A Glimpse of the De Rham Era
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Charles Ehresmann Et Commentées
Charles Ehresmann œuvres complètes et commentées CATÉGORIES STRUCTURÉES ET QUOTIENTS PARTIE III - 1 commentée par Andrée CHARLES EHRESMANN AMIENS 1980 CHARLES EHRESMANN 19 Avril 1905 - 22 Septembre 1979 «... Le mathématicien est engagé dans la poursuite d'un rêve sans fin, mais la traduction de ce rêve en formules précises exige un effort extraordinaire. Chaque problème résolu pose de nouvelles questions de plus en plus nombreuses.Mais qui d'en• tre nous ne se surprend pas quelquefois à se poser la question dangereuse : a quoi bon tout cet effort? On a dit que les Mathéma- tiques sont «le bulldozer de la Physique ». Bien que personne ne puisse douter de l'efficacité des Mathématiques dans les appli• cations pratiques, je ne crois pas qu'un mathématicien voie dans cette efficacité la justification de ses efforts car le vrai but de son rêve perpétuel est de comprendre la structure de toute chose». Extrait du discours fait par Charles EHRESMANN en 1967, pour remercier l'Université de Bologna de l'avoir nommé Docteur Honoris Causa. Tous droits de traduction, reproduction et adaptation réservés pour tous pays LISTE DES PUBLICATIONS DE CHARLES EHRESMANN 1. TRAVAUX DE RECHERCHE. 1. Les invariants intégraux et la topologie de l'espace proj ectif réglé, C. R. A. S. Paris 194 ( 1932 ), 2004-2006. 2. Sur la topologie de certaines variétés algébriques, C.R.A.S. Paris 196 ( 1933 ), 152-154. 3- Un théorème relatif aux espaces localement proj ectifs et sa généralisa• tion, C. R. A. S. Paris 196 (1933), 1354- 1356. 4. Sur la topologie de certains espaces homogènes, Ann. -
The Works of Charles Ehresmann on Connections: from Cartan
********************************** BANACH CENTER PUBLICATIONS, VOLUME 76 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2007 THE WORKS OF CHARLES EHRESMANN ON CONNECTIONS: FROM CARTAN CONNECTIONS TO CONNECTIONS ON FIBRE BUNDLES CHARLES-MICHEL MARLE Institut de Math´ematiques, Universit´ePierre et Marie Curie, 4, place Jussieu, 75252 Paris c´edex 05, France E-mail: [email protected] Abstract. Around 1923, Elie´ Cartan introduced affine connections on manifolds and defined the main related concepts: torsion, curvature, holonomy groups. He discussed applications of these concepts in Classical and Relativistic Mechanics; in particular he explained how parallel transport with respect to a connection can be related to the principle of inertia in Galilean Mechanics and, more generally, can be used to model the motion of a particle in a gravitational field. In subsequent papers, Elie´ Cartan extended these concepts for other types of connections on a manifold: Euclidean, Galilean and Minkowskian connections which can be considered as special types of affine connections, the group of affine transformations of the affine tangent space being replaced by a suitable subgroup; and more generally, conformal and projective connections, associated to a group which is no more a subgroup of the affine group. Around 1950, Charles Ehresmann introduced connections on a fibre bundle and, when the bundle has a Lie group as structure group, connection forms on the associated principal bundle, with values in the Lie algebra of the structure -
Cartan Connections to Connections on fibre Bundles, and Some Modern Applications
The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, and some modern applications Charles-Michel Marle Universite´ Pierre et Marie Curie Paris, France The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, and some modern applications – p. 1/40 Élie Cartan’s affine connections (1) Around 1923, Élie Cartan [1, 2, 3] introduced the notion of an affine connection on a manifold. That notion was previously used, in a less general setting, by H. Weyl [16] and rests on the idea of parallel transport due to T. Levi-Civita [11]. The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, and some modern applications – p. 2/40 Élie Cartan’s affine connections (1) Around 1923, Élie Cartan [1, 2, 3] introduced the notion of an affine connection on a manifold. That notion was previously used, in a less general setting, by H. Weyl [16] and rests on the idea of parallel transport due to T. Levi-Civita [11]. A large part of [1, 2] is devoted to applications of affine connections to Newtonian and Einsteinian Mechanics. Cartan show that the principle of inertia (which is at the foundations of Mechanics), according to which a material point particle, when no forces act on it, moves along a straight line with a constant velocity, can be expressed locally by the use of an affine connection. Under that form, that principle remains valid in (curved) Einsteinian space-times. The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, and some modern applications – p. -
Women Mathematicians in France in the Mid-Twentieth Century Introduction
* Women mathematicians in France in the mid-twentieth century Yvette Kosmann-Schwarzbach * To appear in the BSHM Bulletin: Journal of the British Society for the History of Mathematics (2015) DOI 10.1080/17498430.2014.976804 A short outline of the French system of “Écoles normales supérieures” and “agrégations” serves as the introduction to our account of the careers of the five women who completed a doctorate in mathematics in France before 1960 and became internationally known scientists: Marie-Louise Dubreil-Jacotin (1905-1972), Marie-Hélène Schwartz (1913-2013), Jacqueline Ferrand (1918-2014), Paulette Libermann (1919-2007) and Yvonne Choquet-Bruhat (b. 1923). This is followed by a more general description of the place of women on the mathematical scene in France between 1930 and 1960, together with a brief sketch of the accomplishments of some other women and the identification of all those who were active in research before 1960 and became professors in the French university system. Introduction The intersection of the fields of history of mathematics and history of women is notoriously small. From Hypatia of Alexandria to Emmy Noether, very few women are known to have contributed to the development of mathematics, and the number of those born in France is even smaller. Were there any before Gabrielle-Émilie Le Tonnelier de Breteuil, marquise Du Châtelet-Lomond (1706-1749), the little-known Nicole-Reine Étable de Labrière Lepaute (1723-1788) and the even lesser known Marie Anne Victoire Pigeon d’Osangis (1724-1767)?Were there any between Sophie Germain (1776-1831) and those whose names and accomplishments will appear in this article? There were two French lady scientists working with the astronomer Jérôme de Lalande, Louise du Pierry (1746-1806) and Jeanne Lefrançais de Lalande (1769-1832). -
International Congress of Mathematicians
International Congress of Mathematicians Hyderabad, August 19–27, 2010 Abstracts Plenary Lectures Invited Lectures Panel Discussions Editor Rajendra Bhatia Co-Editors Arup Pal G. Rangarajan V. Srinivas M. Vanninathan Technical Editor Pablo Gastesi Contents Plenary Lectures ................................................... .. 1 Emmy Noether Lecture................................. ................ 17 Abel Lecture........................................ .................... 18 Invited Lectures ................................................... ... 19 Section 1: Logic and Foundations ....................... .............. 21 Section 2: Algebra................................... ................. 23 Section 3: Number Theory.............................. .............. 27 Section 4: Algebraic and Complex Geometry............... ........... 32 Section 5: Geometry.................................. ................ 39 Section 6: Topology.................................. ................. 46 Section 7: Lie Theory and Generalizations............... .............. 52 Section 8: Analysis.................................. .................. 57 Section 9: Functional Analysis and Applications......... .............. 62 Section 10: Dynamical Systems and Ordinary Differential Equations . 66 Section 11: Partial Differential Equations.............. ................. 71 Section 12: Mathematical Physics ...................... ................ 77 Section 13: Probability and Statistics................. .................. 82 Section 14: Combinatorics........................... -
On the Existence of Global Bisections of Lie Groupoids
On the Existence of Global Bisections of Lie Groupoids Zhuo Chen LMAM, Peking University & CEMA, Central University of Finance and Economics, [email protected] Zhang-Ju Liu Department of Mathematics and LMAM, Peking University [email protected] De-Shou Zhong Center of Mathematics, CYU [email protected] Abstract We show that every source connected Lie groupoid always has global bisections through any given point. This bisection can be chosen to be the multiplication of some exponentials as close as possible to a pre- scribed curve. The existence of bisections through more than one pre- scribed points is also discussed. We give some interesting applications of these results. Key words Lie groupoid, bisection, exponential maps. MSC Primary 17B62, Secondary 17B70. arXiv:0710.3909v2 [math.DG] 24 Jul 2008 Funded by CPSF(20060400017). 1 Introduction The notion of groupoids generalizes that of both groups and the Cartesian product of a set, namely the pair groupoid. It is Ehresmann who first made the concept of groupoid ([6,7]) central to his vision of differential geometry. Lie groupoids, originally called differentiable groupoids, were also introduced by Ehresman (see several papers contained in [5]) and theories of Lie groupoids, especially the relationships with that of Lie algebroids defined by Pradines ([14, 15]) have been investigated by many people and much work has been 1 done in this field. Readers can find the most basic definitions and examples of (Lie) groupoids in the texts such as Mackenzie’s [12], his recent book [13], and [2,11]. The importance of groupoid theories were already shown in the studies on symplectic groupoids and Poisson geometry, for example, illustrated by Weinstein ([17,18]), Coste ([3]), Dazord ([4]), Karasëv ([9]), Zakrzewski ([19]) and many other authors. -
Émilie Du Châtelets Institutions Physiques Über Die Grundlagen Der Physik
Émilie du Châtelets Institutions physiques Über die Grundlagen der Physik Dissertation zur Erlangung des akademischen Grades eines Doktors der Philosophie (Dr. phil.) im Fach Philosophie an der Fakultät für Kulturwissenschaften der Universität Paderborn vorgelegt von: Andrea Reichenberger Erstgutachter: Prof. Dr. Volker Peckhaus Zweitgutachter: Prof. Dr. Ruth Hagengruber Disputation: 14. Juli 2014 Note: summa cum laude 2 Inhaltsverzeichnis Vorwort 4 1 Einleitung 5 1.1 Thema und Forschungsstand . .5 1.2 Problemstellung und Ziel . 12 1.2.1 Zwischen Newton und Leibniz . 12 1.2.2 Zur Newton-Rezeption im 18. Jahrhundert . 16 1.2.3 Zur Leibniz-Rezeption im 18. Jahrhundert . 17 1.2.4 Leibniz contra Newton? . 21 1.2.5 Du Châtelets Rezeption . 25 2 Du Châtelet: Vita und Œuvre 31 2.1 Biographischer Abriss . 31 2.2 Werke und Editionsgeschichte . 33 2.2.1 Principes mathématiques . 33 2.2.2 Éléments de la philosophie de Newton . 37 2.2.3 Dissertation sur la nature et la propagation du feu . 38 2.2.4 Institutions physiques . 39 2.2.5 Essai sur l’optique . 40 2.2.6 Grammaire raisonnée . 40 2.2.7 De la liberté . 41 2.2.8 Discours sur les miracles & Examens de la Bible . 41 2.2.9 Discours sur le bonheur . 42 2.2.10 La Fable des abeilles de Mandeville . 44 2.2.11 Lettres . 45 3 Du Châtelets Institutions physiques im historischen Kontext 47 3.1 Die Editionsgeschichte . 47 3.2 Der Disput mit Jean-Jaques Dortous de Mairan . 48 3.3 Newton in Frankreich . 50 3.4 Der Vorwurf Johann Samuel Königs . -
Contributions to the History of Number Theory in the 20Th Century Author
Peter Roquette, Oberwolfach, March 2006 Peter Roquette Contributions to the History of Number Theory in the 20th Century Author: Peter Roquette Ruprecht-Karls-Universität Heidelberg Mathematisches Institut Im Neuenheimer Feld 288 69120 Heidelberg Germany E-mail: [email protected] 2010 Mathematics Subject Classification (primary; secondary): 01-02, 03-03, 11-03, 12-03 , 16-03, 20-03; 01A60, 01A70, 01A75, 11E04, 11E88, 11R18 11R37, 11U10 ISBN 978-3-03719-113-2 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broad- casting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2013 European Mathematical Society Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum SEW A27 CH-8092 Zürich Switzerland Phone: +41 (0)44 632 34 36 Email: [email protected] Homepage: www.ems-ph.org Typeset using the author’s TEX files: I. Zimmermann, Freiburg Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany ∞ Printed on acid free paper 9 8 7 6 5 4 3 2 1 To my friend Günther Frei who introduced me to and kindled my interest in the history of number theory Preface This volume contains my articles on the history of number theory except those which are already included in my “Collected Papers”. -
New Trends in Teichmüller Theory and Mapping Class Groups
Mathematisches Forschungsinstitut Oberwolfach Report No. 40/2018 DOI: 10.4171/OWR/2018/40 New Trends in Teichm¨uller Theory and Mapping Class Groups Organised by Ken’ichi Ohshika, Osaka Athanase Papadopoulos, Strasbourg Robert C. Penner, Bures-sur-Yvette Anna Wienhard, Heidelberg 2 September – 8 September 2018 Abstract. In this workshop, various topics in Teichm¨uller theory and map- ping class groups were discussed. Twenty-three talks dealing with classical topics and new directions in this field were given. A problem session was organised on Thursday, and we compiled in this report the problems posed there. Mathematics Subject Classification (2010): Primary: 32G15, 30F60, 30F20, 30F45; Secondary: 57N16, 30C62, 20G05, 53A35, 30F45, 14H45, 20F65 IMU Classification: 4 (Geometry); 5 (Topology). Introduction by the Organisers The workshop New Trends in Teichm¨uller Theory and Mapping Class Groups, organised by Ken’ichi Ohshika (Osaka), Athanase Papadopoulos (Strasbourg), Robert Penner (Bures-sur-Yvette) and Anna Wienhard (Heidelberg) was attended by 50 participants, including a number of young researchers, with broad geo- graphic representation from Europe, Asia and the USA. During the five days of the workshop, 23 talks were given, and on Thursday evening, a problem session was organised. Teichm¨uller theory originates in the work of Teichm¨uller on quasi-conformal maps in the 1930s, and the study of mapping class groups was started by Dehn and Nielsen in the 1920s. The subjects are closely interrelated, since the mapping class group is the -
Publier Sous L'occupation I. Autour Du Cas De Jacques Feldbau Et De L
PUBLIER SOUS L’OCCUPATION I. AUTOUR DU CAS DE JACQUES FELDBAU ET DE L’ACADÉMIE DES SCIENCES par Michèle Audin R´esum´e. C’est un article sur les publications mathématiques pendant l’Oc- cupation (1940–44). A` travers les cas de quatre d’entre eux, et surtout de celui de Jacques Feldbau (un des fondateurs de la théorie des fibrés, mort en dépor- tation), nous étudions la façon dont la censure a frappé les mathématiciens français définis comme juifs par le « Statut des juifs » d’octobre 1940 et les stratégies de publication que ceux-ci ont alors utilisées (pseudonymes, plis ca- chetés, journaux provinciaux...) La manière dont les « lois en vigueur » ont été (ou n’ont pas été) discutées et appliquées à l’Académie des sciences est également étudiée. Abstract. This is an article on mathematical publishing during the German Occupation of France (1940–44). Looking at the cases of four of them and espe- cially at the case of Jacques Feldbau (one of the founders of the theory of fibre bundles, dead in deportation), we investigate the way censorship struck the French mathematicians who were declared jewish by the “Statut des juifs”of october 1940, and the strategies these mathematicians then developed (fake names, selled envelopes, provincial journals...). The way the Vichy laws have been (or have not been) discussed and applied at the Académie des sciences is investigated as well. Classification math´ematiquepar sujets (2000). 01A60, 57RXX. Mots clefs. publications, censure, deuxième guerre mondiale, Académie des sciences, fibrés, homotopie. Michèle Audin, Institut de Recherche mathématique avancée, Université Louis Pasteur et CNRS, 7 rue René Descartes, 67084 Strasbourg Cedex, France. -
A Calendar of Mathematical Dates January
A CALENDAR OF MATHEMATICAL DATES V. Frederick Rickey Department of Mathematical Sciences United States Military Academy West Point, NY 10996-1786 USA Email: fred-rickey @ usma.edu JANUARY 1 January 4713 B.C. This is Julian day 1 and begins at noon Greenwich or Universal Time (U.T.). It provides a convenient way to keep track of the number of days between events. Noon, January 1, 1984, begins Julian Day 2,445,336. For the use of the Chinese remainder theorem in determining this date, see American Journal of Physics, 49(1981), 658{661. 46 B.C. The first day of the first year of the Julian calendar. It remained in effect until October 4, 1582. The previous year, \the last year of confusion," was the longest year on record|it contained 445 days. [Encyclopedia Brittanica, 13th edition, vol. 4, p. 990] 1618 La Salle's expedition reached the present site of Peoria, Illinois, birthplace of the author of this calendar. 1800 Cauchy's father was elected Secretary of the Senate in France. The young Cauchy used a corner of his father's office in Luxembourg Palace for his own desk. LaGrange and Laplace frequently stopped in on business and so took an interest in the boys mathematical talent. One day, in the presence of numerous dignitaries, Lagrange pointed to the young Cauchy and said \You see that little young man? Well! He will supplant all of us in so far as we are mathematicians." [E. T. Bell, Men of Mathematics, p. 274] 1801 Giuseppe Piazzi (1746{1826) discovered the first asteroid, Ceres, but lost it in the sun 41 days later, after only a few observations. -
Symmetry in Music As a Stylistic Index for the Transition from the Middle Ages to the Renaissance, Arthur L
Symmetry: The Quarterly of the International Society for the Interdisciplinary Study of Symmetry (ISIS-Symmetry) Volume 9, Numbers 1 - 2, 1999 INTERNATIONAL SOCIETY FOR THE INTERDISCIPLINARY STUDY OF SYMMETRY (ISIS-SYMMETRY) President Members of the Board D~nes Nagy, Institute of Applied Physics, Liz Ashburn, School of Art, College of Fine Arts, University of Tsukuba, Tsukuba 305, Japan; The University of New South Wales, P.O.B. 259, [email protected] ac jp Paddington, NSW 2021, Australia, e [email protected] au Chatrman of the Advisory Board Arthur L. Loeb, Carpenter Center for the Vxsual Siglind Bruhn, Department of Musicology and Arts, Harvard University, Cambridge, MA 02138, Institute for the Humamties, University of U.S.A, alloeb @ fas harvard edu M~chigan, 1105 Spring St, Ann Arbor, M148103, U.S A.; [email protected] Honorary Presidents Ted Goranson, Sirius Beta Inc., 1976 Munden Konstantin V. Frolov, Institute of Mechanical Point, Virginia Beach, VA 23457-1227, U.S.A., Engineering, Russian Academy of Sciences, Malyl tedg@sirius-beta com Hanton’evskix per. 4, 101830 Moscow, Russia and Laurence I. Gould, Physics Department, Dana Yuval Ne’eman, M. and R. Saclder Institute of Hall 230, University of Hartford, 200 Bloomfield Advanced Studies, Tel-Aviv Umvers~ty, Ramat- Avenue, West Hartford, CT 06117, U.S.A ; Aviv, Tel-Aviv, 69978, Israel; lgould@mail hartford.edu MatddaE@tauex tau.ac.il, and Center for particle Physics, University of Texas, Austin, TX 78712, Claudio Guerri, Facultad de Arquitectura, Disefio U S.A. y Urbanlsmo, Universidad de Buenos Aires, Olleros 2532 2~A - (1426) Buenos Aires, Honorary Members Argentina; claudioguerri@amet com.ar Johann Jakob Burckhardt (Zurich, Switzerland) Harold S.