New Trends in Teichmüller Theory and Mapping Class Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Charles Ehresmann Et Commentées
Charles Ehresmann œuvres complètes et commentées CATÉGORIES STRUCTURÉES ET QUOTIENTS PARTIE III - 1 commentée par Andrée CHARLES EHRESMANN AMIENS 1980 CHARLES EHRESMANN 19 Avril 1905 - 22 Septembre 1979 «... Le mathématicien est engagé dans la poursuite d'un rêve sans fin, mais la traduction de ce rêve en formules précises exige un effort extraordinaire. Chaque problème résolu pose de nouvelles questions de plus en plus nombreuses.Mais qui d'en• tre nous ne se surprend pas quelquefois à se poser la question dangereuse : a quoi bon tout cet effort? On a dit que les Mathéma- tiques sont «le bulldozer de la Physique ». Bien que personne ne puisse douter de l'efficacité des Mathématiques dans les appli• cations pratiques, je ne crois pas qu'un mathématicien voie dans cette efficacité la justification de ses efforts car le vrai but de son rêve perpétuel est de comprendre la structure de toute chose». Extrait du discours fait par Charles EHRESMANN en 1967, pour remercier l'Université de Bologna de l'avoir nommé Docteur Honoris Causa. Tous droits de traduction, reproduction et adaptation réservés pour tous pays LISTE DES PUBLICATIONS DE CHARLES EHRESMANN 1. TRAVAUX DE RECHERCHE. 1. Les invariants intégraux et la topologie de l'espace proj ectif réglé, C. R. A. S. Paris 194 ( 1932 ), 2004-2006. 2. Sur la topologie de certaines variétés algébriques, C.R.A.S. Paris 196 ( 1933 ), 152-154. 3- Un théorème relatif aux espaces localement proj ectifs et sa généralisa• tion, C. R. A. S. Paris 196 (1933), 1354- 1356. 4. Sur la topologie de certains espaces homogènes, Ann. -
The Works of Charles Ehresmann on Connections: from Cartan
********************************** BANACH CENTER PUBLICATIONS, VOLUME 76 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2007 THE WORKS OF CHARLES EHRESMANN ON CONNECTIONS: FROM CARTAN CONNECTIONS TO CONNECTIONS ON FIBRE BUNDLES CHARLES-MICHEL MARLE Institut de Math´ematiques, Universit´ePierre et Marie Curie, 4, place Jussieu, 75252 Paris c´edex 05, France E-mail: [email protected] Abstract. Around 1923, Elie´ Cartan introduced affine connections on manifolds and defined the main related concepts: torsion, curvature, holonomy groups. He discussed applications of these concepts in Classical and Relativistic Mechanics; in particular he explained how parallel transport with respect to a connection can be related to the principle of inertia in Galilean Mechanics and, more generally, can be used to model the motion of a particle in a gravitational field. In subsequent papers, Elie´ Cartan extended these concepts for other types of connections on a manifold: Euclidean, Galilean and Minkowskian connections which can be considered as special types of affine connections, the group of affine transformations of the affine tangent space being replaced by a suitable subgroup; and more generally, conformal and projective connections, associated to a group which is no more a subgroup of the affine group. Around 1950, Charles Ehresmann introduced connections on a fibre bundle and, when the bundle has a Lie group as structure group, connection forms on the associated principal bundle, with values in the Lie algebra of the structure -
Cartan Connections to Connections on fibre Bundles, and Some Modern Applications
The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, and some modern applications Charles-Michel Marle Universite´ Pierre et Marie Curie Paris, France The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, and some modern applications – p. 1/40 Élie Cartan’s affine connections (1) Around 1923, Élie Cartan [1, 2, 3] introduced the notion of an affine connection on a manifold. That notion was previously used, in a less general setting, by H. Weyl [16] and rests on the idea of parallel transport due to T. Levi-Civita [11]. The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, and some modern applications – p. 2/40 Élie Cartan’s affine connections (1) Around 1923, Élie Cartan [1, 2, 3] introduced the notion of an affine connection on a manifold. That notion was previously used, in a less general setting, by H. Weyl [16] and rests on the idea of parallel transport due to T. Levi-Civita [11]. A large part of [1, 2] is devoted to applications of affine connections to Newtonian and Einsteinian Mechanics. Cartan show that the principle of inertia (which is at the foundations of Mechanics), according to which a material point particle, when no forces act on it, moves along a straight line with a constant velocity, can be expressed locally by the use of an affine connection. Under that form, that principle remains valid in (curved) Einsteinian space-times. The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, and some modern applications – p. -
CURRICULUM VITAE David Gabai EDUCATION Ph.D. Mathematics
CURRICULUM VITAE David Gabai EDUCATION Ph.D. Mathematics, Princeton University, Princeton, NJ June 1980 M.A. Mathematics, Princeton University, Princeton, NJ June 1977 B.S. Mathematics, M.I.T., Cambridge, MA June 1976 Ph.D. Advisor William P. Thurston POSITIONS 1980-1981 NSF Postdoctoral Fellow, Harvard University 1981-1983 Benjamin Pierce Assistant Professor, Harvard University 1983-1986 Assistant Professor, University of Pennsylvania 1986-1988 Associate Professor, California Institute of Technology 1988-2001 Professor of Mathematics, California Institute of Technology 2001- Professor of Mathematics, Princeton University 2012-2019 Chair, Department of Mathematics, Princeton University 2009- Hughes-Rogers Professor of Mathematics, Princeton University VISITING POSITIONS 1982-1983 Member, Institute for Advanced Study, Princeton, NJ 1984-1985 Postdoctoral Fellow, Mathematical Sciences Research Institute, Berkeley, CA 1985-1986 Member, IHES, France Fall 1989 Member, Institute for Advanced Study, Princeton, NJ Spring 1993 Visiting Fellow, Mathematics Institute University of Warwick, Warwick England June 1994 Professor Invité, Université Paul Sabatier, Toulouse France 1996-1997 Research Professor, MSRI, Berkeley, CA August 1998 Member, Morningside Research Center, Beijing China Spring 2004 Visitor, Institute for Advanced Study, Princeton, NJ Spring 2007 Member, Institute for Advanced Study, Princeton, NJ 2015-2016 Member, Institute for Advanced Study, Princeton, NJ Fall 2019 Visitor, Mathematical Institute, University of Oxford Spring 2020 -
The Scientific Context
Center for Quantum Geometry of Moduli Spaces Proposal for the Danish National Research Foundation The Scientific Context: The role of mathematics in our understanding of nature has been recognized for millennia. Its importance is especially poignant in modern theoretical physics as the cost of experiment escalates and the mathematical complexity of physical theories increases. Major challenge: Discover the mathematical mechanisms to define quantum field theory as a mathematical entity, to justify mathematically the recipes used by physicists, and to unify quantum theory with gravity. Classical and quantum mechanics rests on solid mathematical foundations, which were developed over the last two centuries. In contrast, quantum field theory, which plays a central role in modern theoretical physics, lacks a mathematical foundation. The mathematical difficulties involve averaging over infinite-dimensional spaces, which have defied rigorous interpretation and yet are effective in practice according to explicit recipes in physics. For example, the Standard Model of particle physics successfully predicts to a dozen decimals experimental results from high-energy colliders such as CERN or SLAC. Quantum field theory has enjoyed several important successes in the last two decades where a number of models were constructed despite the difficulties described above. In all these cases, the theory admits a large family of symmetries, and the problematic infinite-dimensional averages reduce to averages over smaller ensembles, called moduli spaces, which are in many cases finite-dimensional and permit mathematically rigorous calculations. Also, low-dimensional models unifying gravity with quantum theory have been developed successfully, and the key geometrical objects are again moduli spaces. Quantum geometry, so-named since the quantization arises from geometric methods designed to make a passage from classical geometry to quantum theory, plays the fundamental role in all these constructions. -
Arxiv:1406.2663V2 [Hep-Th]
Multiboundary Wormholes and Holographic Entanglement Vijay Balasubramaniana;b, Patrick Haydenc, Alexander Maloneyd;e, Donald Marolff , Simon F. Rossg aDavid Rittenhouse Laboratories, University of Pennsylvania 209 S 33rd Street, Philadelphia, PA 19104, USA bCUNY Graduate Center, Initiative for the Theoretical Sciences 365 Fifth Avenue, New York, NY 10016, USA cDepartment of Physics, Stanford University Palo Alto, CA 94305, USA dDepartment of Physics, McGill University 3600 rue Universit´e,Montreal H3A2T8, Canada eCenter for the Fundamental Laws of Nature, Harvard University Cambridge, MA 02138, USA f Department of Physics, University of California, Santa Barbara, CA 93106, USA gCentre for Particle Theory, Department of Mathematical Sciences Durham University, South Road, Durham DH1 3LE, UK Abstract The AdS/CFT correspondence relates quantum entanglement between boundary Conformal Field Theories and geometric connections in the dual asymptotically Anti- de Sitter space-time. We consider entangled states in the n−fold tensor product of a 1+1 dimensional CFT Hilbert space defined by the Euclidean path integral over a Riemann surface with n holes. In one region of moduli space, the dual bulk state is arXiv:1406.2663v2 [hep-th] 23 Jun 2014 a black hole with n asymptotically AdS3 regions connected by a common wormhole, while in other regions the bulk fragments into disconnected components. We study the entanglement structure and compute the wave function explicitly in the puncture limit of the Riemann surface in terms of CFT n-point functions. We also use AdS minimal surfaces to measure entanglement more generally. In some regions of the moduli space the entanglement is entirely multipartite, though not of the GHZ type. -
Women Mathematicians in France in the Mid-Twentieth Century Introduction
* Women mathematicians in France in the mid-twentieth century Yvette Kosmann-Schwarzbach * To appear in the BSHM Bulletin: Journal of the British Society for the History of Mathematics (2015) DOI 10.1080/17498430.2014.976804 A short outline of the French system of “Écoles normales supérieures” and “agrégations” serves as the introduction to our account of the careers of the five women who completed a doctorate in mathematics in France before 1960 and became internationally known scientists: Marie-Louise Dubreil-Jacotin (1905-1972), Marie-Hélène Schwartz (1913-2013), Jacqueline Ferrand (1918-2014), Paulette Libermann (1919-2007) and Yvonne Choquet-Bruhat (b. 1923). This is followed by a more general description of the place of women on the mathematical scene in France between 1930 and 1960, together with a brief sketch of the accomplishments of some other women and the identification of all those who were active in research before 1960 and became professors in the French university system. Introduction The intersection of the fields of history of mathematics and history of women is notoriously small. From Hypatia of Alexandria to Emmy Noether, very few women are known to have contributed to the development of mathematics, and the number of those born in France is even smaller. Were there any before Gabrielle-Émilie Le Tonnelier de Breteuil, marquise Du Châtelet-Lomond (1706-1749), the little-known Nicole-Reine Étable de Labrière Lepaute (1723-1788) and the even lesser known Marie Anne Victoire Pigeon d’Osangis (1724-1767)?Were there any between Sophie Germain (1776-1831) and those whose names and accomplishments will appear in this article? There were two French lady scientists working with the astronomer Jérôme de Lalande, Louise du Pierry (1746-1806) and Jeanne Lefrançais de Lalande (1769-1832). -
Irreducible Canonical Representations in Positive Characteristic 3
IRREDUCIBLE CANONICAL REPRESENTATIONS IN POSITIVE CHARACTERISTIC BENJAMIN GUNBY, ALEXANDER SMITH AND ALLEN YUAN ABSTRACT. For X a curve over a field of positive characteristic, we investigate 0 when the canonical representation of Aut(X) on H (X, ΩX ) is irreducible. Any curve with an irreducible canonical representation must either be superspecial or ordinary. Having a small automorphism group is an obstruction to having irre- ducible canonical representation; with this motivation, the bulk of the paper is spent bounding the size of automorphism groups of superspecial and ordinary curves. After proving that all automorphisms of an Fq2 -maximal curve are de- fined over Fq2 , we find all superspecial curves with g > 82 having an irreducible representation. In the ordinary case, we provide a bound on the size of the auto- morphism group of an ordinary curve that improves on a result of Nakajima. 1. INTRODUCTION Given a complete nonsingular curve X of genus g 2, the finite group G := ≥ 0 Aut(X) has a natural action on the g-dimensional k-vector space H (X, ΩX ), known as the canonical representation. It is natural to ask when this representation is irre- ducible. In characteristic zero, irreducibility of the canonical representation implies that g2 G , and combining this with the Hurwitz bound of G 84(g 1), one can≤ observe | | that the genus of X is bounded. In fact, Breuer| [1]| shows ≤ that− the maximal genus of a Riemann surface with irreducible canonical representation is 14. In characteristic p, the picture is more subtle when p divides G . The Hurwitz bound of 84(g 1) may no longer hold due to the possibility of wild| | ramification in arXiv:1408.3830v1 [math.AG] 17 Aug 2014 the Riemann-Hurwitz− formula. -
International Congress of Mathematicians
International Congress of Mathematicians Hyderabad, August 19–27, 2010 Abstracts Plenary Lectures Invited Lectures Panel Discussions Editor Rajendra Bhatia Co-Editors Arup Pal G. Rangarajan V. Srinivas M. Vanninathan Technical Editor Pablo Gastesi Contents Plenary Lectures ................................................... .. 1 Emmy Noether Lecture................................. ................ 17 Abel Lecture........................................ .................... 18 Invited Lectures ................................................... ... 19 Section 1: Logic and Foundations ....................... .............. 21 Section 2: Algebra................................... ................. 23 Section 3: Number Theory.............................. .............. 27 Section 4: Algebraic and Complex Geometry............... ........... 32 Section 5: Geometry.................................. ................ 39 Section 6: Topology.................................. ................. 46 Section 7: Lie Theory and Generalizations............... .............. 52 Section 8: Analysis.................................. .................. 57 Section 9: Functional Analysis and Applications......... .............. 62 Section 10: Dynamical Systems and Ordinary Differential Equations . 66 Section 11: Partial Differential Equations.............. ................. 71 Section 12: Mathematical Physics ...................... ................ 77 Section 13: Probability and Statistics................. .................. 82 Section 14: Combinatorics........................... -
Hyperbolic Vortices
Hyperbolic Vortices Nick Manton DAMTP, University of Cambridge [email protected] SEMPS, University of Surrey, November 2015 Outline I 1. Abelian Higgs Vortices. I 2. Hyperbolic Vortices. I 3. 1-Vortex on the Genus-2 Bolza Surface. I 4. Baptista’s Geometric Interpretation of Vortices. I 5. Conclusions. 1. Abelian Higgs Vortices I The Abelian Higgs (Ginzburg–Landau) vortex is a two-dimensional static soliton, stabilised by its magnetic flux. Well-known is the Abrikosov vortex lattice in a superconductor. I Vortices exist on a plane or curved Riemann surface M, with metric ds2 = Ω(z; z¯) dzdz¯ : (1) z = x1 + ix2 is a (local) complex coordinate. I The fields are a complex scalar Higgs field φ and a vector potential Aj (j = 1; 2) with magnetic field F = @1A2 − @2A1. They don’t back-react on the metric. I Our solutions have N vortices and no antivortices. On a plane, N is the winding number of φ at infinity. If M is compact, φ and A are a section and connection of a U(1) bundle over M, with first Chern number N. I The field energy is 1 Z 1 1 1 = 2 + j φj2 + ( − jφj2)2 Ω 2 E 2 F Dj 1 d x (2) 2 M Ω Ω 4 where Dj φ = @j φ − iAj φ. The first Chern number is 1 Z N = F d 2x : (3) 2π M I The energy E can be re-expressed as [E.B. Bogomolny] E = πN + 1 Z 1 Ω 2 1 2 F − (1 − jφj2) + D φ + iD φ Ω d 2x 2 1 2 2 M Ω 2 Ω (4) where we have dropped a total derivative term. -
On the Existence of Global Bisections of Lie Groupoids
On the Existence of Global Bisections of Lie Groupoids Zhuo Chen LMAM, Peking University & CEMA, Central University of Finance and Economics, [email protected] Zhang-Ju Liu Department of Mathematics and LMAM, Peking University [email protected] De-Shou Zhong Center of Mathematics, CYU [email protected] Abstract We show that every source connected Lie groupoid always has global bisections through any given point. This bisection can be chosen to be the multiplication of some exponentials as close as possible to a pre- scribed curve. The existence of bisections through more than one pre- scribed points is also discussed. We give some interesting applications of these results. Key words Lie groupoid, bisection, exponential maps. MSC Primary 17B62, Secondary 17B70. arXiv:0710.3909v2 [math.DG] 24 Jul 2008 Funded by CPSF(20060400017). 1 Introduction The notion of groupoids generalizes that of both groups and the Cartesian product of a set, namely the pair groupoid. It is Ehresmann who first made the concept of groupoid ([6,7]) central to his vision of differential geometry. Lie groupoids, originally called differentiable groupoids, were also introduced by Ehresman (see several papers contained in [5]) and theories of Lie groupoids, especially the relationships with that of Lie algebroids defined by Pradines ([14, 15]) have been investigated by many people and much work has been 1 done in this field. Readers can find the most basic definitions and examples of (Lie) groupoids in the texts such as Mackenzie’s [12], his recent book [13], and [2,11]. The importance of groupoid theories were already shown in the studies on symplectic groupoids and Poisson geometry, for example, illustrated by Weinstein ([17,18]), Coste ([3]), Dazord ([4]), Karasëv ([9]), Zakrzewski ([19]) and many other authors. -
An Optimal Systolic Inequality for Cat(0) Metrics in Genus Two
AN OPTIMAL SYSTOLIC INEQUALITY FOR CAT(0) METRICS IN GENUS TWO MIKHAIL G. KATZ∗ AND STEPHANE´ SABOURAU Abstract. We prove an optimal systolic inequality for CAT(0) metrics on a genus 2 surface. We use a Voronoi cell technique, introduced by C. Bavard in the hyperbolic context. The equality is saturated by a flat singular metric in the conformal class defined by the smooth completion of the curve y2 = x5 x. Thus, among all CAT(0) metrics, the one with the best systolic− ratio is composed of six flat regular octagons centered at the Weierstrass points of the Bolza surface. Contents 1. Hyperelliptic surfaces of nonpositive curvature 1 2. Distinguishing 16 points on the Bolza surface 3 3. A flat singular metric in genus two 4 4. Voronoi cells and Euler characteristic 8 5. Arbitrary metrics on the Bolza surface 10 References 12 1. Hyperelliptic surfaces of nonpositive curvature Over half a century ago, a student of C. Loewner’s named P. Pu presented, in the pages of the Pacific Journal of Mathematics [Pu52], the first two optimal systolic inequalities, which came to be known as the Loewner inequality for the torus, and Pu’s inequality (5.4) for the real projective plane. The recent months have seen the discovery of a number of new sys- tolic inequalities [Am04, BK03, Sa04, BK04, IK04, BCIK05, BCIK06, KL05, Ka06, KS06, KRS07], as well as near-optimal asymptotic bounds [Ka03, KS05, Sa06a, KSV06, Sa06b, RS07]. A number of questions 1991 Mathematics Subject Classification. Primary 53C20, 53C23 . Key words and phrases. Bolza surface, CAT(0) space, hyperelliptic surface, Voronoi cell, Weierstrass point, systole.