Chinese Mitten Crab (Eriocheir Sinensis) What Is It?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Eriocheir Sinensis Potential in RI COASTAL WATERS Chinese Mitten Crab Invader
GUIDE TO MARINE INVADERS Eriocheir sinensis Potential IN RI COASTAL WATERS Chinese mitten crab Invader PHYSICAL DESCRIPTION • Dense fuzzy patches on claws of adults and larger juveniles (>1 inch) • Regenerated claws and claws of smaller juveniles may not have fuzz • Claws are equally sized and white-tipped • Four lateral spines on each side of carapace (shell); notch between the eyes • Carapace light-brown to olive green color; width up to 4 in (10 cm) • Sharp-tipped walking legs of adult over twice as long as carapace width Lee Mecum, CDF&G notch Adult Eriocheir sinensis fuzzy claws with HABITAT PREFERENCE white pincers • Catadromous life cycle: begins as estuarine larva, migrates into freshwater streams for 1-4 years, then returns to coast to reproduce 4 lateral • Burrows in the bottom and banks of freshwater rivers and estuaries spines • Tolerates a wide range of temperatures • Able to survive in highly altered and polluted aquatic habitats • Adept at walking on land and around barriers • Nondiscriminating omnivores that consume plants and prey on fish and benthic invertebrates (clams, worms, shrimp) 1 2 3 4 5 6 © Rob Gough, DFBW 7 8 GUIDE TO MARINE INVADERS Eriocheir sinensis Potential IN RI COASTAL WATERS Chinese mitten crab Invader INVASION STATUS & ECOLOGICAL CONCERNS Native to east Asia, Eriocheir sinensis has achieved a global distribution that includes several countries in central and western Europe and most recently the U.S. Pacific and Atlantic coasts. In 1992, it was found reproducing in San Francisco Bay. By 1998, E.sinensis had spread throughout the bay and has since expanded upstream into the Sacramento and San Joaquin Rivers. -
Chinese Mitten Crab Eriocheir Sinensis Carrie Culver Stephan Gollasch, Gollaschstephan Consulting
SPECIES IN DEPTH ChineseChinese Mitten Mitten Crabs Crabs Chinese Mitten Crab Eriocheir sinensis Carrie Culver Stephan Gollasch, GollaschStephan Consulting. NATIVE AND INVASIVE RANGE ECOLOGY The Chinese mitten crab is native to the Habitat and food webs coastal rivers and estuaries of the Yellow Sea in Mitten crabs can survive a large range of salinities. China and Korea. It has been introduced and Larval development requires a water temperature of at spread throughout the San Francisco Bay water- least 9°C to survive with an optimal range of 15–18°C. shed and has migrated as far inland as the Sierra They are omnivorous and eat vegetation, detritus, Nevada foothills of California. Range expansion mollusks, crustaceans (amphipods, water fleas, and along the west coast is expected. A single male shrimp), fish, and aquatic insects. Japanese mitten crab was caught in the Colum- bia River in 1997, although no Chinese mit- Life stages ten crabs have been captured yet in Oregon or The Chinese mitten crab is unique because it Washington. The sightings are usually reported spawns in salt water and matures in freshwater (ca- by fishermen because Chinese mitten crabs are tadromous life cycle). This is opposite to species like known to be aggressive bait stealers. salmon (anadromous life cycle). The crab spends most UNITED STATES of its life in freshwater, then migrates to saltwater to DISTRIBUTION reproduce. These massive migrations have clogged fish hatchery equipment and hampered water delivery in In the United Northern California. The mitten crab is reported to States, the species is mature in 2–3 years in San Francisco Bay. -
Lobsters-Identification, World Distribution, and U.S. Trade
Lobsters-Identification, World Distribution, and U.S. Trade AUSTIN B. WILLIAMS Introduction tons to pounds to conform with US. tinents and islands, shoal platforms, and fishery statistics). This total includes certain seamounts (Fig. 1 and 2). More Lobsters are valued throughout the clawed lobsters, spiny and flat lobsters, over, the world distribution of these world as prime seafood items wherever and squat lobsters or langostinos (Tables animals can also be divided rougWy into they are caught, sold, or consumed. 1 and 2). temperate, subtropical, and tropical Basically, three kinds are marketed for Fisheries for these animals are de temperature zones. From such partition food, the clawed lobsters (superfamily cidedly concentrated in certain areas of ing, the following facts regarding lob Nephropoidea), the squat lobsters the world because of species distribu ster fisheries emerge. (family Galatheidae), and the spiny or tion, and this can be recognized by Clawed lobster fisheries (superfamily nonclawed lobsters (superfamily noting regional and species catches. The Nephropoidea) are concentrated in the Palinuroidea) . Food and Agriculture Organization of temperate North Atlantic region, al The US. market in clawed lobsters is the United Nations (FAO) has divided though there is minor fishing for them dominated by whole living American the world into 27 major fishing areas for in cooler waters at the edge of the con lobsters, Homarus americanus, caught the purpose of reporting fishery statis tinental platform in the Gul f of Mexico, off the northeastern United States and tics. Nineteen of these are marine fish Caribbean Sea (Roe, 1966), western southeastern Canada, but certain ing areas, but lobster distribution is South Atlantic along the coast of Brazil, smaller species of clawed lobsters from restricted to only 14 of them, i.e. -
Eriocheir Sinensis Potential in the GULF of MAINE Chinese Mitten Crab Invader
GUIDE TO MARINE INVADERS Eriocheir sinensis Potential IN THE GULF OF MAINE Chinese mitten crab Invader PHYSICAL DESCRIPTION • Dense fuzzy patches on claws of adults and larger juveniles (>1 inch) • Regenerated claws and claws of smaller juveniles may not have fuzz • Claws are equally sized and white-tipped • Four lateral spines on each side of carapace (shell); notch between the eyes • Carapace light-brown to olive green color; width up to 4 in (10 cm) • Sharp-tipped walking legs of adult over twice as long as carapace width Lee Mecum, CDF&G notch Adult Eriocheir sinensis fuzzy claws with HABITAT PREFERENCE white pincers • Catadromous life cycle: begins as estuarine larva, migrates into freshwater streams for 1-4 years, then returns to coast to reproduce 4 lateral • Burrows in the bottom and banks of freshwater rivers and estuaries spines • Tolerates a wide range of temperatures • Able to survive in highly altered and polluted aquatic habitats • Adept at walking on land and around barriers • Nondiscriminating omnivores that consume plants and prey on fish and benthic invertebrates (clams, worms, shrimp) Rob Gough 1 2 3 4 5 6 7 8 GUIDE TO MARINE INVADERS Eriocheir sinensis Potential IN THE GULF OF MAINE Chinese mitten crab Invader INVASION STATUS & ECOLOGICAL CONCERNS Native to east Asia, Eriocheir sinensis has achieved a global distribution that includes several countries in central and western Europe and most recently the U.S. Pacific and Atlantic coasts. In 1992, it was found reproducing in San Francisco Bay. By 1998, E.sinensis had spread throughout the bay and has since expanded upstream into the Sacramento and San Joaquin Rivers. -
Microstructure and Mechanical Properties of the Dactylopodites of the Chinese Mitten Crab (Eriocheir Sinensis)
applied sciences Article Microstructure and Mechanical Properties of the Dactylopodites of the Chinese Mitten Crab (Eriocheir sinensis) Ying Wang 1, Xiujuan Li 1,* ID , Jianqiao Li 1 and Feng Qiu 2 ID 1 Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; [email protected] (Y.W.); [email protected] (J.L.) 2 Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China; [email protected] * Correspondence: [email protected]; Tel.:+86-431-8509-5760 Received: 1 April 2018; Accepted: 21 April 2018; Published: 26 April 2018 Abstract: The dactylopodites of the Chinese mitten crab (Eriocheir sinensis) have evolved extraordinary resistance to wear and impact loading after direct contact with rough surfaces or clashing with hard materials. In this study, the microstructure, components, and mechanical properties of the dactylopodites of the Chinese mitten crab were investigated. Images from a scanning electron microscope show that the dactylopodites’ exoskeleton was multilayered, with an epicuticle, exocuticle, and endocuticle. Cross sections and longitudinal sections of the endocuticle revealed a Bouligand structure, which contributes to the dactylopodites’ mechanical properties. The main organic constituents of the exoskeleton were chitin and protein, and the major inorganic compound was CaCO3, crystallized as calcite. Dry and wet dactylopodites were brittle and ductile, respectively, characteristics that are closely related to their mechanical structure and composition. The findings of this study can be a reference for the bionic design of strong and durable structural materials. Keywords: dactylopodite; microstructure; composition; mechanical properties 1. Introduction After hundreds of millions of years of evolution, the functional properties of parts of organisms tend to have optimal structural and material characteristics, as well as excellent adaptability and longevity [1,2]. -
How to Become a Crab: Phenotypic Constraints on a Recurring Body Plan
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2020 doi:10.20944/preprints202012.0664.v1 How to become a crab: Phenotypic constraints on a recurring body plan Joanna M. Wolfe1*, Javier Luque1,2,3, Heather D. Bracken-Grissom4 1 Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA 2 Smithsonian Tropical Research Institute, Balboa–Ancon, 0843–03092, Panama, Panama 3 Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA 4 Institute of Environment and Department of Biological Sciences, Florida International University, Biscayne Bay Campus, 3000 NE 151 Street, North Miami, FL 33181, USA * E-mail: [email protected] Summary: A fundamental question in biology is whether phenotypes can be predicted by ecological or genomic rules. For over 140 years, convergent evolution of the crab-like body plan (with a wide and flattened shape, and a bent abdomen) at least five times in decapod crustaceans has been known as ‘carcinization’. The repeated loss of this body plan has been identified as ‘decarcinization’. We offer phylogenetic strategies to include poorly known groups, and direct evidence from fossils, that will resolve the pattern of crab evolution and the degree of phenotypic variation within crabs. Proposed ecological advantages of the crab body are summarized into a hypothesis of phenotypic integration suggesting correlated evolution of the carapace shape and abdomen. Our premise provides fertile ground for future studies of the genomic and developmental basis, and the predictability, of the crab-like body form. Keywords: Crustacea, Anomura, Brachyura, Carcinization, Phylogeny, Convergent evolution, Morphological integration 1 © 2020 by the author(s). -
Chinese Mitten Crab (Eriocheir Sinensis) in San Francisco Bay
Distribution, Ecology and Potential Impacts of the Chinese Mitten Crab (Eriocheir sinensis) in San Francisco Bay Deborah A Rudnick Kathleen M. Halat Vincent H. Resh Department of Environmental Science, Policy and Management University of California, Berkeley TECHNICAL COMPLETION REPORT Project Number: UCAL-WRC-W-881 University of California Water Resources Center Contribution #206 ISBN 1-887192-12-3 June 2000 The University of California prohibits discrimination against or harassment of any person employed by or seeking employment with the University on the basis of race, color, national origin, religion, sex, physical or mental disability, medical condition (cancer- related), ancestry, marital status, age, sexual orientation, citizenship or status as a Vietnam-era veteran or special disabled veteran. The University of California is an affirmative action/equal opportunity employer. The University undertakes affirmative action to assure equal employment opportunity for underutilized minorities and women, for persons with disabilities, and for Vietnam-era veterans and special disabled veterans. University policy is intended to be consistent with the provisions of applicable State and Federal law. Inquiries regarding this policy may be addressed to the Affirmative Action Director, University of California, Agriculture and Natural Resources, 300 Lakeside Drive, 6th Floor, Oakland, CA 94612-3560, (510) 987-0097. This publication is a continuation in the Water Resources Center Contribution series. It is published and distributed by the UNIVERSITY -
Cannibalism and Habitat Selection of Cultured Chinese Mitten Crab: Effects of Submerged Aquatic Vegetation with Different Nutritional and Refuge Values
water Article Cannibalism and Habitat Selection of Cultured Chinese Mitten Crab: Effects of Submerged Aquatic Vegetation with Different Nutritional and Refuge Values Qingfei Zeng 1,*, Erik Jeppesen 2,3, Xiaohong Gu 1,*, Zhigang Mao 1 and Huihui Chen 1 1 State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; [email protected] (Z.M.); [email protected] (H.C.) 2 Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; [email protected] 3 Sino-Danish Centre for Education and Research, University of CAS, Beijing 100190, China * Correspondence: [email protected] (Q.Z.); [email protected] (X.G.) Received: 26 September 2018; Accepted: 26 October 2018; Published: 29 October 2018 Abstract: We examined the food preference of Chinese mitten crabs, Eriocheir sinensis (H. Milne Edwards, 1853), under food shortage, habitat choice in the presence of predators, and cannibalistic behavior by comparing their response to the popular culture plant Elodea nuttallii and the structurally more complex Myriophyllum verticillatum L. in a series of mesocosm experiments. Mitten crabs were found to consume and thus reduce the biomass of Elodea, whereas no negative impact on Myriophyllum biomass was recorded. In the absence of adult crabs, juveniles preferred to settle in Elodea habitats (appearance frequency among the plants: 64.2 ± 5.9%) but selected for Myriophyllum instead when adult crabs were present (appearance frequency among the plants: 59.5 ± 4.9%). The mortality rate of mitten crabs in the absence of plant shelter was higher under food shortage, primarily due to cannibalism. -
Prospects of Red King Crab Hepatopancreas Processing: Fundamental and Applied Biochemistry
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2020 doi:10.20944/preprints202009.0263.v1 Article Prospects of Red King Crab Hepatopancreas Processing: Fundamental and Applied Biochemistry Tatyana Ponomareva 1, Maria Timchenko 1, Michael Filippov 1, Sergey Lapaev 1, and Evgeny Sogorin 1,* 1 Federal Research Center "Pushchino Scientific Center for Biological Research of the RAS", Pushchino, Russia * Correspondence: [email protected]; Tel.: +7-915-132-54-19 Abstract: Since the early 1980s, a large number of research works on enzymes from the red king crab hepatopancreas have been conducted. These studies have been relevant both from a fundamental point of view for studying the enzymes of marine organisms and in terms of the rational management of nature to obtain new and valuable products from the processing of crab fishing waste. Most of these works were performed by Russian scientists due to the area and amount of waste of red king crab processing in Russia (or the Soviet Union). However, the close phylogenetic kinship and the similar ecological niches of commercial crab species and the production scale of the catch provide the bases for the successful transfer of experience in the processing of red king crab hepatopancreas to other commercial crab species mined worldwide. This review describes the value of recycled commercial crab species, discusses processing problems, and suggests possible solutions to these problems. The main emphasis is placed on the enzymes of the hepatopancreas as the most highly salubrious product of waste processed from red king crab fishing. Keywords: marine fisheries; aquatic organisms; brachyura; anomura; commercial crab species; red king crab; Kamchatka crab; processing waste; hepatopancreas; waste recycling; enzymes; proteases; hyaluronidase 1. -
The Biology and Fisheries of the Slipper Lobster
The Biology and Fisheries of the Slipper Lobster Kari L. Lavalli College of General Studies Boston University Bo~ton, Massachusetts, U.S.A. Ehud Spanier The Leon Recanati Institute for Maritime Studies and Department of Maritime Civilizations University of Haifa Haifa, Israel 0 ~y~~F~~~~~oup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business Cover image courtesy of Megan Elizabeth Stover of the College of General Studies, Boston University, Boston, Massachusetts. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2007 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 0-8493-3398-9 (Hardcover) International Standard Book Number-13: 978-0-8493-3398-9 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. No part ofthis book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any informa tion storage or retrieval system, without written permission from the publishers. -
Global Journal of Science Frontier Research: D Agriculture &Veterinary
Online ISSN : 2249-4626 Print ISSN : 0975-5896 DOI : 10.17406/GJSFR Conventional Protein Sources Micro-Satellite DNA Markers Aspects of Growth Parameters Resistance to Trembling Disease VOLUME 17 ISSUE 2 VERSION 1.0 Global Journal of Science Frontier Research: D Agriculture &Veterinary Global Journal of Science Frontier Research: D Agriculture & Veterinary Volume 17 Issue 2 (Ver. 1.0) Open Association of Research Society © Global Journal of Science Global Journals Inc. Frontier Research. 2017 . (A Delaware USA Incorporation with “Good Standing”; Reg. Number: 0423089) Sponsors: Open Association of Research Society All rights reserved. Open Scientific Standards This is a special issue published in version 1.0 of “Global Journal of Science Frontier Publisher’s Headquarters office Research.” By Global Journals Inc. ® All articles are open access articles distributed Global Journals Headquarters under “Global Journal of Science Frontier 945th Concord Streets, Research” Framingham Massachusetts Pin: 01701, Reading License, which permits restricted use. United States of America Entire contents are copyright by of “Global Journal of Science Frontier Research” unless USA Toll Free: +001-888-839-7392 otherwise noted on specific articles. USA Toll Free Fax: +001-888-839-7392 No part of this publication may be reproduced Offset Typesetting or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information Global Journals Incorporated storage and retrieval system, without written 2nd, Lansdowne, Lansdowne Rd., Croydon-Surrey, permission. Pin: CR9 2ER, United Kingdom The opinions and statements made in this book are those of the authors concerned. Packaging & Continental Dispatching Ultraculture has not verified and neither confirms nor denies any of the foregoing and no warranty or fitness is implied. -
Fishermen Recording Marine Invasive Species
Fishermen recording marine invasive species Mark Gray Welsh Fishermen’s Association – Cymdeithas Pywgotwyr Cymru http://wfa-cpc.wales/ The national voice of Welsh fishermen Welsh Fishermen’s Association – Cymdeithas Pysgotwyr Cymru Introduction • The Welsh Fishermen’s Association • Invasive non-native marine species (INNS) recording project • Future role for fisher’s recording marine data Welsh Fishermen’s Association – Cymdeithas Pysgotwyr Cymru INNS project – why? • Threat to biodiversity and commercial fisheries • Legislation and government policy • Demonstrate fishers’ capability Welsh Fishermen’s Association – Cymdeithas Pysgotwyr Cymru INNS project – species Eleven INNS were chosen for the trial: American lobster (Homarus americanus) Slipper limpet (Crepidula fornicata) American oyster drill (Urosalpinx cinereal) Chinese mitten crab (Eriocheir sinensis) American jack knife clam (Ensis directus) Kuruma prawn (Penaeus japonicus) Mantis shrimp (Rissoides desmaresti) Wakame (Undaria pinnatifida) Pacific oyster (Crasssostrea gigas) Wireweed (Sargassum muticum) Mediterranean mussel (Mytilus galloprovincialus) Welsh Fishermen’s Association – Cymdeithas Pysgotwyr Cymru INNS project – spp identification Identification sheets Fact sheets Welsh Fishermen’s Association – Cymdeithas Pysgotwyr Cymru INNS project – recording on CatchApp Welsh Fishermen’s Association – Cymdeithas Pysgotwyr Cymru INNS project – participants Welsh Fishermen’s Association – Cymdeithas Pysgotwyr Cymru INNS project – location • Menai Straits • Pen Llyn • Cardigan Bay • Swansea Bay Welsh Fishermen’s Association – Cymdeithas Pysgotwyr Cymru INNS project – recordings • Slipper limpets recorded in Oxwich and Swansea Bay and Wireweed in the Menai Straits and Inner Caernarfon Bay. • Two American lobsters were reported by pot fishermen in new areas; one was caught in an area called ‘The Giblet Shoals’ off Pwllheli in August 2016 (verified by NRW) and the other caught off Conwy in November 2017 (verified by a Mermaid Ltd – a local seafood merchant).