Integration of Paleotempestology with Coastal Risk and Vulnerability

Total Page:16

File Type:pdf, Size:1020Kb

Integration of Paleotempestology with Coastal Risk and Vulnerability Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2010 Integration of paleotempestology with coastal risk and vulnerability assessment: case studies from the Dominican Republic and Nicaragua Devyani Kar Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Kar, Devyani, "Integration of paleotempestology with coastal risk and vulnerability assessment: case studies from the Dominican Republic and Nicaragua" (2010). LSU Doctoral Dissertations. 2009. https://digitalcommons.lsu.edu/gradschool_dissertations/2009 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. INTEGRATION OF PALEOTEMPESTOLOGY WITH COASTAL RISK AND VULNERABILITY ASSESSMENT: CASE STUDIES FROM THE DOMINICAN REPUBLIC AND NICARAGUA A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College In partial fulfillment of the Requirements for the degree of Doctor of Philosophy In The Department of Oceanography and Coastal Sciences By Devyani Kar, B.Plan., School of Planning and Architecture, New Delhi, India, 2001 M.E.M., Duke University, 2003 December, 2010 To my parents, Dr. Prabhat Kumar Kar Dr. Sanghamitra Kar ii ACKNOWLEDGEMENTS I wish to offer my immense gratitude to Dr. Kam-biu Liu, my advisor and committee chair, for his guidance and support. This dissertation would not have been possible without his endless patience, persistence, and encouragement at every step. I would like to thank Dr. Nina Lam, Dewitt Braud, Dr. Jaye Cable, and Dr. Melanie Gall for serving on my committee and assisting me with various aspects of this work. Sincere thanks to Dr. Escobar, Dr. Jagger, and Dr. Elsner for discussing research ideas and for patiently explaining complicated statistical models. I would like to acknowledge Inter American Institute for Global Change Research (IAI) for providing funding for this study. National Science Foundation (NSF), the Graduate School at Louisiana State University (LSU), and the Department of Oceanography at LSU helped with travel funds to present my work at national and international conferences. An award from American Association of Geographers (AAG) contributed toward the cost of Spanish immersion in Nicaragua to better prepare me for field work. Thanks to Dr. Jaye Cable and Chris Whittaker for assistance with 137CS and 210Pb analysis; Floyd DeMers for help with grain size analysis; and to Dr. Terry McCloskey and Tom Bianchette for their help with loss-on-ignition analysis. I am grateful to Dr. Lisa Kennedy, Allison LeBlanc, Pedro Martinez, and Dr. Terry McCloskey for helping with coring and data collection in the Dominican Republic. Research in Nicaragua would not have been possible without Claudia Taleno and Yelba Flores – a big Thank You! I am also thankful to the wonderful people of the Dominican Republic and Nicaragua for their kindness and willingness to help. A special thanks to Aura Cruz, my wonderful Spanish iii teacher, for her patience and good humor in teaching me to talk like a “Nicaragüense.” Highland Coffees provided the caffeine fix for late nights and early mornings and Papa John’s and Atcha Bakery kept this family alive. I am indebted to all my friends who good- naturedly listened to my venting and forgave me for being an erratic, forgetful, social klutz. And much credit goes to my girlfriends for organizing lunches and “ladies’ nights” to keep me in good spirits. These last few years would have been unbearable if not for my husband, Dr. Plamen Arnaudov; whose love, patience, and wonderful omelets kept me going; especially when I was overwhelmed and ready to quit. Thanks to my sister, Devangana, for believing in me and to my parents who made great sacrifices so I could come this far - I could never fully express my gratitude to them in words. And finally, thanks to Kaya for all the joy and laughter - everyday is worth waking up for! iv TABLE OF CONTENTS ACKNOWLEDGEMENTS ................................................................................................... iii ABSTRACT ............................................................................................................................. ix CHAPTER 1: INTRODUCTION ........................................................................................... 1 1.1 Purpose of This Dissertation .................................................................................... 1 1.2 The Project ............................................................................................................... 1 1.3 Background .............................................................................................................. 2 1.4 Hurricanes and Paleotempestology .......................................................................... 2 1.5 Risk Analysis and Prediction Using Paleotempestology ......................................... 3 1.6 Study Areas .............................................................................................................. 3 1.7 Research Questions .................................................................................................. 4 1.8 Document Structure ................................................................................................. 5 CHAPTER 2: LITERATURE REVIEW .............................................................................. 7 2.1 Proxies and Methods Used in Paleotempestology ................................................... 7 2.1.1 Hurricane Overwash ................................................................................. 8 2.1.2 Dating ........................................................................................................ 9 2.1.3 Reservoir Effect ........................................................................................ 9 2.2 Why Don’t All Storms Leave a Signature? ........................................................... 10 2.2.1 Relative Height of Storm Surge .............................................................. 10 2.2.2 Paleotempestological Sensitivity of the Lake ......................................... 11 2.3 Sea Level Change .................................................................................................. 12 2.3.1 Caribbean Sea Level Change .................................................................. 13 2.3.2 Global Warming and Sea Level Rise ...................................................... 14 2.3.3 Global Warming and Change in Intensity and Frequency of Hurricanes14 2.4 Climate Change in the Caribbean .......................................................................... 16 2.5 Seismology of the Caribbean Basin ....................................................................... 17 2.6 Tsunamis in the Caribbean..................................................................................... 18 2.7 Distinguishing Between a Tsunami and a Hurricane ............................................. 19 2.8 Hazard Regimes ..................................................................................................... 21 2.9 Risk Analysis and Prediction Using Paleotempestology ...................................... 23 2.9.1 Probability of Occurrence ...................................................................... 23 2.9.2 Hazard Analysis ...................................................................................... 25 2.9.3 Vulnerability .......................................................................................... 26 v 2.10 Emergence of Vulnerability Science .................................................................. 27 2.11 Vulnerability Modeling Approaches ................................................................... 27 2.12 Vulnerability Indicators ...................................................................................... 28 2.13 Normalization of Vulnerability Indicators .......................................................... 30 2.14 Spatial Representation of Risk ............................................................................ 30 2.14.1 Spatial Representation of Vulnerable Population ................................ 31 2.14.2 Spatial Representation of Probability of Strike .................................... 31 2.14.3 Spatial Representation of Hazards ........................................................ 32 CHAPTER 3: METHODOLOGY ....................................................................................... 33 3.1 Field Methods ........................................................................................................ 33 3.2 Laboratory Methods ............................................................................................... 33 3.2.1 Loss-on-Ignition ..................................................................................... 33 3.2.2 14C Dating .............................................................................................. 34 3.2.3 137Cs and 210Pb Dating ............................................................................ 35 3.2.4 Grain Size Analysis ...............................................................................
Recommended publications
  • An Informed System Development Approach to Tropical Cyclone Track and Intensity Forecasting
    Linköping Studies in Science and Technology Dissertations. No. 1734 An Informed System Development Approach to Tropical Cyclone Track and Intensity Forecasting by Chandan Roy Department of Computer and Information Science Linköping University SE-581 83 Linköping, Sweden Linköping 2016 Cover image: Hurricane Isabel (2003), NASA, image in public domain. Copyright © 2016 Chandan Roy ISBN: 978-91-7685-854-7 ISSN 0345-7524 Printed by LiU Tryck, Linköping 2015 URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-123198 ii Abstract Introduction: Tropical Cyclones (TCs) inflict considerable damage to life and property every year. A major problem is that residents often hesitate to follow evacuation orders when the early warning messages are perceived as inaccurate or uninformative. The root problem is that providing accurate early forecasts can be difficult, especially in countries with less economic and technical means. Aim: The aim of the thesis is to investigate how cyclone early warning systems can be technically improved. This means, first, identifying problems associated with the current cyclone early warning systems, and second, investigating if biologically based Artificial Neural Networks (ANNs) are feasible to solve some of the identified problems. Method: First, for evaluating the efficiency of cyclone early warning systems, Bangladesh was selected as study area, where a questionnaire survey and an in-depth interview were administered. Second, a review of currently operational TC track forecasting techniques was conducted to gain a better understanding of various techniques’ prediction performance, data requirements, and computational resource requirements. Third, a technique using biologically based ANNs was developed to produce TC track and intensity forecasts.
    [Show full text]
  • Multi-Scale, Multi-Proxy Investigation of Late Holocene Tropical Cyclone Activity in the Western North Atlantic Basin
    Multi-Scale, Multi-Proxy Investigation of Late Holocene Tropical Cyclone Activity in the Western North Atlantic Basin François Oliva Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the Doctorate of Philosophy in Geography Department of Geography, Environment and Geomatics Faculty of Arts University of Ottawa Supervisors: Dr. André E. Viau Dr. Matthew C. Peros Thesis Committee: Dr. Luke Copland Dr. Denis Lacelle Dr. Michael Sawada Dr. Francine McCarthy © François Oliva, Ottawa, Canada, 2017 Abstract Paleotempestology, the study of past tropical cyclones (TCs) using geological proxy techniques, is a growing discipline that utilizes data from a broad range of sources. Most paleotempestological studies have been conducted using “established proxies”, such as grain-size analysis, loss-on-ignition, and micropaleontological indicators. More recently researchers have been applying more advanced geochemical analyses, such as X-ray fluorescence (XRF) core scanning and stable isotopic geochemistry to generate new paleotempestological records. This is presented as a four article-type thesis that investigates how changing climate conditions have impacted the frequency and paths of tropical cyclones in the western North Atlantic basin on different spatial and temporal scales. The first article (Chapter 2; Oliva et al., 2017, Prog Phys Geog) provides an in-depth and up-to- date literature review of the current state of paleotempestological studies in the western North Atlantic basin. The assumptions, strengths and limitations of paleotempestological studies are discussed. Moreover, this article discusses innovative venues for paleotempestological research that will lead to a better understanding of TC dynamics under future climate change scenarios.
    [Show full text]
  • Reconstruction of Prehistoric Landfall Frequencies of Catastrophic Hurricanes in Northwestern Florida from Lake Sediment Records
    Quaternary Research 54, 238–245 (2000) doi:10.1006/qres.2000.2166, available online at http://www.idealibrary.com on Reconstruction of Prehistoric Landfall Frequencies of Catastrophic Hurricanes in Northwestern Florida from Lake Sediment Records Kam-biu Liu Department of Geography and Anthropology, Louisiana State University, Baton Rouge, Louisiana 70803 and Miriam L. Fearn Department of Earth Sciences, University of South Alabama, Mobile, Alabama 36688 Received December 10, 1998 proxy record of catastrophic hurricane strikes during the late Sediment cores from Western Lake provide a 7000-yr record of Holocene (Liu and Fearn, 1993). Lake Shelby is the only coastal environmental changes and catastrophic hurricane land- available millennial record of catastrophic hurricane landfalls falls along the Gulf Coast of the Florida Panhandle. Using Hur- for the Gulf of Mexico coast. Here we present a new, high- ricane Opal as a modern analog, we infer that overwash sand resolution record that spans the past 7000 yr from the Gulf layers occurring near the center of the lake were caused by cata- Coast of northwestern Florida. strophic hurricanes of category 4 or 5 intensity. Few catastrophic hurricanes struck the Western Lake area during two quiescent periods 3400–5000 and 0–1000 14C yr B.P. The landfall probabil- THE STUDY SITE ities increased dramatically to ca. 0.5% per yr during an “hyper- active” period from 1000–3400 14C yr B.P., especially in the first Western Lake (30° 19Ј 31Љ N, 86° 09Ј 12Љ W) is separated millennium A.D. The millennial-scale variability in catastrophic from the Gulf of Mexico by a 150- to 200-m-wide barrier hurricane landfalls along the Gulf Coast is probably controlled by beach (Fig.
    [Show full text]
  • Effect of Major Storms on Morphology and Sediments of a Coastal Lake on the Northwest Florida Barrier Coast Aaron C
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2008 Effect of Major Storms on Morphology and Sediments of a Coastal Lake on the Northwest Florida Barrier Coast Aaron C. Lower Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES EFFECT OF MAJOR STORMS ON MORPHOLOGY AND SEDIMENTS OF A COASTAL LAKE ON THE NORTHWEST FLORIDA BARRIER COAST By AARON C. LOWER A Thesis submitted to the Department of Geological Sciences in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Summer Semester, 2008 The members of the Committee approve the thesis of Aaron C. Lower defended on March 19, 2008. ___________________________ Joseph F. Donoghue Professor Directing Thesis ___________________________ Anthony J. Arnold Committee Member ___________________________ Sherwood W. Wise Committee Member ___________________________ Stephen J. Kish Committee Member Approved: ___________________________ A. Leroy Odom, Chair, Department of Geological Sciences ii ACKNOWLEDGEMENTS There are many people I would like to thank and recognize for their support throughout my studies. First, I would like to thank my advisor, Dr. Joseph Donoghue, for his continuous support and guidance during the MS program. Many thanks to the late Jim Balsillie, whose field expertise and suggestions proved invaluable to the completion of this thesis. Thanks to Jim Sparr, of the Florida Geological Survey, for his assistance with the GPR surveys. I am grateful to Matt Curren, formerly of the FSU Antarctic Research Facility, for the use of the X-ray machine, darkroom facilities and the storage of my cores.
    [Show full text]
  • Felix Hits Nicaragua and Honduras, Then Diminishes to Tropical Storm
    - Advertisement - Felix hits Nicaragua and Honduras, then diminishes to tropical storm September 5, 2007 Hurricane Felix, which reached Category 5 status and slammed into the Nicaragua-Honduras border Sept. 4, was reduced to a fast-moving tropical storm over eastern Guatemala. The storm broke up and lost strength as it hit the Honduran mountains, according to Martin Maldonado of Miami-based Team Produce International Inc. Ed Loyd, manager of investor relations and corporate communications for Chiquita Brands International in Cincinnati, said Sept. 5, "It's a little early for us to know what potential impact Hurricane Felix will have. We do have a number of farms in northern Honduras and Guatemala, and we also source from independent growers in southern Guatemala." These banana production areas "may be impacted by winds and rains. It is hard to predict." The speed of the storm is a key factor in the amount of damage, Mr. Loyd said. In 1998, Hurricane Mitch lingered for a week over Central America. That flooding dropped as much as four feet of rain on some parts of Honduras. Thus, news reports Sept. 5 that the storm was moving quickly were likely good news for produce grower-exporters in northern Central America. Mr. Loyd said that Chiquita would release more complete information about the status of its Central American banana crop around Sept. 10. Speaking from his Houston sales office, Guatemalan grower-exporter Antonio Maldonado said late in the afternoon of Sept. 5 that he was very thankful that Felix's ferocity had diminished to a tropical storm. Many Guatemalans spent the two days before the storm stocking up on supplies in preparation for the hurricane, "but now they're very tranquil," he said.
    [Show full text]
  • Downloaded 10/01/21 04:51 PM UTC JULY 2003 ANNUAL SUMMARY 1455
    1454 MONTHLY WEATHER REVIEW VOLUME 131 ANNUAL SUMMARY Atlantic Hurricane Season of 2001 JOHN L. BEVEN II, STACY R. STEWART,MILES B. LAWRENCE,LIXION A. AVILA,JAMES L. FRANKLIN, AND RICHARD J. PASCH NOAA/NWS/Tropical Prediction Center/National Hurricane Center, Miami, Florida (Manuscript received 19 July 2002, in ®nal form 9 December 2002) ABSTRACT Activity during the 2001 hurricane season was similar to that of the 2000 season. Fifteen tropical storms developed, with nine becoming hurricanes and four major hurricanes. Two tropical depressions failed to become tropical storms. Similarities to the 2000 season include overall activity much above climatological levels and most of the cyclones occurring over the open Atlantic north of 258N. The overall ``lateness'' of the season was notable, with 11 named storms, including all the hurricanes, forming after 1 September. There were no hurricane landfalls in the United States for the second year in a row. However, the season's tropical cyclones were responsible for 93 deaths, including 41 from Tropical Storm Allison in the United States, and 48 from Hurricanes Iris and Michelle in the Caribbean. 1. Overview of the 2001 season cycleÐsimultaneously exhibiting characteristics of both tropical and extratropical cyclones (Hebert 1973). The National Hurricane Center (NHC) tracked 15 No hurricanes struck the United States during 2001. tropical cyclones (TCs) that achieved tropical storm or The season thus joins the 2000, 1990, and 1951 seasons hurricane strength in the Atlantic basin during 2001 as years in which eight or more hurricanes occurred (Table 1). Nine of these became hurricanes and four without a U.S.
    [Show full text]
  • ANNUAL SUMMARY Atlantic Hurricane Season of 2005
    MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record.
    [Show full text]
  • Florida Hurricanes and Tropical Storms
    FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book.
    [Show full text]
  • Determining the Viability of Recent Storms As Modern Analogues For
    The University of Southern Mississippi The Aquila Digital Community Master's Theses Summer 8-2016 Determining the Viability of Recent Storms as Modern Analogues for North-Central Gulf of Mexico Paleotempestology Through Sedimentary Analysis and Storm Surge Reconstruction Joshua Caleb Bregy University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/masters_theses Part of the Atmospheric Sciences Commons, Climate Commons, Geology Commons, Geomorphology Commons, Oceanography Commons, Other Earth Sciences Commons, Other Oceanography and Atmospheric Sciences and Meteorology Commons, Sedimentology Commons, and the Stratigraphy Commons Recommended Citation Bregy, Joshua Caleb, "Determining the Viability of Recent Storms as Modern Analogues for North-Central Gulf of Mexico Paleotempestology Through Sedimentary Analysis and Storm Surge Reconstruction" (2016). Master's Theses. 198. https://aquila.usm.edu/masters_theses/198 This Masters Thesis is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Master's Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. DETERMINING THE VIABILITY OF RECENT STORMS AS MODERN ANALOGUES FOR NORTH-CENTRAL GULF OF MEXICO PALEOTEMPESTOLOGY THROUGH SEDIMENTARY ANALYSIS AND STORM SURGE RECONSTRUCTION by Joshua Caleb Bregy A Thesis Submitted to the Graduate School and the Department of Marine Science at The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Master of Science Approved: ________________________________________________ Dr. Davin J. Wallace, Committee Chair Assistant Professor, Marine Science ________________________________________________ Dr. Vernon L. Asper, Committee Member Professor, Marine Science ________________________________________________ Dr. Grant L. Harley, Committee Member Assistant Professor, Geography and Geology ________________________________________________ Dr.
    [Show full text]
  • United States National Museum
    SMITHSONIAN INSTITUTION UNITED STATES NATIONAL MUSEUM Bulletin 156 ABORIGINAL INDIAN POTTERY OF THE DOMINICAN REPUBLIC BY HERBERT W. KRIEGER Curator of Ethnology, United States National Museum UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1931 For sale by the Superintendent of Documents, Washington, D. C. Price, 75 cents ADVERTISEMENT The scientific publications of the National Museum include two series, known, respectively, as Proceedings and Bulletins. The Proceedings^ begun in 1878, are intended primarily as a me- dium for the publication of original papers, based on the collections of the National Museum, that set forth newly acquired facts in biology, anthropology, and geology, with descriptions of new forms and revisions of limited groups. Copies of each paper, in pamphlet form, are distributed as published to libraries and scientific organiza- tions and to specialists and others interested in the different subjects. The dates at which these separate papers are published are recorded in the table of contents of each of the volumes. The Bulletins^ the first of which was issued in 1875, consist of a series of separate publications comprising monographs of large zoological groups and other general sj^stematic treatises (occasion- ally in several volumes), faunal works, reports of expeditions, cata- logues of type-specimens, special collections, and other material of a similar nature. The majority of the volumes are octavo in size, but a quarto size has been adopted in a few instances in which large plates were regarded as indispensable. In the Bulletin series appear volumes under the heading Gontrihutions from the United States National Hei'haHum^ in octavo form, published by the National Museum since 1902, which contain papers relating to the botanical collections of the Museum.
    [Show full text]
  • Understanding the Characteristics of Rapid Intensity Changes of Tropical Cyclones Over North Indian Ocean
    Research Article Understanding the characteristics of rapid intensity changes of Tropical Cyclones over North Indian Ocean Raghu Nadimpalli1 · Shyama Mohanty1 · Nishant Pathak1 · Krishna K. Osuri2 · U. C. Mohanty1 · Somoshree Chatterjee1 Received: 31 August 2020 / Accepted: 21 December 2020 © The Author(s) 2021 OPEN Abstract North Indian Ocean (NIO), which comprises of Bay of Bengal (BoB) and Arabian Sea (AS) basins, is one of the highly poten- tial regions for Tropical Cyclones (TCs) in the world. Signifcant improvements have been achieved in the prediction of the movement of TCs, since the last decade. However, the prediction of sudden intensity changes becomes a challeng- ing task for the research and operational meteorologists. Hence, the present study focuses on fnding the climatological characteristics of such intensity changes over NIO regions. Rapid Intensifcation (RI) is defned as the 24-h maximum sustained surface wind speed rate equal to 30 knots (15.4 ms−1). The results suggest that the TCs formed over the NIO basin are both seasonal and basin sensitive. Since 2000, a signifcant trend is observed in RI TCs over the basin. At least one among three cyclones getting intensifed is of RI category. More number of RI cases have been identifed in the BoB basin than the AS. The post-monsoon season holds more RI and rapid decay cases, with 63% and 90% contribution. Most of the TCs are attaining RI onset in their initial stage. Further, India is receiving more landfalling RI TCs, followed by Bangladesh and Oman. The east coast of India, Tamil Nadu, and Andhra Pradesh are the most vulnerable states to these RI TCs.
    [Show full text]
  • 62Nd Book Cover.Cdr:Coreldraw
    62nd Interdepartmental Hurricane Conference Theme: Tropical Cyclone Operations and Research: Priorities for the Future AGENDA Monday, March 3, 2008 9:00 AM Early Registration (9:00 AM-12:30 PM) Opening Session 12:30 PM Conference Opening Mr. Samuel P. Williamson Federal Coordinator for Meteorology 12:35 PM Introduction of Mayor Mr. Howard Chapman Executive Director, Charleston Area Regional Transportation Authority 12:40 PM Welcome/Opening Remarks The Honorable Joseph P. Riley, Jr. Mayor, Charleston, South Carolina 12:55 PM Introductory Comments Mr. Samuel P. Williamson Federal Coordinator for Meteorology 1:15 PM Keynote Address Ms. Mary M. Glackin Deputy Under Secretary for Oceans and Atmosphere (NOAA) 1:30 PM Panel Introduction Mr. Samuel P. Williamson Federal Coordinator for Meteorology 1:35 PM Panel: Priorities for Tropical Cyclone Research: A Senior Leader Perspective Moderator: Dr. Elbert W. (Joe) Friday, Professor Emeritus, University of Oklahoma Panelists: Dr. Alexander “Sandy” MacDonald, Deputy Assistant Administrator for NOAA Research Laboratories and Cooperative Institutes Mr. Robert Winokur, Technical Director, Office of the Oceanographer and Navigator of the Navy Dr. Jack Kaye, Associate Director for Research, Earth Science Division, NASA Dr. Fred Lewis, Air Force Director of Weather RDML (sel) David Titley, Commander, Naval Meteorology and Oceanography Command Dr. John “Jack” Hayes, Assistant Administrator for Weather Services, NOAA 3:00 PM Introduction of Federal Agency Lead Mr. Samuel P. Williamson Representatives Federal Coordinator for Meteorology 3:15 PM Afternoon Coffee/Soda Break (3:15-3:45 PM) 1 Session 1 Coordinator: Mr. Mark Welshinger (OFCM) Session 1: The 2007 Tropical Cyclone Season in Review Session Leaders Dr.
    [Show full text]