocean basins holoepipelagic (3) Non-Buoyant (5) Cheilopogon melanurus (Valenciennes, 1847) 4 wings Atlantic (7) within 1 ocean basin meroepipelagic (7) Non-Buoyant (5,8) Cheilopogon pinnatibarbatus (californicus) (Cooper, 1863) 4 wings eastern tropical Pacific (9) within 1 ocean basin meroepipelgic (3) Non-Buoyant (10) Cheilopogon spilonotopterus (Bleeker, 1865) 4 wings Indian and Pacific (1) 2 or more ocean basins meroepipelgic (3) Buoyant (4) Cheilopogon xenopterus (Gilbert, 1890) 4 wings eastern tropical Pacific (11) within 1 ocean basin -
Acanthopterygii, Bone, Eurypterygii, Osteology, Percomprpha
Research in Zoology 2014, 4(2): 29-42 DOI: 10.5923/j.zoology.20140402.01 Comparative Osteology of the Jaws in Representatives of the Eurypterygian Fishes Yazdan Keivany Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan, 84156-83111, Iran Abstract The osteology of the jaws in representatives of 49 genera in 40 families of eurypterygian fishes, including: Aulopiformes, Myctophiformes, Lampridiformes, Polymixiiformes, Percopsiformes, Mugiliformes, Atheriniformes, Beloniformes, Cyprinodontiformes, Stephanoberyciformes, Beryciformes, Zeiformes, Gasterosteiformes, Synbranchiformes, Scorpaeniformes (including Dactylopteridae), and Perciformes (including Elassomatidae) were studied. Generally, in this group, the upper jaw consists of the premaxilla, maxilla, and supramaxilla. The lower jaw consists of the dentary, anguloarticular, retroarticular, and sesamoid articular. In higher taxa, the premaxilla bears ascending, articular, and postmaxillary processes. The maxilla usually bears a ventral and a dorsal articular process. The supramaxilla is present only in some taxa. The dentary is usually toothed and bears coronoid and posteroventral processes. The retroarticular is small and located at the posteroventral corner of the anguloarticular. Keywords Acanthopterygii, Bone, Eurypterygii, Osteology, Percomprpha following method for clearing and staining bone and 1. Introduction cartilage provided in reference [18]. A camera lucida attached to a Wild M5 dissecting stereomicroscope was used Despite the introduction of modern techniques such as to prepare the drawings. The bones in the first figure of each DNA sequencing and barcoding, osteology, due to its anatomical section are arbitrarily shaded and labeled and in reliability, still plays an important role in the systematic the others are shaded in a consistent manner (dark, medium, study of fishes and comprises a major percent of today’s and clear) to facilitate comparison among the taxa. -
Maximizing Offspring Production While Maintaining Genetic Diversity in Supplemental Breeding Programs of Highly Fecund Managed Species
Conservation in Practice Maximizing Offspring Production While Maintaining Genetic Diversity in Supplemental Breeding Programs of Highly Fecund Managed Species ANTHONY C. FIUMERA,∗‡ BRADY A. PORTER,∗§ GREG LOONEY,† MARJORIE A. ASMUSSEN,∗ AND JOHN C. AVISE∗ ∗Department of Genetics, University of Georgia, Athens, GA 30602, U.S.A. †Warm Spring Fish Technology Center, 5308 Spring Street, Warm Springs, GA 31830, U.S.A. Abstract: Supplemental breeding is an intensive population management strategy wherein adults are cap- tured from nature and spawned in controlled settings, and the resulting offspring are later released into the wild. To be effective, supplemental breeding programs require crossing strategies that maximize offspring production while maintaining genetic diversity within each supplemental year class. We used computer simula- tions to assess the efficacy of different mating designs to jointly maximize offspring production and maintain high levels of genetic diversity (as measured by the effective population size) under a variety of biological conditions particularly relevant to species with high fecundity and external fertilization, such as many fishes. We investigated four basic supplemental breeding designs involving either monogamous pairings or complete factorial designs (in which every female is mated to every male and vice versa), each with or without the added stipulation that all breeders contribute equally to the total reproductive output. In general, complete factorial designs that did not equalize parental contributions came closest to the goal of maximizing offspring production while still maintaining relatively large effective population sizes. Next, we estimated the effective population size of 10 different supplemental year classes within the breeding program of the robust redhorse (Moxostoma robustum). -
Belonidae Bonaparte 1832 Needlefishes
ISSN 1545-150X California Academy of Sciences A N N O T A T E D C H E C K L I S T S O F F I S H E S Number 16 September 2003 Family Belonidae Bonaparte 1832 needlefishes By Bruce B. Collette National Marine Fisheries Service Systematics Laboratory National Museum of Natural History, Washington, DC 20560–0153, U.S.A. email: [email protected] Needlefishes are a relatively small family of beloniform fishes (Rosen and Parenti 1981 [ref. 5538], Collette et al. 1984 [ref. 11422]) that differ from other members of the order in having both the upper and the lower jaws extended into long beaks filled with sharp teeth (except in the neotenic Belonion), the third pair of upper pharyngeal bones separate, scales on the body relatively small, and no finlets following the dorsal and anal fins. The nostrils lie in a pit anterior to the eyes. There are no spines in the fins. The dorsal fin, with 11–43 rays, and anal fin, with 12–39 rays, are posterior in position; the pelvic fins, with 6 soft rays, are located in an abdominal position; and the pectoral fins are short, with 5–15 rays. The lateral line runs down from the pectoral fin origin and then along the ventral margin of the body. The scales are small, cycloid, and easily detached. Precaudal vertebrae number 33–65, caudal vertebrae 19–41, and total verte- brae 52–97. Some freshwater needlefishes reach only 6 or 7 cm (2.5 or 2.75 in) in total length while some marine species may attain 2 m (6.5 ft). -
Latris Lineata) in a Data Limited Situation
Assessing the population dynamics and stock viability of striped trumpeter (Latris lineata) in a data limited situation Sean Tracey B. App. Sci. [Fisheries](AMC) A thesis submitted for the degree of Doctor of Philosophy University of Tasmania February 2007 Supervisors Dr. J. Lyle Dr. A. Hobday For my family...Anj and Kails Statement of access I, the undersigned, the author of this thesis, understand that the University of Tas- mania will make it available for use within the university library and, by microfilm or other photographic means, and allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: ‘In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part, or use the results in any other work (written or otherwise) without the signed consent of the author; and to make proper written acknowledgment for any other assistance which I have obtained from it.’ Beyond this, I do not wish to place any restrictions on access to this thesis. Signed: .......................................Date:........................................ Sean Tracey Candidate University of Tasmania Declaration I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary edu- cation. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given. Signed: .......................................Date:........................................ Sean Tracey Candidate University of Tasmania Statement of co-authorship Chapters 2 – 5 of this thesis have been prepared as scientific manuscripts. -
(Teleostei: Pempheridae) from the Western Indian Ocean
Zootaxa 3780 (2): 388–398 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3780.2.10 http://zoobank.org/urn:lsid:zoobank.org:pub:F42C1553-10B0-428B-863E-DCA8AC35CA44 Pempheris bexillon, a new species of sweeper (Teleostei: Pempheridae) from the Western Indian Ocean RANDALL D. MOOI1,2 & JOHN E. RANDALL3 1The Manitoba Museum, 190 Rupert Ave., Winnipeg MB, R3B 0N2 Canada. E-mail: [email protected] 2Department of Biological Sciences, Biological Sciences Bldg., University of Manitoba, Winnipeg MB, R3T 2N2 Canada 3Bishop Museum, 1525 Bernice St., Honolulu, HI 96817-2704 USA. E-mail: [email protected] Abstract Pempheris bexillon new species is described from the 129 mm SL holotype and 11 paratypes (119–141 mm SL) from the Comoro Islands. Twelve other specimens have been examined from the Agaléga Islands, Mascarene Islands, and Bassas da India (Madagascar). It is differentiated from other Pempheris by the following combination of characters: a yellow dor- sal fin with a black, distal margin along its full length, broadest on anterior rays (pupil-diameter width) and gradually nar- rowing posteriorly, the last ray with only a black tip; large, deciduous cycloid scales on the flank; dark, oblong spot on the pectoral-fin base; anal fin with a dark margin; segmented anal-fin rays 38–45 (usually >40); lateral-line scales 56–65; and total gill rakers on the first arch 31–35; iris reddish-brown. Tables of standard meristic and color data for type material of all nominal species of cycloid-scaled Pempheris in the Indo-Pacific are provided. -
Stanford Alumni', Bronze Tablet Dedicated June, 1931, University of Hawaii: "India Rubber Tree Planted by David Starr Jordan
Stanford Alumni', bronze tablet dedicated June, 1931, University of Hawaii: "India rubber tree planted by David Starr Jordan. Chancellor Emeritus. Leland Stanford Jr. University, December I I, 1922." Dr. Jordan recently celebrated his eightieth birthday. tnItnlinlintinitnItnItla 11:111C11/111/ 1/Oltial • • • • - !• • 4. ••• 4, a . ilmci, fittb _vittrfiri firtaga3utr . • CONDUCTED BY ALEXANDER HUME FORD • Volume XLII Number 4 • CONTENTS FOR. OCTOBER, 1931 • . Art Section—Fisheries in the Pacific - - - - 302 • History of Zoological Explorations of the Pacific Coast - 317 • By Dr. David Starr Jordan • Science Over the Radio . An Introduction to Insects in Hawaii - - - - 321 By E. H. Bryan, Jr. Insect Pests of Sugar Cane in Hawaii - - - - 325 By O. H. Swezey Some Insect Pests of Pineapple Plants - - - 328 By Dr. Walter Carter Termites in Hawaii - - - - - - - 331 • By E. M. Ehrhorn . The Mediterranean Fruit Fly - - - - 333 41 By a C. McBride Combating Garden Insects in Hawaii - - - - 335 • By Merrill K. Riley i Some Aspects of Biological Control in Hawaii - - 339 . By D. T. Fullaway • • The Minerals of Oahu - - - - - - - 341 By Dr. Arthur S. Eakle . Tropical America's Agricultural Gifts - - - - 344 By 0. F. Cook t • Two Bird Importations Into the South Seas - - - 351 • By Inez Wheeler Westgate • Dairying in New Zealand - - - - - - 355 By Reivi Alley Oyer-Production eof Rice in Japan - - - - - 357 Tai-Kam Island Leper Colony of China - - - - 363 By A. C. Deckelman Journal of the•Pan-Pacific Research Institution, Vol. VI. No. 4 Bulletin of the Pan-Pacific Union, New Series, No. 140 CE Ile ItIth-liariftr flatuuninr Published monthly by ALEXANDER HUME FORD, 301 Pan-Pacific Building, Honolulu, T. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.