Florida State University Libraries

Electronic Theses, Treatises and Dissertations The Graduate School

2008 Effect of Major Storms on Morphology and Sediments of a Coastal Lake on the Northwest Florida Barrier Coast Aaron C. Lower

Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected]

FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

EFFECT OF MAJOR STORMS ON MORPHOLOGY AND SEDIMENTS OF A

COASTAL LAKE ON THE

NORTHWEST FLORIDA BARRIER COAST

By

AARON C. LOWER

A Thesis submitted to the Department of Geological Sciences in partial fulfillment of the requirements for the degree of Master of Science

Degree Awarded: Summer Semester, 2008

The members of the Committee approve the thesis of Aaron C. Lower defended on March 19, 2008.

______Joseph F. Donoghue Professor Directing Thesis

______Anthony J. Arnold Committee Member

______Sherwood W. Wise Committee Member

______Stephen J. Kish Committee Member

Approved:

______A. Leroy Odom, Chair, Department of Geological Sciences

ii

ACKNOWLEDGEMENTS

There are many people I would like to thank and recognize for their support throughout my studies. First, I would like to thank my advisor, Dr. Joseph Donoghue, for his continuous support and guidance during the MS program. Many thanks to the late Jim

Balsillie, whose field expertise and suggestions proved invaluable to the completion of this thesis. Thanks to Jim Sparr, of the Florida Geological Survey, for his assistance with the GPR surveys. I am grateful to Matt Curren, formerly of the FSU Antarctic Research

Facility, for the use of the X-ray machine, darkroom facilities and the storage of my cores. I am grateful towards the Geological Society of America and the Gulf Coast

Association of Geological Societies for their student research grants. A special thanks goes to the staff at Grayton Beach State Park. I am also indebted to Dr. Bill Hu, Beth

Forrest, Lee Simons, Anthony Priestas and Corrie Neighbors for their contributions in the field. To my office mates – Jonathan, Zoe, Naba and Stacie – good times. I would also like to thank Beth, Alex, Chris and Bettsy for their social distractions and for showing me there is culture outside of Indiana. Thanks to Andy and Jake for providing a shoulder to cry on. Finally, thanks to my family and friends, especially Randy and Christi Lower, who brought me into this world and constantly remind me that they can take me out of it.

Words can’t describe the support they’ve given me, support in every sense of the word.

iii TABLE OF CONTENTS

List of Tables……………………………………………………………………………..vi List of Figures…………………………………………………………………………….xi Abstract………………………………………………………………………………….xvi

1. INTRODUCTION AND GEOLOGICAL BACKGROUND Statement of Problem……………………………………………………………...1 Storm Occurrence at Grayton Beach State Park, Florida…………………………2 Previous Paleo-Storm Studies……………………………………………………..3 Potential Significance……………………………………………………………..3 Hypotheses………………………………………………………………………...4 Florida Geologic Background……………………………………………………..5 Pleistocene and Holocene Sea Level History……………………………………..6 Recent Storm Record…………………………………………………………… ..7 2. STUDY AREA Grayton Beach State Park………………………………………………………..22 Subsurface Geology of the Walton County region, Florida……………………..22 Geomorphic Provinces of the Walton County region, Florida…………………..23 3. METHODS Field Sampling…………………………………………………………………...29 X-ray Imaging……………………………………………………………………30 Sediment Properties Analysis …………………………………………………...30 Percent Moisture…………………………………………………………30 Percent Organics…………………………………………………………30 Sediment Texture………………………………………………………...30 Geochronology…………………………………………………………………...31 Ground-Penetrating Radar (GPR)………………………………………………..31 4. RESULTS Samples Sites…………………………………………………………………….40 Ground-Penetrating Radar (GPR) Transect Results……………………………..42

iv Sediment Properties Analysis……………………………………………………42 Percent Moisture Results………………………………………………...42 Percent Organics Results………………………………………………...44 Sediment Texture Results………………………………………………..46 X-radiography Results…………………………………………………………...47 Geochronologic Results…………………………………………………...... 48 Storm Layer Identification and Stratigraphic Correlation Results………………48 5. DISCUSSION Introduction of Storm Sediment into Western Lake……………………………..72 Stratigraphic Correlation…………………………………………………………73 Geochronology Data from Core 020507-1………………………………………74 6. CONCLUSIONS……………………………………………………………………..80

APPENDIX A – Percent Moisture Data Results………………………………………...83 APPENDIX B – Percent Organics Data Results……………………………………….105 APPENDIX C – Individual Settling Tube Analysis Results…………………………...127

REFERENCES CITED…………………………………………………………………167 BIOGRAPHICAL SKETCH…………………………………………………………...171

v LIST OF TABLES

Table 4.1. Geographic locations of each core used during this investigation. Also noted is the type of each core. Note that in Figure 4.1 only the last digit is used to identify the 091605-series cores……………………………………………………………………....41

Table 4.2. OSL age calculations………………………………………………………...49

Table 5.1. Western Lake Sediment Core Correlation…………………………………...75

Table A.1. Percent Moisture Data Results for Core 091605-1………………………….84

Table A.2. Percent Moisture Data Results for Core 091605-2………………………….85

Table A.2 continued. Percent Moisture Data Results for Core 091605-2………………86

Table A.3. Percent Moisture Data Results for Core 091605-3………………………….87

Table A.3 continued. Percent Moisture Data Results for Core 091605-3………………88

Table A.3 continued. Percent Moisture Data Results for Core 091605-3………………89

Table A.4. Percent Moisture Data Results for Core 091605-4………………………….90

Table A.4 continued. Percent Moisture Data Results for Core 091605-4………………91

Table A.4 continued. Percent Moisture Data Results for Core 091605-4………………92

Table A.5. Percent Moisture Data Results for Core 091605-5……………………….....93

Table A.5 continued. Percent Moisture Data Results for Core 091605-5………………94

Table A.6. Percent Moisture Data Results for Core 091605-6……………………….....95

Table A.6 continued. Percent Moisture Data Results for Core 091605-6………………96

Table A.7. Percent Moisture Data Results for Core 091605-7………………………....97

Table A.7 continued. Percent Moisture Data Results for Core 091605-7………………98

Table A.8. Percent Moisture Data Results for Core 020507-1………………………....99

Table A.8 continued. Percent Moisture Data Results for Core 020507-1……………..100

Table A.8 continued. Percent Moisture Data Results for Core 020507-1……………..101

vi

Table A.8 continued. Percent Moisture Data Results for Core 020507-1……………..102

Table A.8 continued. Percent Moisture Data Results for Core 020507-1……………..103

Table A.8 continued. Percent Moisture Data Results for Core 020507-1…………..…104

Table B.1. Percent Organics Data Results for Core 091605-1………………………...106

Table B.2. Percent Organics Data Results for Core 091605-2………………………...107

Table B.2 continued. Percent Organics Data Results for Core 091605-2……………..108

Table B.3. Percent Organics Data Results for Core 091605-3………………………...109

Table B.3 continued. Percent Organics Data Results for Core 091605-3……………..110

Table B.3 continued. Percent Organics Data Results for Core 091605-3……………..111

Table B.4. Percent Organics Data Results for Core 091605-4………………………...112

Table B.4 continued. Percent Organics Data Results for Core 091605-4……………..113

Table B.4 continued. Percent Organics Data Results for Core 091605-4……………..114

Table B.5. Percent Organics Data Results for Core 091605-5………………………...115

Table B.5 continued. Percent Organics Data Results for Core 091605-5…………..…116

Table B.6. Percent Organics Data Results for Core 091605-6………………………...117

Table B.6 continued. Percent Organics Data Results for Core 091605-6……………..118

Table B.7. Percent Organics Data Results for Core 091605-7………………………...119

Table B.7 continued. Percent Organics Data Results for Core 091605-7……………..120

Table B.8. Percent Organics Data Results for Core 020507-1………………………...121

Table B.8 continued. Percent Organics Data Results for Core 020507-1……………..122

Table B.8 continued. Percent Organics Data Results for Core 020507-1……………..123

Table B.8 continued. Percent Organics Data Results for Core 020507-1…………..…124

Table B.8 continued. Percent Organics Data Results for Core 020507-1…………..…125

vii

Table B.8 continued. Percent Organics Data Results for Core 020507-1……………..126

Table C.1. GRANPLOT analysis of Core 091605-1-4 (depth of 4 cm)………………………………...... 128

Table C.2. GRANPLOT analysis of Core 091605-1-7 (depth of 7 cm)…………………………………………………………….…………....129

Table C.3. GRANPLOT analysis of Core 091605-1-8 (depth of 8 cm)………………………………………………………………...... 130

Table C.4. GRANPLOT analysis of Core 091605-1-11 (depth of 11 cm)………………………………………………………………….….….131

Table C.5. GRANPLOT analysis of Core 091605-1-16 (depth of 16 cm) ………………………………………………………………………..132

Table C.6. GRANPLOT analysis of Core 091605-1-23 (depth of 23 cm) ………………………………………………………….…………….133

Table C.7. GRANPLOT analysis of Core 091605-1-26 (depth of 26 cm) ………………………………………………………….…...... 134

Table C.8. GRANPLOT analysis of Core 091605-2-5 (depth of 5 cm) ……………………………………………………………………...... 135

Table C.9. GRANPLOT analysis of Core 091605-2-9 (depth of 9 cm) ……………………………………………………….……...... 136

Table C.10. GRANPLOT analysis of Core 091605-2-13 (depth of 13 cm) …………………………………………………………...... 137

Table C.11. GRANPLOT analysis of Core 091605-2-18 (depth of 18 cm) ………………………...……………………………………………...138

Table C.12. GRANPLOT analysis of Core 091605-2-20 (depth of 20 cm) ……………………………………………...……………………...…139

Table C.13. GRANPLOT analysis of Core 091605-2-30 (depth of 30 cm) ………………………………………...………………...…………....140

Table C.14. GRANPLOT analysis of Core 091605-2-35 (depth of 35 cm) ………………………...………………………...…………………....141

viii Table C.15. GRANPLOT analysis of Core 091605-6-22 (depth of 22 cm) …………………………………………...…………………...……....142

Table C.16. GRANPLOT analysis of Core 091605-6-27 (depth of 6 cm) …………………………………………………….…………………...143

Table C.17. GRANPLOT analysis of Core 091605-6-30 (depth of 30 cm) ………………………………………...……………………………...144

Table C.18. GRANPLOT analysis of Core 091605-6-37 (depth of 37 cm) ………………………………………...……………………………...145

Table C.19. GRANPLOT analysis of Core 091605-6-39 (depth of 39 cm) …………………………………………...…………………………...146

Table C.20. GRANPLOT analysis of Core 020507-1-6 (depth of 6 cm) …………………………………………………………………………147

Table C.21. GRANPLOT analysis of Core 020507-1-19 (depth of 19 cm) ………………………………………...……………………………...148

Table C.22. GRANPLOT analysis of Core 020507-1-33 (depth of 33 cm) ……………………………...... 149

Table C.23. GRANPLOT analysis of Core 020507-1-34 (depth of 34 cm)………………………………………... …………………………...…150

Table C.24. GRANPLOT analysis of Core 020507-1-46 (depth of 46 cm) …………………………………………...…………………………...151

Table C.25. GRANPLOT analysis of Core 020507-1-57 (depth interval of 62-64 cm)……………………………………………………………152

Table C.26. GRANPLOT analysis of Core 020507-1-74 (depth interval of 96-98 cm)……………………………………………………………153

Table C.27. GRANPLOT analysis of Core 020507-1-79 (depth interval of 106-108 cm)…………………………………………………………154

Table C.28. GRANPLOT analysis of Core 020507-1-82 (depth interval of 112-114 cm)…………………………………………………………155

Table C.29. GRANPLOT analysis of Core 020507-1-83 (depth interval of 114-116 cm)…………………………………………………………156

ix Table C.30. GRANPLOT analysis of Core 020507-1-97 (depth interval of 143-145 cm)…………………………………………………………157

Table C.31. GRANPLOT analysis of Core 020507-1-100 (depth interval of 149-151 cm)…………………………………………………………158

Table C.32. GRANPLOT analysis of Core 020507-1-103 (depth interval of 155-157 cm)…………………………………………………………159

Table C.33. GRANPLOT analysis of Core 020507-1-105 (depth interval of 159-161 cm)…………………………………………………………160

Table C.34. GRANPLOT analysis of Core 020507-1-106 (depth interval of 161-163 cm)…………………………………………………………161

Table C.35. GRANPLOT analysis of Core 020507-1-139 (depth interval of 257-259 cm)………………………………………………………....162

Table C.36. GRANPLOT analysis of Core 020507-1-141 (depth interval of 265-267 cm)…………………………………………………………163

Table C.37. GRANPLOT analysis of Core 020507-1-142 (depth interval of 269-271 cm)…………………………………………………...…….164

Table C.38. GRANPLOT analysis of Core 020507-1-148 (depth interval of 293-295 cm)…………………………………………………………165

Table C.39. GRANPLOT analysis of Core 020507-1-152 (depth interval of 309-311 cm)…………………………………………………………166

x

LIST OF FIGURES

Figure 1.1. Northwest Florida coastal region, showing locations of coastal and inland counties, rivers, barrier islands and spits. Florida Department of Environmental Protection (FDEP) critically eroding shorelines are indicated in red and blue. The red rectangle delineates the region encompassing the study area for this project (Source: URS Corp., http://ross.urs-tally.com)...... 9

Figure 1.2. Occurrence history for hurricanes striking the U.S. Gulf and Atlantic coasts. Note hurricane deficit since about 1970 (adapted from Balsillie, 2002)………………...10

Figure 1.3. Average return periods (years) for all hurricanes (a) and severe hurricanes (b) for each 80 km segment of the U.S. Gulf and Atlantic coast (from Simpson and Lawrence, 1971, as presented in Muller and Stone, 2001)………………………………11

Figure 1.4. Saffir-Simpson scale of hurricane intensity. National Weather Service categorizes a hurricane as major when sustained winds of 111 mph (178 km/hr) are reached. This corresponds to a Category 3 designation on the Saffir-Simpson scale (Source: http://www.crownweather.com/tropical.html)...... 12

Figure 1.5. National Weather Service records indicate that 31 named storms (includes all categories of hurricanes, subtropical depressions, tropical depressions, extratropical storms and tropical storms) have crossed the coast with 25 miles of Grayton Beach since 1851. This results in a return period of 5.0 years for all storms (Source: NOAA Coast, http://maps.csc.noaa.gov/hurricanes/viewer.html)...... 13

Figure 1.6. National Weather Service records indicate that 11 hurricanes (Categories 1 and 2) have crossed the coast within 25 miles of Grayton Beach since 1851. This results in a return period of 14.2 years (Source: NOAA Coastal Services Center, http://maps.csc.noaa.gov/hurricanes/viewer.html)…………………………………...... 14

Figure 1.7. National Weather Service Records indicate that 1 (Category 3 or higher) hurricanes have crossed the coast within 25 miles of Grayton Beach since 1851. This results in a return period of at least156 years for major storms. Note: No Category 4 or 5 hurricanes have crossed the coast within 25 miles of Grayton Beach since 1851 (Source: NOAA Coastal Services Center, http://maps.csc.noaa.gov/hurricanes/viewer.html)...... 15

Figure 1.8. National Weather Service Records indicate that 17 hurricanes (Category 1 and 2) have crossed the coast within 50 miles of Grayton Beach since 1851. This results in a return period of 9.2 years. Note: No Category 5 hurricanes have crossed the coast within 50 miles of Grayton Beach since 1851 (Source: NOAA Coastal Services Center, http://maps.csc.noaa.gov/hurricanes/viewer.html)………………………………………16

xi

Figure 1.9. National Weather Service Records indicate that 8 hurricanes (Category 3 or higher) have crossed the coast within 50 miles of Grayton Beach since 1851. This results in a return period of 19.5 years for major storms. Note: No Category 5 hurricanes have crossed the coast within 50 miles of Grayton Beach since 1851 (Source: NOAA Coastal Services Center, http://maps.csc.noaa.gov/hurricanes/viewer.html)…...... 17

Figure 1.10. Offshore bathymetry of the Florida margin, showing the extent of the carbonate platform (NOAA, 2006b)……………………………………………………..18

Figure 1.11. Gulf of Mexico Sea Level History – 20,000 cal yr BP to present (Balsillie and Donoghue, 2004)…………………………………………………………………….19

Figure 1.12. Hurricane Ivan storm track (September 8-16, 2004), showing initial landfall just west of the Florida Panhandle Coast (Source: NOAA/ NCEP / Tropical Prediction Center, as presented in FDEP, 2004)…………………………………………………….20

Figure 1.13. Hurricane Dennis storm track, showing initial landfall on Santa Rosa Island on July 10, 2005, at 2:25 p.m. CDT, between Pensacola Beach and Navarre Beach. At landfall the storm carried winds of 115-120 mph (Category 3) (Source: CIMSS/University of Wisconsin-Madison via NOAA / NCEP / TPC, as presented in FDEP, 2006)……………………………………………………………………………..21

Figure 2.1. Regional map of the study area. Grayton Beach State Park is indicated by the red arrow (Source: Google Earth, http://earth.google.com/)……...... 24

Figure 2.2. Grayton Beach State Park with adjacent Blue Mountain Beach and Seaside/Watercolor communities. The study area is highlighted in the red box, Blue Mountain Beach is located in the blue box and the Seaside/Watercolor communities are located within the yellow box (Source: Google Earth, http://earth.google.com/)…….....25

Figure 2.3. Oblique view of Grayton Beach State Park. A nearly continuous beach runs the southern extent of Western Lake. The study area is outlined in the orange rectangle (Source: NASA Worldwind, http://www.worldwind.arc.nasa.gov/)…...... 26

Figure 2.4. Geological map of the northern portion of Florida, showing geologic structure and major stratigraphic units (Source: USGS, http://sofifa.usgs.gov/)...... 27

Figure 2.5. Stratigraphic column for the state of Florida, showing Cenozoic stratigraphic units. Of interest to this investigation is the geology of the panhandle region, located on the left of the diagram (Source: USGS, http://sofia.usgs.gov/)...... 28

Figure 3.1. Example of vibracore collection method……………………………………33

Figure 3.2. Push-core collection on Western Lake (Walton County, FL)………………34

Figure 3.3. Norelco PG 140 (X-ray unit) used in this investigation…………………….35

xii

Figure 3.4. Automated settling tube and electrobalance apparatus used in this investigation……………………………………………………………………………...36

Figure 3.5. Model of the basis of luminescence dating (Source: Lepper, K., NDSU, http://www.ndsu.nodak.edu/ndsu/klepper/)...... 37

Figure 3.6. Generalized depiction of ground-penetrating radar (GPR) methodology. As EM radiation propagates through the subsurface of the cross-section (top diagram), a GPR profile is generated (bottom diagram). Note the delineation between different lithologies and the subsurface representation of the buried circular object (Mala, 2001)……………………………………………………………………………………..38

Figure 3.7. Employing GPR in Grayton Beach State Park, southwest of Western Lake, February, 2006…………………………………………………………………………...39

Figure 4.1. Aerial photograph of Western Lake region, showing the locations of core samples used in this investigation. The “091605”-series are shown in green. Core 020507-1 is represented by the red triangle…………………………………………...... 50

Figure 4.2. Hypothetical dune breach and overwash pattern for a coastal lake. Note the four closest cores to the sea (1, 2, 3 and 8) are subject to more storm impacts and therefore contain thicker and more frequent storm layers (Source: Liu and Fearn, 2000)……………………………………………………………………………………..51

Figure 4.3. GPR transects taken on February 17, 2006…………………………………52

Figure 4.4. GPR transects taken on July 17, 2006………………………………………53

Figure 4.5. GPR transects taken on October 16, 2006…………………………………..54

Figure 4.6. Un-interpreted (upper panel) and interpreted (lower panel) GPR profile of transect Grayton002. Location is shown in Figure 4.3. The upper facies (0-3 m of depth) can be attributed to aeolian deposition and the lower facies (3-8 m) can be attributed to storm deposition. The bottom (wavy) line may attributable to groundwater……………………………………………………………………………...55

Figure 4.7. Percent Organics/Moisture versus Depth Results for Core 091605-1...... 56

Figure 4.8. Percent Organics/Moisture versus Depth Results for Core 091605-2…………………………………………………………………………...57

Figure 4.9. Percent Organics/Moisture versus Depth Results for Core 091605-3…………………………………………………………………………...58

xiii Figure 4.10. Percent Organics/Moisture versus Depth Results for Core 091605-4…………………………………………………………………………...59

Figure 4.11. Percent Organics/Moisture versus Depth Results for Core 091605-5…………………………………………………………………………...60

Figure 4.12. Percent Organics/Moisture versus Depth Results for Core 091605-6…………………………………………………………………………...61

Figure 4.13. Percent Organics/Moisture versus Depth Results for Core 091605-7…………………………………………………………………………...62

Figure 4.14. Percent Organics/Moisture versus Depth Results for Core 020507-1…………………………………………………………………………...63

Figure 4.15. Potential storm layers based on percent organics and moisture analyses for cores 091605-1, 091605-2, 091605-3 and 091605-4. Proposed storm layers are highlighted in red………………………………………………………………………...64

Figure 4.16. Potential storm layers based on percent organics and moisture analyses for cores 091605-5, 091605-6 and 091605-7. Proposed storm layers are highlighted in red………………………………………………………………………………………..65

Figure 4.17. Potential Storm layers based on percent organics and moisture analyses for core 020507-1. Proposed storm layers are highlighted in red…………………………..66

Figure 4.18. Potential storm layers for core 020507-1, based on sediment texture. Seventeen storm sediment layers can be identified within the 319-cm long core. Storm layers are highlighted in yellow………………………………………………………….67

Figure 4.19. Potential storm layers for cores 091605-1, 091605-2 and 091605-6, based on sediment texture. Storm layers are highlighted in yellow……………………………68

Figure 4.20. Storm layers based on synthesis of sediment texture and percent organics/moisture for cores 091605-1, 091605-2 and 091605-6. Where data suggests a storm layer occurred in both sediment texture and percent organics/moisture analyses, a 'synthesis' column is generated. This aids in visually identifying storm layers…………69

Figure 4.21. Storm layers based on synthesis of sediment texture and percent organics/moisture for cores 020507-1 (depth interval 1-160 cm). Where data suggests a storm layer occurred in both sediment texture and percent organics/moisture analyses, a 'synthesis' column is generated. This aids in visually identifying storm layers…………70

Figure 4.21 continued. Storm layers based on synthesis of sediment texture and percent organics/moisture for cores 020507-1 (depth interval 161-319 cm). Where data suggests a storm layer occurred in both sediment texture and percent organics/moisture analyses, a

xiv 'synthesis' column is generated. This aids in visually identifying storm layers……………………………………………………………………………………..71

Figure 5.1. Dune breach at Grayton Beach State Park (highlighted in red) caused by Category 3 Hurricane Dennis in July, 2005. Prior to the hurricane, a high and nearly continuous coastal dune ridge protected Western Lake (Source: Google Earth, http://earth.google.com)...... 77

Figure 5.2. Location of tidal inlet (blue box) and slough (red arrow) at Western Lake. Both geographical entities provide a pathway for sediment introduction into Western Lake. The yellow rectangle highlights the sand spit, presumably derived by minor, wind driven waves (Source: Google Earth, http://earth.google.com).………………………...78

Figure 5.3. Core correlation based on sediment texture and percent moisture/organics. Core 020507-1 was selected because it was the dated core. Cores 091605-1, 091605-2 and 091605-6 were selected because they lay along an E-W axis in the lake, from the tidal inlet to the middle of the lake. Of the six storm layers identified within the upper ~270 cm of lake deposits, five storms can be correlated………………………………...79

xv

ABSTRACT

The objective of this investigation was to examine storm deposits in a coastal setting on the northwest Florida panhandle coast, characterize the sediments and reconstruct hurricane frequency during the late Quaternary. The focus of the research was Western Lake, a coastal lake located in Grayton Beach State Park, Walton County, northwest Florida. Eight sediment cores from Western Lake were sampled to identify major storm deposits that have impacted the Grayton Beach region over the past several millennia. Ground-penetrating radar (GPR) profiles were generated for the purpose of identifying individual storm deposits. Although no individual storm beds could be classified, GPR confirmed the differentiation between storm and aeolian deposition. Direct dating of quartz grains through optically stimulated luminescence (OSL) provided a 2,300-year reconstruction of storm frequency at Grayton Beach State Park. The historic storm frequency record appears to overstate the actual long-term frequency record by more than an order of magnitude.

xvi CHAPTER 1

INTRODUCTION AND GEOLOGICAL BACKGROUND

Statement of Problem The objective of this investigation was to examine storm deposits in a coastal setting on the northwest Florida panhandle coast, characterize the sediments and reconstruct major hurricane frequency during the late Quaternary. Hurricanes and tropical storms have played a significant role in the morphology and sedimentology of the northeastern Gulf of Mexico coast and its associated barrier islands for millennia. A nearly continuous chain of barriers and spits comprises the northwest Florida coast (Figure 1.1). A red rectangle delineates the study area for this investigation in Figure 1.1. The historic storm record for the eastern and Gulf Coast of the United States, primarily from National Weather Service records, extends back only about 150 years. During that time about 90 storms have struck Florida’s coast (Balsillie, 2002) (Figure 1.2). On average, a hurricane strikes an individual segment of the U.S. Gulf coast every seven years (Muller and Stone, 2001), although major storms are far less frequent, returning only once every several decades. A segment in this case is defined as an 80 km length of coastline, on the basis that maximum winds of a severe hurricane extend 80 km to the right of the (Simpson & Lawrence, 1971). Note the absence of severe hurricane data for the Florida panhandle (Figure 1.3). Muller and Stone (2001) attribute the missing data to the “sheltering effect of the Florida peninsula,” whereas the protrusion of the Mississippi Delta Plain receives more severe hurricanes due its geographical positioning. The historic storm data indicate that the record is short and incomplete. Knowledge of storm frequency, especially for major storms, is poor. The National Oceanic and Atmospheric Administration (NOAA) classifies a hurricane as major when surface wind velocities of 111 mph (178 km/hr) are sustained for at least 1 minute. This surface wind velocity corresponds to the Category 3 designation on the Saffir-Simpson scale (NWS, 2008) (Figure 1.4). The historic record of storms for any coastal segment – typically less than 100 years – may well be a poor representative of the long-term trend of storm occurrence. Recent work (e.g., Nott, 2004;

1 Liu and Fearn, 2000) indicates that records of prehistoric tropical cyclones can be found in the form of various sedimentologic indicators (e.g., ridges of coral rubble, sand, shell and pumice). Additionally, recent advances in the use of GPR (ground-penetrating radar) and geochronology (OSL - optically stimulated luminescence) in coastal settings have facilitated the quantification of beach landforms as well as the reconstruction of paleo- hurricanes (Isphording et al., 1991; Nichol, 2002; Jol et al., 2003; Moore et al., 2004; Tsoar et al., 2004). The study of paleo-storms has come to be known as .

Storm Occurrence Record at Grayton Beach State Park, Florida Records of historical storm occurrence from the National Weather Service (NWS) date back to 1851. Although the earlier storms and hurricanes are not named, a generalized storm track for these storms can be generated. Figures 1.5 to 1.9 depict historical storm tracks within a 25 and 50 km radius of the study area for this investigation, Grayton Beach State Park, Walton County, Florida (for details on the Grayton Beach State Park study area, see Chapter 2). Figure 1.5 shows that 31 storms have crossed within 25 miles of Grayton Beach State Park since 1851. These storms include all categories of hurricanes, tropical storms, extratropical storms, tropical depressions and subtropical depressions. Figure 1.6 reveals 11 hurricanes (Categories 1 and 2) have crossed the coast within 25 miles of Grayton Beach State Park since 1851. Figure 1.7 illustrates that 1 major hurricane (Category 3 or higher) has crossed the coast within 25 miles of Grayton Beach State Park since 1851. No Category 4 or 5 hurricanes have crossed the coast within 25 miles of Grayton Beach State Park since 1851. These sparse data indicate that the historic return period for major storms within 25 miles of the study area is at least 150 years. Figure 1.8 shows the tracks of the 17 hurricanes (Categories 1 and 2) that have crossed the coast within 50 miles of Grayton Beach State Park since 1851. Figure 1.9 shows that 8 major hurricanes (Cat. 3 or higher) have crossed the coast within 50 miles of Grayton Beach State Park since 1851. No Category 5 hurricanes have crossed the coast within 50 mile of Grayton Beach State Park, based on NWS records. The return period for major storms within 50 miles of the study area based on historic records, therefore, is approximately 20 years.

2 Reliability of storm frequency records was a major focus of this investigation. Return periods will be established using storm layers identified within sediment cores. Granulometric analyses will be used to detect storm layers. A comparison between the National Weather Service return periods and the return periods calculated based on the geochronologic dates from this investigation is discussed in Chapter 5.

Previous Paleo-Storm Studies Prior to the advent of paleotempestology, the only available source of information about past storms and hurricanes was through historical records. Paleotempestology is a branch of coastal science that seeks to determine the frequency of historic and prehistoric hurricanes by sedimentological and geochemical proxies (Liu and Fearn, 1993; Liu & Fearn, 2000; Nott, 2004). Liu and Fearn (1993) first used overwash layers derived from beach and dune sands in Lake Shelby to detect storm layers, on the Alabama Gulf coast, suggesting Lake Shelby has preserved the deposits of at least six major hurricanes in the lake floor sediment. Their second paleotempestological study (2000) in Western Lake, Florida, also examined overwash sequences as a proxy for hurricane frequency. They reported a 7000-year record of hurricane landfalls in Western Lake sediments. Collins et al. (1999) examined cores from two South Carolina sites, using marine foraminifera within sand units as a proxy for identifying hurricane overwash events. Donnelly et al. (2001a, 2001b) used multiple overwash fans in several New Jersey sites as a proxy for intense hurricane strikes. Springer (2005) determined that it is possible to differentiate between closely spaced events (i.e. hurricanes) within a thick sand unit. A newly developed proxy applied by Mora et al. (2006) examined stable oxygen isotope signatures in tree rings to establish and hurricane frequency.

Potential Significance Approximately 50 % of the global population lives within 60 km of the coast (Woodroffe, 2002). Approximately 95% of Florida’s population lives in coastal counties (Culliton, 1998). With much of the global population as well as Florida’s population dwelling on or near the coast, it is important to understand the interactions between extreme meteorologic events and the coastline (Culliton, 1998). A county is defined as

3 coastal if at least 15% of its total land area is located within the nation’s coastal watershed (Ward and Main, 1998). In addition, tourism brings millions of people to Florida each year, most of whom visit coastal areas. Tourism has increased significantly in Florida, with 41 million people visiting Florida in 1993 and 83.9 million visitors (domestic and foreign) in 2006 (Florida – State of the Coast Report, September 1996; Florida Council on Tourism, 2007). Total tourism spending accounted for 65 billion dollars in 2006 (Florida Council on Tourism, 2007). Given the significant economic impact of coastal tourism, it is important to understand the potential risks and hazards posed by major storms and hurricanes. The problem addressed by this research was to document and better understand the sedimentary characteristics and geometry of major storm deposits, and the frequency of occurrence of the storms that generated them. By quantifying these parameters, a more accurate understanding of the nature and frequency of paleo-storm deposits enables a better estimate of the risk of catastrophic storm events on the rapidly-developing northwest Florida coast.

Hypotheses Over the course of this investigation, the following hypotheses and working assumptions were tested: 1. The sedimentary record is a better and more complete indicator than the historic record of the true frequency of occurrence of major storms. 2. Sedimentary characteristics of the northwest Florida coast make the region a good candidate to record and preserve the deposits of major storms. 3. For major storms, sedimentary environments, such as coastal lakes, preserve a record of from major storms, and can be used to date and assess the frequency of paleo-storms. 4. Simple counts of sand layers in a coastal sedimentary environment may not be sufficient to characterize the frequency of major storms. 5. Remote sensing techniques, such as GPR, can be used successfully in the characterization of paleo-storm deposits.

4 6. Direct luminescence dating of quartz grains can be effective in a coastal depositional setting and can provide a high-resolution history of major storm deposits.

Florida Geologic Background The near-surface geology of the Florida peninsula and panhandle owes its present configuration to the variability of sea level since the middle of the Cenozoic Era. The subsurface stratigraphic sequence represents a record of repeated marine transgressions and regressions. The geomorphology of the Florida coast is a result of the dynamic reworking of sediment, through episodes of deposition and erosion during the Tertiary and Quaternary (Randazzo & Jones, 1997). The Florida Platform, the carbonate subsurface of Florida, extends southward from the North American continent, separating the Atlantic Ocean from the Gulf of Mexico (Figure 1.10). The exposed part of the platform, the present-day state of Florida, is offset to the east of the platform’s axis, which more or less coincides with the present- day west coast of the peninsula (Scott, 1997). At its greatest width, the platform spans 350 miles east to west (565 kilometers) and extends 450 miles (725 kilometers) in length from south to north (Scott, 2001). During the late Pleistocene, sediment that had been deposited as deltas within the coastal river systems was reworked by wave action and moved along the shore. Once sea level became fairly stable, waves, currents, and winds worked together on the sand to form the beaches and barrier islands that stretch the extent of the Florida peninsula (Field and Duane, 1976). Sedimentary input for the panhandle of Florida is largely due to the influence of the Apalachicola River (Donoghue and Tanner, 1992). Its drainage basin ranges from eastern Alabama to the Georgian piedmont and south to the Gulf of Mexico (Stewart and Gorsline, 1962). The river’s location can be observed to the right of center in Figure 1.1. During the late Quaternary, the Apalachicola River transported sediment into the Gulf of Mexico at a rate faster than coastal processes could disperse it (Tanner, 1964), creating the barrier islands and spits that populate the panhandle coast.

5 Pleistocene and Holocene Sea Level History During the Quaternary, a series of glacial periods covered great portions of North America, along with the portions of the rest of the continental land masses. As a result of the extensive ice coverage, sea level dropped as much as 130 meters below modern sea level. Marine water served as the primary source for the expanding glaciers. At peak interglacial cycles, sea level stood at least 100 meters above the present level, and peninsular Florida probably consisted of islands (Lane, 1994). Sea-level curves extending from the Last Glacial Maximum (approximately 21,000 years ago) indicate a low-stand of about 120 meters (Balsillie & Donoghue, 2004). Sea level generally rose, with alternating sequences of stillstands, until 6000 years ago. At this time, data suggest sea level reached its current position. Since then, sea level has oscillated up and down a few meters and is presently rising. Long-term tide gage records record a global average sea level rise of about 1.5 mm/yr over the past century (Church et al., 2001). Cabanes et al. (2001) reported, based on satellite measurements, that global sea level is currently rising at 3.2 ± 0.2 mm/year. It has been well established via proxy records that sea level has oscillated multiple times during the past few million years, with amplitudes of approximately 100 meters (Lea et al., 2002; Raymo et al., 2006). Raymo et al. (2006) concluded, based on model results, that, after 2.5 million years before present, long term cooling generated the large northern hemisphere ice sheets, and initiated a period of cyclic swings of glacial- interglacial climate that continues into the present. During the warmer, interglacial periods, continental ice melted, and the shorelines of the world’s oceans basins advanced inland across the continental shelves. During the cooler glacial periods, as water was withdrawn from the seas and stored in the form of glacial ice, the shoreline moved seaward across the continental shelves. This process involved great quantities of seawater, enough to cause the shoreline in places to translate 100-200 km across the coastal plain and continental shelf. When the most recent glacial stage, the Wisconsinan, began to warm, about 20,000 years ago, sea level was approximately 120 m lower than it is today, and the shorelines of the Atlantic and Gulf coasts were 60 to 150 km seaward of their present positions. With the transition from glacial to interglacial conditions, global sea level

6 started to rise. A rapid rise persisted for about 14,000 years (Curray, 1961; Coleman & Smith, 1964), reaching within a few meters of the present level about 6,000 years ago. As the sea rose and the shoreline moved across the continental shelf, large masses of sand were moved with the migrating shore zone in the form of beach and nearshore deposits (Duane et al., 1972; Field & Duane, 1976). Sediment that had been deposited as deltas and other fluvial sands by coastal river systems were reworked by wave action and moved along the shore by currents. Once sea level reached near present level and began to slow, waves, currents, and winds worked together on the sand to form the beaches and barrier islands that now stretch from New England to Texas. As long as the inshore system contained surplus sediment, the beaches continued to build seaward until equilibrium was established. Equilibrium in this case was a function of the balance among storm and wave energy, sea level and the amount of sediment in the transport system. Although late Holocene sea level has remained fairly stable following the initial rapid rise of the Wisconsinan and early Holocene, sea level has fluctuated by 1-2 meters over the past 6,000 years, and is currently slowly rising on a global basis. This slow rise has resulted in the recession of shorelines and the enlargement of bays and sounds. Figure 1.11 describes the Gulf of Mexico sea level history throughout the last 20,000 years. Figure 1.11 demonstrates the steady rise in sea level from 20,000 to 6,000 years ago. During historic time, this rise has continued, as measured by tide gages and satellite data, as described above.

Recent Storm Record The 2004 hurricane season produced four named storms that had a significant impact on the Southeast and particularly the northwest Florida coastlines. Hurricane Ivan, the largest of the four, was one of the most destructive storms in the history of the Florida panhandle coast. The storm entered the Gulf of Mexico on September 14, 2004, as a Category 5 storm. A wave buoy 62 miles south of Dauphin Island, Alabama, recorded waves as high as 53 feet. The storm made landfall at Gulf Shores, Alabama, early on September 16, with sustained winds of 130 mph (Category 3). The landfall was just over 100 miles (62 km) from the study area for this project. The western Florida panhandle barriers and parts of the Alabama coast were on the eastern side of the storm,

7 where storm surge was reported as high as 20 ft above MSL (FDEP, 2004). Coastal damage was reported as far east as Franklin County, Florida. Figure 1.12 shows the path of Hurricane Ivan through the Caribbean and Gulf of Mexico. Another recent major storm to impact the study area was Hurricane Dennis. Dennis crossed the western Florida panhandle coast on July 10, 2005, between Pensacola Beach and Navarre Beach, about 55 miles (88 km) west of the study area. At landfall the storm carried winds of 115-120 mph (Category 3). Figure 1.13 shows the track of Hurricane Dennis. This storm will be used as an example of an event that was large enough and close enough to the study area to have an impact on the sedimentary record, as will be discussed in later chapters.

8

Figure 1.1. Northwest Florida coastal region, showing locations of coastal and inland counties, rivers, barrier islands and spits. Florida Department of Environmental Protection (FDEP) critically eroding shorelines are indicated in red and blue. The red rectangle delineates the region encompassing the study area for this project (Source: URS Corp., http://ross.urs- tally.com).

9

Figure 1.2. Occurrence history for hurricanes striking the U.S. Gulf and Atlantic coasts.

Note hurricane deficit since about 1970 (adapted from Balsillie, 2002).

10

Figure 1.3. Average return periods (years) for all hurricanes (a) and severe hurricanes (b) for each 80 km segment of the U.S. Gulf and Atlantic coast (from Simpson and Lawrence, 1971, as presented in Muller and Stone, 2001.)

11

Figure 1.4. Saffir-Simpson scale of hurricane intensity. The National Weather Service categorizes a hurricane as major when sustained winds of 111 mph (178 km/hr) are reached. This corresponds to a Category 3 designation on the Saffir- Simpson scale (Source: http://www.crownweather.com/tropical.html).

12

Figure 1.5. National Weather Service records indicate that 31 storms (includes all categories of hurricanes, subtropical depressions, tropical depressions, extratropical storms and tropical storms) have crossed the coast within 25 miles of Grayton Beach since 1851. This results in a return period of 5.0 years for all storms (Source: NOAA Coastal Services Center, http://maps.csc.noaa.gov/hurricanes/viewer.html).

13

Figure 1.6. National Weather Service records indicate that 11 hurricanes (Categories 1 and 2) have crossed the coast within 25 miles of Grayton Beach since 1851. This results in a return period of 14.2 years (Source: NOAA Coastal Services Center, http://maps.csc.noaa.gov/hurricanes/viewer.html).

14

Figure 1.7. National Weather Service Records indicated that 1 major hurricane (Category 3 or higher) has crossed the coast within 25 miles of Grayton Beach since 1851. This results in a return period of at least 156 years for major storms. Note: No Category 4 or 5 hurricanes have crossed the coast within 25 miles of Grayton Beach since 1851 (Source: NOAA Coastal Services Center, http://maps.csc.noaa.gov/hurricanes/viewer.html).

15

Figure 1.8. National Weather Service Records indicated that 17 hurricanes (Categories 1 and 2) have crossed the coast within 50 miles of Grayton Beach since 1851. This results in a return period of 9.2 years. Note: No Category 5 hurricanes have crossed the coast within 50 miles of Grayton Beach since 1851 (Source: NOAA Coastal Services Center, http://maps.csc.noaa.gov/hurricanes/viewer.html).

16

Figure 1.9. National Weather Service Records indicated that 8 major hurricanes (Category 3 or higher) have crossed the coast within 50 miles of Grayton Beach since 1851. This results in a return period of 19.5 years. Note: No Category 5 hurricanes have crossed the coast within 50 miles of Grayton Beach since 1851 (Source: NOAA Coastal Services Center, http://maps.csc.noaa.gov/hurricanes/viewer.html).

17

Figure 1.10. Offshore bathymetry of the Florida margin, showing the extent of the carbonate platform (NOAA, 2006b).

18

10 0 -10 -20 -30 -40 -50 -60 -70

-80 Meters MSL -90 -100 -110 -120 -130 25,000 20,000 15,000 10,000 5,000 0 Cal Yr BP

Figure 1.11. Gulf of Mexico Sea Level History – 20,000 cal yr BP to present (Balsillie and Donoghue, 2004).

19

Figure 1.12. Hurricane Ivan storm track (September 8-16, 2004), showing initial landfall just west of the Florida Panhandle Coast (Source: NOAA/ NCEP / Tropical Prediction Center, as presented in FDEP, 2004).

20

Figure 1.13. Hurricane Dennis storm track, showing initial landfall on Santa Rosa Island on July 10, 2005, at 2:25 p.m. CDT, between Pensacola Beach and Navarre Beach. At landfall the storm carried winds of 115-120 mph (Category 3) (Source: CIMSS/University of Wisconsin- Madison via NOAA / NCEP / TPC, as presented in FDEP, 2006).

21 CHAPTER 2

STUDY AREA

Grayton Beach State Park Grayton Beach State Park is an 8.9 square km park located along the Floridian panhandle in southern Walton County, Florida (Figure 2.1), just south of County Road 30A between the Blue Mountain Beach and Seaside/Watercolor communities (Figure 2.2). Walton County is bounded by Okaloosa County to the west and Washington, Holmes and Bay counties to the east. The park opened in 1968 after acquisition of the land from the State Board of Education in 1964 (Anonymous, 2007). The park lies within the Coastal Lowlands physiographic region (described below). The lowland topography is generally flat. The exceptions are the presence of dunes, or areas where the surface has been altered by erosion. Elevation at the park ranges from sea level along the beach to approximately 7 meters above sea level in some dune areas. Figure 2.3 depicts the nearly continuous and high sand beach ridge located south of Western Lake.

Subsurface Geology of the Walton County region, Florida The subsurface geology of Walton County, Florida, can be divided into six Cenozoic geologic units. From youngest to oldest, they are: the Citronelle Formation, the Alum Bluff Group, the Bruce Creek Formation, the Suwannee Limestone, the Chattahoochee Formation and the Ocala Limestone. Figure 2.4 shows a cross-section of the Florida panhandle and Figure 2.5 depicts the stratigraphic column for the Florida panhandle. Below are the geologic descriptions for each formation or group.

Citronelle Formation: The Citronelle Formation is a siliclastic, fluvio-deltaic deposit composed of unconsolidated to poorly consolidated, very fine to very coarse, poorly sorted, clean to clayey sands (Scott, 2001). Alum Bluff Group: The Alum Bluff Group consists of clayey, quartz sand with shells and shell beds and is found in northern and central Walton County (HydroGeoLogic Inc, 2000).

22 Bruce Creek Formation: Typically, the Bruce Creek Formation consists of white to gray, fine-grained, fossiliferous, moderately indurated with traces of sand and clay. However, in Walton County, the Bruce Creek Formation consists of indurated, fine-grained chalky limestone (HydroGeoLogic Inc, 2000). Suwannee Limestone: The Suwannee Limestone consists of white to cream colored, poorly to well-indurated fossiliferous, vuggy to moldic limestone (Scott, 2001). Chattahoochee Formation: The Chattahoochee Formation is a yellowish gray, poorly to moderately indurated, fine-grained, often fossiliferous, silty to finely sandy dolostone (Scott, 2001). Ocala Limestone: The Ocala Limestone is a white to light gray, chalky, fossiliferous, relatively pure calcium carbonate limestone (HydroGeoLogic, 2000).

Geomorphic Provinces of the Walton County region, Florida Walton County can be segregated into three major geomorphologic provinces: 1) the Northern Highlands, 2) the River Valley Lowlands and 3) the Gulf Coastal Lowlands. The Northern Highlands, extending from Georgia and Alabama into the northern section of the state, are formed predominantly within the Citronelle Formation (Schmidt, 1984). River Valley Lowlands is the terminology used by Vernon (1951) for the flood plain deposits of streams and their associated valleys. Many streams in the Coastal Plain are old enough to have originated well back into the Pleistocene Epoch. The geomorphology of their river valley lowlands reflects the Pleistocene sea level fluctuations, as do the coastal marine terraces (Schmidt, 1984). The Gulf Coastal Lowlands are a series of coast-parallel plains or terraces composed of clastics which extend from the coast to successively higher levels in a landward direction, with each terrace separated from the next by an escarpment or gentle slope (Schmidt, 1984). Each terrace represents a successive change in sea level. Multiple terraces indicate multiple changes in eustatic sea level.

23

Figure 2.1. Regional map of the study area on the NW Florida panhandle coast. Location of Grayton Beach State Park is indicated by the red arrow (Source: Google Earth., http://google.earth.com).

24

Western Lake

Figure 2.2. Grayton Beach State Park with adjacent Blue Mountain Beach and Seaside/Watercolor communities. The study area is highlighted in the red rectangle, Blue Mountain Beach is located in the blue rectangle and the Seaside/Watercolor communities are located within the yellow rectangle (Source: Google Earth, http://earth.google.com/).

25

Western Lake

Figure 2.3. Oblique view of Grayton Beach State Park. A nearly continuous dune ridge runs along the southern extent of Western Lake. The study area is outlined in the orange rectangle (Source: NASA World Wind, http://worldwind.arc.nasa.gov/).

26

Figure 2.4. Geological map of the northern portion of Florida, showing geologic structure and major stratigraphic units (Source: USGS, http://sofia.usgs.gov/).

27

Figure 2.5. Stratigraphic column for the state of Florida, showing Cenozoic stratigraphic units. Of interest to this investigation is the geology of the panhandle region, located on the left of the diagram (Source: USGS, http://sofia.usgs.gov/).

28 CHAPTER 3

METHODS

Field Sampling Samples for geochronologic and granulometric analyses were collected by coring in Western Lake and its vicinity. A total of 8 lacustrine cores (7 push cores and 1 vibracore) were collected. The vibracoring methodology was developed specifically to sample sands, a sedimentary facies difficult to sample by other commonly-used methods such as piston coring and box coring. A vibrating head on the coring system causes the core barrel to acquire a high frequency vibration. This vibration forces the grain-to-grain contacts between sand particles next to the core barrel to break down, resulting in momentary sediment liquefaction near the leading edge of the core barrel (Roberts, 1995). If the vibrating frequency is controlled, nearly undisturbed cores of sandy deposits can be obtained. Figure 3.1 demonstrates the vibracoring process. The vibracoring system used in this investigation was powered by a Stow vibrator with an 8 horsepower Briggs and Stratton gas motor. Approximately 6.1 m (20 ft) by 8 cm diameter aluminum irrigation tubes were used to extract terrestrial sediment samples from the substrate. Once optimal penetration was attained, the top of the core opening was filled with water and subsequently capped with a pipe-line stopper. This created suction upon the extraction of the core and precluded movement (ie. homogenization) of the sediment within the barrel. All cores were cut a few cm above the sediment horizon to reduce weight, lessen the likelihood of sediment disturbance and facilitate transport of the cores back to the laboratory for analysis. The push cores (Cores 091605-1, 091605-2, 091605-3, 091605-4, 091605-5, 091605-6 and 091605-7) were collected using a pole-mounted corer aboard the Florida Geological Survey’s Carolina Skiff. Long poles were hand-driven into the lake-bottom sediment to provide stability of the boat (i.e. little or no movement of boat while coring). Once stability was achieved, a Lexan plastic tube (1.5 m long, 7 cm diameter) with a check valve on top, was pushed slowly into the lake-bottom sediment, using a long PVC pole. After refusal, the core was extracted from the lake sediment, hauled back on deck

29 and capped (Figure 3.2). Core 020507-1 was collected with the vibracorer. Core locations will be shown in Chapter 4.

X-Ray Imaging The push cores collected from Western Lake were imaged by X-radiography, to aid in distinguishing organic deposition from storm deposition. A Norelco PG 140 (portable X-ray unit) was used in this investigation (Figure 3.3). Each core was exposed to x-radiation for a duration of 2 minutes and 20 seconds. This optimal exposure (2 minutes and 20 seconds) time was found though experimentation, with exposure times ranging from 15 seconds to 5 minutes.

Sediment Properties Analyses Lake cores were extruded and sampled every centimeter to determine percent organics and percent moisture.

Percent Moisture The samples were weighed and placed in an oven at 65o Celsius to vaporize moisture. They were then allowed to cool, and then weighed again to obtain percent moisture (Carver, 1971; Dean, 1974). Percent Organics The samples were then placed in a muffle furnace at 550o Celsius to combust organics (Carver, 1971; Dean, 1974). The weight loss in that process was reported as percent organic. The percent organics and percent moisture for each core were plotted against depth. These plots were used in helping to distinguish normal organic lake deposition from storm deposition. Sediment Texture In addition to water vaporization/combustion analyses, granulometric analyses were performed on the combusted samples using an automated settling tube and electrobalance (Robinson et al., 1995). Samples were split into representative fractions, weighing approximately 1 gram. A surfactant (Photo-Flo) was used to adhere the sample to a Plexiglas sample holder before immersion into the tube. Figure 3.4 shows the

30 settling tube used in this investigation. Grain-size distribution results from the settling tube analysis were analyzed using the program GRANPLOTS (Balsillie et al., 2002). The GRANPLOTS program presents a thorough granulometric analysis and displays frequency distribution curves, which include statistical measurements such as mean, median, skewness and kurtosis. The results of the textural analysis were also used to aid in distinguishing organic deposition from storm deposition.

Geochronology Optically stimulated luminescence was chosen as the geochronologic method for this investigation. Figure 3.5 depicts the basic concepts of the luminescence dating method. At the time of deposition, any luminescence signal obtained previously is zeroed. Zeroing occurs when the sample is exposed to sunlight during erosion and/or transportation. The sample acquires a luminescence signal through radiation bombardment during burial. Upon exposure to sunlight or artificial light, electrons isolated in structural defects are released. The number of electrons released is proportional to the time since last light exposure (i.e. deposition). The sample to be dated is collected in an opaque container (such as the vibracore tubes) and taken to the lab. All dating-related work on the sample is done under darkroom light conditions. The luminescence measurements were carried out at the University of Georgia Luminescence Laboratory, under the direction of Prof. George Brook. OSL ages are obtained by dividing the paleodose by the annual dose rate. The dose rate is the rate at which energy is absorbed by the mineral grains in the sample from the incoming flux of radiation (Aitken, 1998). The paleo-dose is the total amount of radiation received since the luminescence traps in the mineral crystal were last emptied (i.e. since the last sunlight exposure) (Hutt and Raukas, 1995). The dose rate is measured on the sample substrate, using gamma and/or alpha spectrometry. The paleo-dose is measured by quantifying the luminescence signal using a combination of a calorimeter and an optical spectrometer.

Ground-Penetrating Radar (GPR) The development of ground-penetrating radar technology since the 1950’s has allowed for the non-invasive acquisition of data on the subsurface stratigraphy and

31 internal sedimentary structure of unconsolidated sedimentary deposits (Reynolds, 1997). The technology is particularly well suited to the investigation of deposits dominated by low-conductivity sands and gravels (Neal et al., 2002). GPR data interpretation is based on the behavior of electromagnetic radiation (radio waves) through different stratigraphic units. These energy pulses are propagated through the ground via a transmission antenna and are collected by a reception antenna. As these pulses propagate through the subsurface, a portion of the electromagnetic (EM) energy is reflected back to the surface when changes in the electromagnetic properties of the sediment are encountered (Davis and Annan, 1989) (Figure 3.6). The pulse delay time from the energy transmitted into the ground and reflected back to the receiver is a function of EM propagation velocity through the sediment and the depth of subsurface reflectors (Jol et al., 2002). All sedimentary facies have unique chemical and physical characteristics that influence the velocity of EM energy propagation. Changes in sediment composition, water content/type and grain shape, orientation and packing can cause significant changes in electrical properties (Neal, 2002; Jol et al., 2003; Moore et al., 2004). Several GPR transects of Grayton Beach State Park employing the MALA CU-II- GPR system were carried out as part of this project. Unshielded antennae (100 MHz and 250 MHz) were used in the vicinity of Western Lake to image and map subsurface reflectors. Figure 3.7 depicts the use of the 100 MHz GPR unit with a 1 m separation between antennae.

32

Figure 3.1. Example of vibracore collection method.

33

Figure 3.2. Push-core collection on Western Lake (Walton County, FL).

34

Figure 3.3. Norelco PG 140 (X-ray unit) used in this investigation.

35

Figure 3.4. Automated settling tube and electrobalance apparatu s used in this investigation.

36

Figure 3.5. Model of the basis of luminescence dating (Source: Lepper, K., NDSU, http://www.ndsu.nodak.edu/ndsu/klepper/).

37

Figure 3.6. Generalized depiction of ground-penetrating radar (GPR) methodology. As EM radiation propagates through the subsurface of the cross-section (top diagram), a GPR profile is generated (bottom diagram). Note the delineation between different lithologies and the subsurface representation of the buried circular object (Mala, 2001).

38

Figure 3.7. Employing GPR in Grayton Beach State Park, southwest of Western Lake, February, 2006.

39 CHAPTER 4

RESULTS

Sampling Sites Eight sediment cores were analyzed for this investigation. One core (Core 020507-1) was used for geochronologic control. Figure 4.1 depicts the locations of the eight cores collected over the course of this study. Table 4.1 lists each sampling site (note that in Figure 4.1 only the last digit of the core number is used to identify the core). All coordinates were recorded using decimal degrees in latitude/longitude format. Lake core coordinates were time-averaged during the process of extraction due to inability to maintain the exact position throughout the duration of the coring operation. Cores 091605-1 through 091605-7 were extracted on September 16, 2005, one year after Hurricane Ivan made landfall at Gulf Shores, Alabama. Cores 091605-1, 09160-2, 091605-3, 091605-4 and 091605-5 were taken roughly in an east-west axis across the western half of the lake, and cores 091605-6 and 091605-7 were taken north of and southeast of core 091605-4, respectively. Core 020507-1 was extracted on February 5, 2007. Liu and Fearn (2000), in their previous study of Western Lake sediments, postulated that sediment thickness should be thicker near the lakeshore and thinner towards the center. As a storm surge inundates a coastal lake, such as Western Lake, the area of the lake closest to the source of the storm surge should contain thicker sand-rich units than areas further from the source (Figure 4.2). No evidence suggests the coastal dune line south of the lake has been significantly breached during historic time, as evidenced by Fig. 2.2. Liu and Fearn (2000) inferred, based on observation and communication with park personnel, that storm surge-delivered sand had been transported to Western Lake via the tidal channel or slough at the western edge of the lake (west of Core 091605-1 in Figure 4.1). That assumption was made in the current project as well. Armed with this knowledge, it is expected that cores taken closer to the tidal channel should have thicker sand sequences than those taken further away from the channel.

40

Table 4.1. Geographic locations of each core used during this investigation. Also noted is the type of each core. Note that in Figure 4.1 only the last digit is used to identify the core.

Core Name Northing Easting Core type

091605-1 300 19’ 40.2” 860 09’ 21.9” Push

091605-2 300 19’ 37.1” 860 09’ 16.0” Push

091605-3 300 19’ 37.5” 860 09’ 12.8” Push

091605-4 300 19’ 37.2” 860 09’ 09.4” Push

091605-5 300 19’ 37.2” 860 09’ 07.1” Push

091605-6 300 19’ 39.0” 860 09’ 09.8” Push

091605-7 300 19’ 35.7” 860 09’ 07.9” Push

020507-1 300 19’ 39.6” 860 09’ 22.6” Vibracore

41

Ground-Penetrating Radar (GPR) Transect Results The ground-penetrating radar surveys were set up in a northeast-southwest trend, orthogonal to the Gulf of Mexico shoreline, in an attempt to detect individual storm beds. Three separate GPR surveys were conducted in the vicinity of Western Lake. The average depth of penetration was 5-6 meters with a maximum depth of 8 meters. Figures 4.3, 4.4 and 4.5 show the locations of each survey. The first survey, conducted February 17, 2006, employed the MALA 100 MHz unshielded antenna unit with a 1-meter antenna separation. The second and third surveys used the MALA 250 MHz shielded unit with a 2-meter separation. These surveys were carried out on July 21, 2006, and October 16, 2006, respectively. Figure 4.6 depicts a typical example the subsurface imaging. Although individual storm beds were found to be difficult to identify, given the thickness of the beds and the resolution of the GPR system, two types of sedimentary facies are evident: a) relatively flat and horizontal bedding and b) lakeward-dipping bedding. The first sedimentary facies can most likely be attributed to aeolian deposition and the second may be attributed to storm deposition. The results of all of the GPR surveys were found to be moderately useful for imaging major subsurface units, but not useful in delineating individual storm deposits. As a result, detailed results will not be presented here.

Sediment Properties Analysis Percent Moisture Results Each core was analyzed for percent moisture, a parameter used in the distinction between sand and organic mud content. A total of 501 samples were analyzed. The minimum, maximum and average percent moisture for each core is listed below:

Core 091605-1 The minimum and maximum percent moisture are 19% and 38%, respectively. The average percent moisture is 24%. See Appendix A.1 for the complete analytical results for the core. Figure 4.7 profiles percent moisture versus depth downcore.

42 Core 091605-2 The minimum and maximum percent moisture are 18% and 32%, respectively. The average percent moisture is 22%. See Appendix A.2 for the complete analytical results for the core. Figure 4.8 profiles percent moisture versus depth downcore.

Core 091605-3 The minimum and maximum percent moisture are 16% and 60%, respectively. The average percent moisture is 43%. See Appendix A.3 for the complete analytical results for the core. Figure 4.9 profiles percent moisture versus depth downcore.

Core 091605-4 The minimum and maximum percent moisture are 6% and 57%, respectively. The average percent moisture is 41%. See Appendix A.4 for the complete analytical results for the core. Figure 4.10 profiles percent moisture versus depth downcore.

Core 091605-5 The minimum and maximum percent moisture are 22% and 73%, respectively. The average percent moisture is 61%. See Appendix A.5 for the complete analytical results for the core. Figure 4.11 profiles percent moisture versus depth downcore.

Core 091605-6 The minimum and maximum percent moisture are 9% and 21%, respectively. The average percent moisture is 17%. See Appendix A.6 for the complete analytical results for the core. Figure 4.12 profiles percent moisture versus depth downcore.

Core 091605-7 The minimum and maximum percent moisture are 40% and 70%, respectively. The average percent moisture is 58%. See Appendix A.7 for the complete analytical results for the core. Figure 4.13 profiles percent moisture versus depth downcore.

43 Core 020507-1 The minimum and maximum percent moisture are 4% and 29%, respectively. The average percent moisture is 11%. See Appendix A.8 for the complete analytical results for the core. Figure 4.14 profiles percent moisture versus depth downcore.

Percent Organics Results Each core was sampled for percent organics, using the combustion method. A lower percentage of organics within a sample is indicative of a storm deposit, on the assumption that a storm deposit is sand-rich, while the normal sedimentation in the lake is organic-rich. The minimum, maximum and average percent organics for each core are listed below:

Core 091605-1 The minimum and maximum percent organics are 0.8% and 6.4%, respectively. The average percent organics is 2.4%. See Appendix B.1 for the complete analytical results for the core. Figure 4.7 profiles percent organics versus depth downcore.

Core 091605-2 Due to malfunction of the muffle furnace used in the combustion of the samples, samples 4, 5, 10, 11, 12, 13, 14, 15, 16 and 18 from this core were incinerated. Therefore, accurate end-member and averages values cannot be computed. See Appendix B.2 for incomplete results for the core. Figure 4.8 profiles percent organics versus depth downcore.

Core 091605-3 The minimum and maximum percent organics are 1.0% and 13%, respectively. The average percent organics is 4.9%. See Appendix B.3 for the complete analytical results for the core. Figure 4.9 profiles percent organics versus depth downcore.

44 Core 091605-4 The minimum and maximum percent organics are 0.3% and 17%, respectively. The average percent organics is 6.9%. See Appendix B.4 for the complete analytical results for the core. Figure 4.10 profiles percent organics versus depth downcore.

Core 091605-5 The minimum and maximum percent organics are 0.02% and 18%, respectively. The average percent organics is 9.9%. See Appendix B.5 for the complete analytical results for the core. Figure 4.11 profiles percent organics versus depth downcore.

Core 091605-6 The minimum and maximum percent organics are 0.3% and 6.2%, respectively. The average percent organics is 0.6%. See Appendix B.6 for the complete analytical results for the core. Figure 4.12 profiles percent organics versus depth downcore.

Core 091605-7 The minimum and maximum percent organics are 2.7% and 15.9%, respectively. The average percent organics is 9.7%. See Appendix B.7 for the complete analytical results for the core. Figure 4.13 profiles percent organics versus depth downcore.

Core 020507-1 The minimum and maximum percent organics are 0.03% and 3.2%, respectively. The average percent organics is 0.3%. See Appendix B.8 for the complete analytical results for the core. Figure 4.14 profiles percent organics versus depth downcore. Figures 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14 show percent moisture and percent organics versus depth for each sample. Based on the assumption that smaller percentages of percent moisture and organics indicate storm layers, three figures have been generated displaying potential storm layers versus depth for each core (Figures 4.15, 4.16 and 4.17). Wherever minima of percent moisture and organics were found at the same depth, the presence of a storm layer was assumed. For Core 091605-1, potential storm layers have been identified at 1, 2, 7-16 and 21-29 centimeters of depth, as shown in Figure 4.15. Core 091605-2 exhibits suggested

45 storm layers at 1, 2, 4-5, 8, 10-11, 15-17, 20-30 and 34-38 centimeters (Figure 4.15). Potential storm layers for Core 091605-3 are located at 6-11, 16-18, 22-25, 31, 33, 37-39, 45-47, 50, 53-56, 63-64 and 68 centimeters (Figure 4.15). Core 091505-4 shows sand deposits at 4, 7, 9-11, 14, 16-18, 22-24, 26-28, 31-32, 36, 39-40, 42, 46, 48, 52, 56, 60 and 64 centimeters of depth (Figure 4.15). Potential storm layers have been identified within Core 091605-5 at a depth of 3-5, 10-11, 17, 20, 24-25, 33-35, 39-41, 43-44, 51-52 and 55-56 centimeters (Figure 4.16). Core 091605-6 exhibits suggested storm layers at 1-15, 17-36, 38 and 40 centimeters of depth (Figure 4.16). Sand deposits are located within Core 091605-7 at 12, 16-19, 24-28, 40-44, 52-53, 55, 58-60, 63 and 71-73 centimeters (Figure 4.16). Potential storm layers have been identified within Core 020507-1 at 2-4, 7-8, 13-14, 16-17, 20-22, 24-25, 28, 31-32, 34-35, 39-41, 43, 47, 56-60, 66, 74, 82, 86-88, 92, 96, 106-108, 116-120, 124, 134, 139, 145, 151, 157, 161, 165, 177- 179, 185, 215-220, 227, 241-245, 251, 269-273, 290-293 and 315-319 centimeters (Figure 4.17).

Sediment Texture Results Of the eight cores analyzed for percent moisture and organics, four were further analyzed for sedimentary texture (i.e. mean grain size and standard deviation) using the automated settling tube. The four cores were chosen based on location and proximity to one another. Cores 020507-1, 091605-1 and 091605-2 are adjacent to each other and near the tidal inlet. The fourth core (091605-6) is located on the eastern periphery of the lacustrine sampling area and represents a distal sampling location, which is needed to make a regional correlation. The full set of settling tube data and plots are shown in Appendix C. As in other depositional environments, textural characteristics of the analyzed samples generated by major storms or hurricanes are dependent upon the amount of energy delivered to the system. For example, samples of beach sand usually display a finer mean grain size and smaller standard deviation than grains found nearer the sediment source area. However, major storm deposits incorporate all types of sedimentary grain sizes, large and small. A sample with a large standard deviation may be indicative of a storm deposit, while a small standard deviation may indicate aeolian deposition (Folk and Ward, 1957). Likewise, a coarser mean grain size may indicate a

46 storm deposit while a finer mean grain size may be that of a beach ridge (Folk and Ward, 1957). Listed below are sediment layers that exhibit both a relatively coarse mean grain size and a relatively large standard deviation at the same depth within the core. Potential storm layers were picked where a local maximum in both parameters was found. Percent moisture and percent organics were then used to corroborate these selections. See Appendix C for complete settling tube analysis results of each identified storm layer below.

Core 091605-1 Potential storm layers were identified at 4, 7-8, 11, 16, 23 and 26 centimeters of depth.

Core 091605-2 Potential storm layers are located at 5, 9, 13, 18, 20, 30 and 35 centimeters of depth.

Core 091605-6 Potential storm layers were identified at 22, 27, 30, 37 and 39 centimeters of depth.

Core 020507-1 Potential storm layers are located at 6, 19, 33-34, 46, 64, 98, 108, 114-116, 145, 151, 157, 161-163, 259, 265-267, 269, 295 and 311 centimeters of depth.

Results of the potential storm layer identification using sediment parameters are shown in Figure 4.18 (Core 020507-1), and Figure 4.19 (cores 091605-1, 091605-2 and 091605-6).

X-radiography Results X-radiographs were taken of the seven push cores to facilitate storm bedding identification within the organic lake deposits. The results of the x-radiography were not sufficiently definitive to be used in core correlation. However, the x-radiographs did substantiate the thicker sand sequences, especially in Cores 091605-3, 091605-4, 091605- 5 and 091605-7 (see Figures 4.9, 4.10, 4.11 and 4.13), as suggested by the low percentage

47 of organics found in these cores. In the x-radiographs, the brighter layers represent the occurrence of a high percentage of sand.

Geochronologic Results Optically stimulated luminescence (OSL) ages were calculated from single samples taken from Core 020507-1, the core closest to the tidal channel. Samples for OSL analysis were taken at a core depth interval of 45-46, 96-98, 114-116, 161-163 and 265-267 cm. The OSL depositional ages range from 229 to 2,260 years. Table 4.2 lists the OSL ages for this investigation.

Storm Layer Identification and Stratigraphic Correlation Results Several parameters (percent moisture, percent organics and sediment texture) were used for storm layer identification. Storm layers were expected to have a relatively low percent moisture and percent organics along with a relatively high standard deviations and mean grain size, in comparison with normal lake sediment. Although each analyzed parameter facilitated storm layer identification, no single parameter proved to be conclusive by itself. Figure 4.18 displays potential storm layer identification for Core 020507-1 based on sediment texture (i.e. mean grain size and standard deviation). After analysis of the sediment properties for the eight project cores, four were selected for stratigraphic correlation (based on sediment texture and percent moisture analysis). Core 020507-1 was selected because it was the dated core. Cores 091605-1, 091605-2 and 091605-6 were selected because they lay along an E-W axis in the lake, from the tidal inlet to the middle of the lake. Stratigraphic correlation (based on sediment texture and percent moisture/organics) was carried out on the four selected cores. The results of the correlation are presented in Chapter 5. Figures 4.20 and 4.21 are synthesis graphs compiled from the aforementioned parameters (percent moisture/organics, mean grain size and standard deviation). These figures aid in visually identifying storm layers.

48

Table 4.2. Optically stimulated luminescence (OSL) age data for Core 020507-1

Depth Interval Nominal Sample Below Percent Age Depth in Lab No. Age (yr) Number Lake Moisture (ka) Core (cm) Bottom (cm) 020507-1- 0.3 ± 45-46 46 7.1 FL01-46 280 ± 50 46 0.1 020507-1- 0.2 ± 96-98 98 7.2 FL01-74 230 ± 30 74 0.1 020507-1- FL01- 0.5 ± 161-163 163 16.2 460 ± 90 106 106 0.1 020507-1- FL01- 2.3 ± 2300 ± 265-267 267 16.5 141 141 0.4 370

Note: OSL analyses by George Brook, University of Georgia, Luminescence Laboratory.

49

Figure 4.1. Air photograph of Western Lake region, showing the locations of core samples used in this investigation. The “091605”–series are shown in green. Core 020507-1 is represented by the red triangle.

50

Figure 4.2. Hypothetical dune breach and overwash pattern for a coastal lake. Note the four cores closest to the sea (1,2,3 and 8) are subject to more storm impacts and therefore contain thicker and more frequent storm layers (Source: Liu and Fearn, 2000).

51

Figure 4.3. GPR transects taken on February 17, 2006.

52

Figure 4.4. GPR transects taken on July 21, 2006.

53

Figure 4.5. GPR transects taken on October 16, 2006.

54

Figure 4.6. Un-interpreted (upper panel) and interpreted (lower panel) GPR profile of transect Grayton002. Location is shown in Figure 4.3. The upper facies (0-3 m of depth) can be attributed to aeolian deposition and the lower facies (3-8 m) can be attributed to storm deposition. The bottom (wavy) line may be attributable to groundwater.

55

Core 091605-01

Percent 0 20406080 0

5

10

Moisture 15 Organics Depth (cm)

20

25

30

Figure 4.7. Percent Moisture/Organics versus Depth results for Core 091605-1.

57

Core 091605-02

Percent 0 20406080 0

5

10

15

20 Moisture Organics Depth (cm) Depth 25

30

35

40

Figure 4.8. Percent Moisture/Organics versus Depth results for Core 091605-2. Note: Missing values are due to non-calibration of muffle furnace.

58 Core 091605-03 Moisture Organics Percent 0 20406080 0 10 20 30 40 50 Depth (cm) 60 70 80

Figure 4.9. Percent Moisture/Organics versus Depth results for Core 091605-3. To the right of the graph are the corresponding X-radiographs.

59 Core 091605-04 Moisture Organics Percent 0 20406080 0

10

20

30

40 Depth (cm) Depth

50

60

70

Figure 4.10. Percent Moisture/Organics versus Depth results for Core 091605-4. To the right of the graph are the corresponding X-radiographs.

60 Core 091605-05 Moisture Percent Organics 0 20406080 0

10

20

30

Depth (cm) 40

50

60

Figure 4.11. Percent Moisture/Organics versus Depth results for Core 091605-5. To the right of the graph are the corresponding X-radiographs.

61

Core 091605-06

Percent 0102030 0

5

10

15

Moisture 20 Organics Depth (cm) Depth 25

30

35

40

Figure 4.12. Percent Moisture/Organics versus Depth results for Core 091605-6.

62 Core 091605-07

Moisture Percent Organics 0 20406080 0 10 20 30 40 50 Depth (cm) 60 70 80

Figure 4.13. Percent Moisture/Organics versus Depth results for Core 091605-7. To the right of the graph are the corresponding X-radiographs.

63

Core 020507-01

Percent 0 5 10 15 20 25 30 35 0

50

100

150

Moisture Organics

Depth (cm) Depth 200

250

300

350

Figure 4.14. Percent Moisture/Organics versus Depth results for Core 020507-1.

64 Potential Storm Layers Based on Percent Organics/Moisture

Core 091605-1 Core 091605-2 Core 091605-3 Core 091605-3 Core 091605-4 Core 091605-4

Depth (cm)

11 1 51 1 51 22 2 52 2 52 33 3 53 3 53 44 4 54 4 54 55 5 55 5 55 66 6 56 6 56 77 7 57 7 57 88 8 58 8 58 99 9 59 9 59 10 10 10 60 10 60 11 11 11 61 11 61 12 12 12 62 12 62 13 13 13 63 13 63 14 14 14 64 14 64 15 15 15 65 15 16 16 16 66 16 17 17 17 67 17 18 18 18 68 18 19 19 19 69 19 20 20 20 70 20 21 21 21 71 21 22 22 22 22 23 23 23 23 24 24 24 24 25 25 25 25 26 26 26 26 27 27 27 27 28 28 28 28 29 29 29 29 30 30 30 31 31 31 32 32 32 33 33 33 34 34 34 35 35 35 36 36 36 37 37 37 38 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 Storm layers 46 46 47 47 48 48 49 49 50 50

Figure 4.15. Potential storm layers based on percent organics and moisture analyses for cores 091605-1, 091605-2, 091605-3 and 091605-4. Proposed storm layers are highlighted in red.

65 Potential Storm Layers Based on Percent Organics/Moisture

Core 091605-5 Core 091605-5 Core 091605-6 Core 091605-7 Core 091605-7

Depth (cm)

15111 51 25222 52 35333 53 45444 54 55555 55 65666 56 77757 88858 99959 10 10 10 60 11 11 11 61 12 12 12 62 13 13 13 63 14 14 14 64 15 15 15 65 16 16 16 66 17 17 17 67 18 18 18 68 19 19 19 69 20 20 20 70 21 21 21 71 22 22 22 72 23 23 23 73 24 24 24 74 25 25 25 26 26 26 27 27 27 28 28 28 29 29 29 30 30 30 31 31 31 32 32 32 33 33 33 34 34 34 35 35 35 36 36 36 37 37 37 38 38 38 39 39 39 40 40 40 41 41 42 42 43 43 44 44 45 Storm layers 45 46 46 47 47 48 48 49 49 50 50

Figure 4.16. Potential storm layers based on percent organics and moisture analyses for cores 091605-5, 091605-6 and 091605-7. Proposed storm layers are highlighted in red.

66 Potential Storm Layers Based on Percent Organics/Moisture for Core 020507-1

Depth (cm)

1 51 101 151 201 251 301 2 52 102 152 202 252 302 3 53 103 153 203 253 303 4 54 104 154 204 254 304 5 55 105 155 205 255 305 6 56 106 156 206 256 306 7 57 107 157 207 257 307 8 58 108 158 208 258 308 9 59 109 159 209 259 309 10 60 110 160 210 260 310 11 61 111 161 211 261 311 12 62 112 162 212 262 312 13 63 113 163 213 263 313 14 64 114 164 214 264 314 15 65 115 165 215 265 315 16 66 116 166 216 266 316 17 67 117 167 217 267 317 18 68 118 168 218 268 318 19 69 119 169 219 269 319 20 70 120 170 220 270 21 71 121 171 221 271 22 72 122 172 222 272 23 73 123 173 223 273 24 74 124 174 224 274 25 75 125 175 225 275 26 76 126 176 226 276 27 77 127 177 227 277 28 78 128 178 228 278 29 79 129 179 229 279 30 80 130 180 230 280 31 81 131 181 231 281 32 82 132 182 232 282 33 83 133 183 233 283 Storm layers 34 84 134 184 234 284 35 85 135 185 235 285 36 86 136 186 236 286 37 87 137 187 237 287 38 88 138 188 238 288 39 89 139 189 239 289 40 90 140 190 240 290 41 91 141 191 241 291 42 92 142 192 242 292 43 93 143 193 243 293 44 94 144 194 244 294 45 95 145 195 245 295 46 96 146 196 246 296 47 97 147 197 247 297 48 98 148 198 248 298 49 99 149 199 249 299 50 100 150 200 250 300

Figure 4.17. Potential storm layers based on percent organics and moisture analyses for Core 020507-1. Proposed storm layers are highlighted in red.

67 Potential Storm Layers Based on Sediment Texture for Core 020507-1

Depth (cm)

1 51 101 151 201 251 301 2 52 102 152 202 252 302 3 53 103 153 203 253 303 4 54 104 154 204 254 304 5 55 105 155 205 255 305 6 56 106 156 206 256 306 7 57 107 157 207 257 307 8 58 108 158 208 258 308 9 59 109 159 209 259 309 10 60 110 160 210 260 310 11 61 111 161 211 261 311 12 62 112 162 212 262 312 13 63 113 163 213 263 313 14 64 114 164 214 264 314 15 65 115 165 215 265 315 16 66 116 166 216 266 316 17 67 117 167 217 267 317 18 68 118 168 218 268 318 19 69 119 169 219 269 319 20 70 120 170 220 270 21 71 121 171 221 271 22 72 122 172 222 272 23 73 123 173 223 273 24 74 124 174 224 274 25 75 125 175 225 275 26 76 126 176 226 276 27 77 127 177 227 277 28 78 128 178 228 278 29 79 129 179 229 279 30 80 130 180 230 280 31 81 131 181 231 281 32 82 132 182 232 282 33 83 133 183 233 283 Storm layers 34 84 134 184 234 284 35 85 135 185 235 285 36 86 136 186 236 286 37 87 137 187 237 287 38 88 138 188 238 288 39 89 139 189 239 289 40 90 140 190 240 290 41 91 141 191 241 291 42 92 142 192 242 292 43 93 143 193 243 293 44 94 144 194 244 294 45 95 145 195 245 295 46 96 146 196 246 296 47 97 147 197 247 297 48 98 148 198 248 298 49 99 149 199 249 299 50 100 150 200 250 300

Figure 4.18. Potential storm layers for Core 020507-1, based on sediment texture. Seventeen storm sediment layers can be identified within the 319 cm-long core. Storm layers are highlighted in yellow.

73 Potential Storm Layers Based on Sediment Texture

Core 091605-1 Core 091605-2 Core 091605-6

Depth (cm)

111 222 333 444 555 666 777 888 999 10 10 10 11 11 11 12 12 12 13 13 13 14 14 14 15 15 15 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23 23 24 24 24 25 25 25 26 26 26 27 27 27 28 28 28 29 29 29 30 30 31 31 32 32 33 33 34 34 Storm layers 35 35 36 36 37 37 38 38 39 40

Figure 4.19. Potential storm layers for cores 091605-1, 091605-2 and 091605-6, based on sediment texture. Storm layers are highlighted in yellow.

69 Synthesis of Sediment Texture and Percent Organics/Moisture

Depth (cm) 091605-1 091605-2 091605-6

111 % Orgs, Moisture 222 333 444 Texture 555 666 777 Synthesis 888 999 10 10 10 11 11 11 12 12 12 13 13 13 14 14 14 15 15 15 16 16 16 17 17 17 18 18 18 19 19 19

20 20 20 70 21 21 21 22 22 22 23 23 23 24 24 24 25 25 25 26 26 26 27 27 27 28 28 28 29 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 40

Figure 4.20. Storm layers based on synthesis of sediment texture and percent organics/moisture for cores 091605-1, 091605-2 and 091605-6. Where data suggests a storm layer occurred in both sediment texture and percent organics/moisture analyses, a 'synthesis' column is generated. This aids in visually identifying storm layers. Synthesis of Sediment Texture and Percent Organics/Moisture for Core 020507-1

Depth (cm)

1 41 81 121 % Orgs, Moisture 2 42 82 122 3 43 83 123 4 44 84 124 Texture 5 45 85 125 6 46 86 126 7 47 87 127 Synthesis 8 48 88 128 9 49 89 129 10 50 90 130 Dated layer 11 51 91 131 12 52 92 132 13 53 93 133 14 54 94 134 15 55 95 135 16 56 96 136 17 57 97 137 18 58 98 138 19 59 99 139

20 60 100 140 71 21 61 101 141 22 62 102 142 23 63 103 143 24 64 104 144 25 65 105 145 26 66 106 146 27 67 107 147 28 68 108 148 29 69 109 149 30 70 110 150 31 71 111 151 32 72 112 152 33 73 113 153 34 74 114 154 35 75 115 155 36 76 116 156 37 77 117 157 38 78 118 158 39 79 119 159 40 80 120 160

Figure 4.21. Storm layers based on synthesis of sediment texture and percent organics/moisture for cores 020507-1 (depth interval 1-160 cm). Where data suggests a storm layer occurred in both sediment texture and percent organics/moisture analyses, a 'synthesis' column is generated. This aids in visually identifying storm layers. Synthesis of Sediment Texture and Percent Organics/Moisture for Core 020507-1

Depth (cm)

161 201 241 281 % Orgs, Moisture 162 202 242 282 163 203 243 283 164 204 244 284 Texture 165 205 245 285 166 206 246 286 167 207 247 287 Synthesis 168 208 248 288 169 209 249 289 170 210 250 290 Dated layer 171 211 251 291 172 212 252 292 173 213 253 293 174 214 254 294 175 215 255 295 176 216 256 296 177 217 257 297 178 218 258 298 179 219 259 299

180 220 260 300 72 181 221 261 301 182 222 262 302 183 223 263 303 184 224 264 304 185 225 265 305 186 226 266 306 187 227 267 307 188 228 268 308 189 229 269 309 190 230 270 310 191 231 271 311 192 232 272 312 193 233 273 313 194 234 274 314 195 235 275 315 196 236 276 316 197 237 277 317 198 238 278 318 199 239 279 319 200 240 280

Figure 4.21 continued. Storm layers based on synthesis of sediment texture and percent organics/moisture for cores 020507-1 (depth interval 161-319 cm). Where data suggests a storm layer occurred in both sediment texture and percent organics/moisture analyses, a 'synthesis' column is generated. This aids in visually identifying storm layers.

CHAPTER 5

DISCUSSION

Introduction of Storm Sediment into Western Lake Storm-related overwash generally occurs when storm surge from a major storm exceeds the height of the sand dune or other barriers that may protect the coast. For example, Hurricane Dennis made landfall at Santa Rosa Island, about 55 miles (88 km) west of the Western Lake study area on July 10, 2005. The storm track of Dennis is shown in Figure. 1.12. Prior to that storm, a high and nearly continuous coastal dune ridge located south of Western Lake provided a barrier against storm surge. Hurricane Dennis (Category 3 hurricane at landfall) breached the sand dune line to the east of the tidal inlet, although no sand reached Western Lake through the dune breach, based on our field observations (Figure 5.1). No historical evidence suggests the continuity of the sand dune south of Western Lake has ever been compromised to the extent that overwash reached the lake floor. A storm surge of at least 6-7 meters would be needed to overcome the topography of the dune ridge. As noted previously, Liu and Fearn (2000) inferred, based on observation and communication with park personnel, that the tidal channel to the west of Western Lake has been the chief source of sand delivered to the lake (Figure 5.2). This current project was also based on that assumption. Surveillance based on recent aerial photographs of Western Lake show the existence of a sand spit located just south of County Road 30A (see yellow rectangle in Figure 5.2). This appears to be derived by a minor, east to west movement of sediment driven by wind waves, though not sufficient enough to affect the paleotempestological record in Western Lake. Our observations shortly after Hurricane Dennis indicated that the tidal channel had been reactivated by the storm. This storm is an example of the type of event that was large enough (Category 3) and close enough to the study area to have an impact on the sedimentary record. The assumption in analyzing the sedimentary record of Western Lake was that only major storms occurring within about 50 miles of the study area have had an impact on the lake sediments.

72 In order to determine the strength or intensity of a paleo-storm, storm layers associated within a suite of coastal lake cores must be identified and correlated. Various sediment parameters have been used in this investigation in an attempt to delineate storm layers in the lake bed sediments, based on the hypothesis that simple counts of sand layers is not in itself sufficient for determining storm frequency. These parameters include percent moisture, percent organics, mean grain size and standard deviation (sorting) of the sediments. The data that were collected from the lake core samples was described in the previous chapter. The following is an interpretation of the meaning of these data.

Stratigraphic Correlation Core correlation based solely on percent moisture or percent organics is difficult if not impossible. For instance, in Core 020507-1 alone there are 38 organic-poor layers (Figure 4.17), suggesting as many as 38 potential storm or hurricane events, with the identification of sand-rich layers based on relative ‘peaks’ in percent moisture or percent organics downcore. Core 091605-6 contains two thick potential storm sequences followed by two thin sequences. This implies that either two highly intense hurricanes were succeeded by two smaller hurricanes or that the thick sequences represent multiple storm events. Furthermore, the location of core 091605-6 (on the eastern portion of the sampling area) coupled with the thickness of the sand units conflict with the hypothesis that sediment is introduced through the tidal inlet. The expectation is that storm surge sediment patterns should pinch out with distance away from the source, i.e., the tidal inlet to the west. Using that model, storm layer frequency and storm layer thickness should decrease with distance from the tidal inlet. It would be expected that the easternmost core in this investigation (Core 091605-5) should exhibit few storm layers. However, the percent organics and moisture data in that core suggest at least 10 storm layers (Figure 4.16). The hypothetical overwash pattern depicted in Liu and Fearn (2000) (Figure 4.2) shows the cores farthest away from the storm surge breach containing the fewest storm layers. This implies that an examination of profiles of percent organics or percent moisture downcore is insufficient for delineating storm beds.

73 Core correlation generated from sediment grain-size characteristics (standard deviation and mean grain size) exhibits much more of a resemblance to Liu and Fearn’s hypothetical overwash pattern (see Figure 4.2). As expected, storm layer frequency and storm layer thickness diminish beyond the tidal inlet. Liu and Fearn (2000) picked storm layers based strictly on percent organics/moisture. This study demonstrates that storm layer identification should not only be based on percent organics and moisture, but also on sediment grain-size parameters. A combination of the two parameters (Figures 4.20 and 4.21) appears to be the best indicator of storm sediment input to a coastal lake. A summary of the core sediment stratigraphy generated in this investigation is shown in Table 5.1. Correlation, based on the combination of the two textural parameters, is presented in Figure 5.3. X-radiography proved to be an ineffective tool for differentiating normal lacustrine sedimentation from storm layers. Pure sand layers identified through visual inspection and sedimentary analyses were obvious on the x-radiograph. However, the transition between organic layers and storm layers was ambiguous and difficult to decipher on the x-radiograph.

Geochronology Data from Core 020507-1 Based on the geochronologic data (Table 4.2) and the core sediment parameters, storm frequency records can be generated for the study area. Using storm layers identified through percent organics and percent moisture only, 38 potential storm beds can be identified in Core 020507-1. Of these, 35 potential storm beds can be observed within the upper 267 cm (Figure 4.15 and Table 5.1). Geochronologic analysis (Table 4.2) gives a date of 2300 ± 370 years at a depth of 267 cm, which signifies a storm return period of 66 +/- 10 years over the last ~2,300 years at Grayton Beach State Park, based strictly on percent organics and percent moisture. Examining potential storm layers identified solely through sediment texture analyses (Figure 4.18 and Table 5.1), reveals a total of 17 storms, of which 14 storms

74

Table 5.1. Western Lake Sediment Core Correlation

Potential Storm Layers

Based on Based on Based on Percent Sediment Coincidence of Organics Texture Percent Core Number (mean grain Organics and size, standard Sediment deviation) Texture

Figures 4.15, Figures 4.18 Figures 4.20 & 4.16 & 4.17 & 4.19 4.21

−Primary Project Cores

020507-1 38 17 6 091605-1 3 6 5 091605-2 7 7 3 091605-6 4 5 3

−Supplementary Project Cores

091605-3 11 − − 091605-4 17 − − 091605-5 10 − − 091605-7 9 − −

Note: For Core 020507-1, the dated core, six storm layers occur within 2300 years (380-year recurrence interval). Five storm layers occur within 460 years (92-year recurrence interval).

75 have occurred during the past 2300 years, for a potential return period of 164 +/- 26 yr. It is important to keep in mind that both of these figures for storm return periods may represent a maximum. The possibility remains that the thicker potential storm layers identified may actually contain multiple storm beds, which would decrease the storm return interval of the Western Lake region. However, the purpose of this investigation was not to differentiate between closely-spaced storm events within a thick sand unit. Figures 4.20 and 4.21 examine the coincidence of two indicators of storm occurrence, both percent organics/moisture and sediment texture. Using this technique, the number of potential storm beds is reduced to a total of 6 for Core 020507-1. All 6 of these beds were deposited within the last 2300 +/- 370 years, producing a nominal storm return interval of 380 +/- 60 years. Five of the potential storm beds were deposited within the past 460 +/- 90 years, producing a recurrence interval of 94 +/- 16 years. Although an average of 0.016 storms/year over the last ~2,300 years was calculated, the storm frequency record over the last 284 years is 0.038 storms/year (or a return period of 26 years, based on 11 storms). This equates to a storm frequency that is ~2.4 times as active during that of the last 284 years compared to the last ~2,300 years. National Weather Service (NWS) historical records indicate a return period of 150 years or more for major storms (Categories 3-5) that have crossed the coast within 25 miles of Grayton Beach State Park since 1851 (see Figure 1.6). NWS records indicate a return period of approximately 20 years for major hurricanes that have crossed the coast within 50 miles of Grayton Beach State Park since 1851 (see Chapter 1 and Figure 1.8). An examination of the sedimentary record of pre-historic storms indicates that the actual return period for major storms within 50 miles of the study area may actually be considerably greater.

76

Figure 5.1. Dune breach at Grayton Beach State Park (highlighted in red) caused by Category 3 Hurricane Dennis in July, 2005. Prior to the hurricane, a high and nearly continuous coastal dune ridge protected Western Lake (Source: Google Earth, http://earth.google.com).

77

h sn spit http://earth.google.com). sand the L Western into introduction sediment for pathway a provide entities arrow) (red slough and box) (blue inlet tidal of Location 5.2. Figure , rsmby eie b mnr wn die wvs Suc: oge Earth, Google (Source: waves driven wind minor, by derived presumably

ake. The yellow rectangle highlights rectangle yellow The ake. at Western Lake. Both geographical Both Lake. Western at

78 Core Correlation Based on Sediment Texture and Percent Moisture/Organics

Depth (cm) 020507-1A 091605-1 091605-2 091605-6

0

5

10

15

20

25

30

35

40

45 230 ± 30 yrs at 46 cm

50 Storm Layer 1

75 280 ± 50 yrs at 96 cm Storm Layer 2 100

125 Storm Layer 3

150 460 ± 90 yrs at 161 cm Storm Layer 4 175

200 Storm Layer 5

225 Storm Layer 6 250 2300 ± 370 yrs at 265 cm 275

300

325

Figure 5.3. Core correlation based on sediment texture and percent moisture/organics. Core 020507-1A was selected because it was the dated core. Cores 091605-1, 091605-2 and 091605-6 were selected because they lay along an E-W axis in the lake, from the tidal inlet to the middle of the lake. Of the six storm layers identified within the upper ~270 cm of lake deposits, five storms can be correlated.

79 CHAPTER 6

CONCLUSIONS

The northwest Florida panhandle, including Grayton Beach State Park, is subject to the effects of major storms (i.e., storm surge, if not a direct strike), although no direct strikes have been documented in the historic (i.e., National Weather Service) record. A direct strike in this case is defined as a hurricane crossing the coast within a few kilometers of Grayton Beach State Park. Previous studies of this region and similar coastal environments have used proxies such as marine foraminifera, overwash fans and stable oxygen isotope signatures in tree rings to establish major storm and hurricane frequency for both historic and pre-historic time. The lake sediments of Western Lake carry a similar signature of paleo-storm occurrence. This investigation employed a variety of sedimentary analyses on lake sediment cores (percent organics, percent moisture, mean grain size and standard deviation), as well as x-radiographs and ground-penetrating radar (GPR) surveys, to identify storm layers. Granulometric analyses of samples collected in Western Lake confirm that Grayton Beach State Park has been impacted by major storms during historic as well as pre-historic time. Although, each type of sedimentary analysis contributed to the identification of storm layers, no single parameter proved conclusive by itself. Although a simple analysis of percent moisture or percent organics downcore proved inconclusive for delineating storm beds, a combination of these analyses with sediment grain-size parameters plus x-radiography revealed that storm layer thickness and frequency diminish eastward from the tidal inlet to the lake. This confirms the hypothesis that storms impact the lake via the tidal inlet, a slough that is opened only by major storms (see Figure 5.2). Ground-penetrating radar (GPR) is a non-invasive procedure for acquiring subsurface data that has proven useful in coastal environments constituting unconsolidated sedimentary deposits. Even though individual storm beds could not be identified in this investigation, two types of sedimentary facies were found: a) relatively flat and horizontal bedding and b) lakeward-dipping inclined bedding. The first

80 sedimentary facies (a) is indicative of aeolian deposition and the second (b) is indicative of storm deposition. This work demonstrated that GPR is a useful supplement in investigations of storm-related sediments in coastal environments. Liu and Fearn (2000) established a major storm recurrence interval of 280 years in Western Lake (based on 12 identified storm deposits over a time interval of ~3,400 years). The data were supported by percent moisture and percent organics analyses. Liu and Fearn inferred that the lake core data was a record of Category 4 and 5 storms. Analyses of percent organics/moisture in Core 020507-1 in the present investigation (Figure 4.17) delineated 35 potential storm beds deposited in the past 2300 +/- 370 years. This results in a recurrence interval of 66 +/- 10 years. This result – using only percent organics/moisture as a proxy for storm occurrence – can be compared with the Liu and Fearn (2000) study. Using only sediment texture data in Core 020507-1 (Figures 4.18 and Table 5.1), 17 potential storm beds occur within the last 2300 +/- 370 years, resulting in a recurrence interval of 164 +/- 26 yr, based solely on sediment texture data. However, a combination of both moisture/organics data and sediment texture data (Figures 4.20 and 4.21), 6 potential storm beds are found to occur within the past 2300 +/- 370 yr in Core 020507-1. This results in a recurrence interval of 380 +/- 60 yr. An alternative result, using just the most recent 5 potential storm beds, which occur within the past 460 +/- 90 yr, produces a recurrence interval of 94 +/- 16 yr. The apparent hiatus between 460 years and 2300 years BP found in Core 020507- 1 suggests a quiescent storm period during that interval. However, this “hiatus” may be attributable to erosional events, which erased the fingerprints of past storms. Assuming the latter, this suggests the possibility of increased storm frequency for the Grayton Beach State Park area. One storm layer was identified in Core 020507-1 through a combination of percent moisture/organics and sediment texture analyses within the historic period (i.e., from 230 years BP to the present, based on the youngest OSL date). Conversely, NWS records indicate that 8 major storms have occurred during the historic period. No Category 4 or 5 hurricanes occurred near Grayton Beach State Park during that time.

81 This implies that, perhaps, only the most severe hurricanes (Categories 4 and 5) are preserved within the sedimentary record of Western Lake. National Weather Service records indicate that within 50 miles of Grayton Beach State Park, the major hurricane return period (Categories 3, 4 and 5) is approximately 20 years, as discussed in Chapter 1. This figure applies to the last 156 years. Since no reliable hurricane records exist for the United States prior to the last 100-150 years, proxy records are the only source of paleo-storm occurrence. This investigation has employed a combination of proxies to develop an estimate of storm occurrence during pre-historic time. The estimate differs somewhat from that of previous studies, but confirms the finding that the paleo-storm record indicates that the return period for major storms is significantly greater than what the historic record indicates (~20 years). The paleo record in the sediments of Western Lake indicate a return period greater by more than an order of magnitude, than that found in the historic record. Thus, the historic record appears to significantly overstate the risk from major storms (Category 3 or greater). This finding has significance in risk analysis and in management decisions concerning the potential effects of major storms.

82

APPENDIX A

PERCENT MOISTURE DATA RESULTS

83 Table A.1. Percent Moisture Data Results for Core 091605-1

Dish Wt. Dish Wt. Sample Weighing + + No. Dish Sample Wet Sample (091605- Interval Weight Wt. (wet) Spl. Wt (dry) Dry Spl. Pct. 01-) (cm) (tare) (g) (g) Wgt. (g) (g) Wt. (g) Moisture 1 0-1.0 3.699 58.914 55.215 47.407 43.708 20.839 2 1.0-2.0 3.603 76.376 72.773 60.327 56.724 22.053 3 2.0-3.0 3.666 75.818 72.152 54.973 51.307 28.891 4 3.0-4.0 3.509 61.511 58.001 39.812 36.303 37.410 5 4.0-5.0 3.611 56.833 53.222 36.505 32.893 38.196 6 5.0-6.0 3.679 71.233 67.554 49.448 45.770 32.248 7 6.0-7.0 3.658 71.879 68.221 54.714 51.056 25.161 8 7.0-8.0 3.594 68.300 64.706 53.195 49.602 23.343 9 8.0-9.0 3.553 74.939 71.386 58.886 55.332 22.489 10 9.0-10.0 3.694 78.267 74.573 63.323 59.629 20.039 11 10.0-11.0 3.727 85.273 81.546 68.590 64.862 20.459 12 11.0-12.0 3.650 84.705 81.055 68.997 65.347 19.379 13 12.0-13.0 3.678 80.256 76.578 65.210 61.532 19.648 14 13.0-14.0 3.563 75.698 72.135 61.635 58.073 19.495 15 14.0-15.0 3.561 84.521 80.960 68.718 65.157 19.519 16 15.0-16.0 3.610 80.273 76.664 64.803 61.193 20.180 17 16.0-17.0 3.652 77.324 73.672 57.615 53.963 26.752 18 17.0-18.0 3.678 81.633 77.956 59.156 55.478 28.834 19 18.0-19.0 3.629 65.995 62.367 43.069 39.441 36.760 20 19.0-20.0 3.628 64.220 60.593 42.779 39.152 35.386 21 20.0-21.0 3.678 84.502 80.824 66.870 63.192 21.815 22 21.0-22.0 3.634 75.992 72.357 61.213 57.578 20.425 23 22.0-23.0 3.655 80.023 76.368 64.431 60.777 20.416 24 23.0-24.0 3.641 71.740 68.099 57.467 53.826 20.958 25 24.0-25.0 3.575 78.432 74.858 63.043 59.468 20.558 26 25.0-26.0 3.622 77.282 73.660 62.078 58.456 20.641 27 26.0-27.0 3.653 89.970 86.317 73.333 69.680 19.274 28 27.0-28.0 3.679 84.338 80.659 68.712 65.033 19.373 29 28.0-29.0 3.628 70.387 66.759 56.959 53.331 20.114

84 Table A.2. Percent Moisture Data Results for Core 091605-2

Weighing Aluminum Sample Aluminum Tray Wt. + Wet Aluminum No. Tray Sample Spl. Tray Wt. + Dry (091605- Interval Weight Wt. (wet) Wgt. Sample Wt Spl. Pct. 02-) (cm) (tare) (g) (g) (g) (dry) (g) Wt. (g) Moisture 1 0-1.0 2.912 76.319 73.407 60.742 57.830 21.220 2 1.0-2.0 2.928 70.632 67.704 50.861 47.933 29.202 3 2.0-3.0 2.922 69.939 67.017 48.271 45.349 32.332 4 3.0-4.0 2.897 78.524 75.627 57.531 54.634 27.759 5 4.0-5.0 2.937 77.792 74.855 57.433 54.496 27.198 6 5.0-6.0 2.990 81.983 78.993 58.895 55.905 29.228 7 6.0-7.0 2.916 89.408 86.492 63.806 60.890 29.600 8 7.0-8.0 2.876 83.646 80.770 64.079 61.203 24.226 9 8.0-9.0 2.920 74.814 71.894 56.014 53.094 26.150 10 9.0-10.0 2.975 81.498 78.523 64.685 61.710 21.412 11 10.0-11.0 2.956 82.733 79.777 65.766 62.810 21.268 12 11.0-12.0 2.964 88.497 85.533 69.261 66.297 22.490 13 12.0-13.0 2.957 88.953 85.996 69.666 66.709 22.428 14 13.0-14.0 3.001 90.959 87.958 72.664 69.663 20.800 15 14.0-15.0 2.988 94.363 91.375 76.389 73.401 19.671 16 15.0-16.0 2.982 89.512 86.530 72.258 69.276 19.940 17 16.0-17.0 2.968 88.029 85.061 71.174 68.206 19.815 18 17.0-18.0 2.946 93.176 90.230 74.379 71.433 20.832 19 18.0-19.0 2.927 88.537 85.610 71.564 68.637 19.826 20 19.0-20.0 2.969 93.571 90.602 76.500 73.531 18.842

85 Table A.2 continued. Percent Moisture Data Results for Core 091605-2

Weighing Aluminum Sample Aluminum Tray Wt. + Aluminum No. Tray Sample Tray Wt. + Dry (091605- Interval Weight Wt. (wet) Wet Spl. Sample Wt Spl. Pct. 02-) (cm) (tare) (g) (g) Wgt. (g) (dry) (g) Wt. (g) Moisture 21 20.0-21.0 2.979 96.258 93.279 79.117 76.138 18.376 22 21.0-22.0 2.960 93.005 90.045 76.745 73.785 18.058 23 22.0-23.0 2.956 82.540 79.584 67.746 64.790 18.589 24 23.0-24.0 2.921 92.370 89.449 75.911 72.990 18.400 25 24.0-25.0 2.919 94.994 92.075 77.570 74.651 18.924 26 25.0-26.0 3.011 98.955 95.944 80.580 77.569 19.152 27 26.0-27.0 2.962 91.547 88.585 74.376 71.414 19.384 28 27.0-28.0 2.960 87.914 84.954 71.195 68.235 19.680 29 28.0-29.0 2.941 89.263 86.322 72.887 69.946 18.971 30 29.0-30.0 3.005 107.527 104.522 88.175 85.170 18.515 31 30.0-31.0 2.974 92.024 89.050 73.220 70.246 21.116 32 31.0-32.0 2.999 83.012 80.013 60.556 57.557 28.065 33 32.0-33.0 2.939 104.480 101.541 82.048 79.109 22.092 34 33.0-34.0 2.938 83.943 81.005 67.346 64.408 20.489 35 34.0-35.0 2.993 81.830 78.837 65.806 62.813 20.325 36 35.0-36.0 2.895 91.840 88.945 73.663 70.768 20.436 37 36.0-37.0 2.925 95.286 92.361 76.175 73.250 20.692 38 37.0-38.0 2.910 38.338 35.428 30.874 27.964 21.068

86 Table A.3. Percent Moisture Data Results for Core 091605-3

Weighing Aluminum Sample Aluminum Tray Wt. + Wet Aluminum No. Tray Sample Spl. Tray Wt. + Dry (091605- Interval Weight Wt. (wet) Wgt. Sample Wt Spl. Pct. 03-) (cm) (tare) (g) (g) (g) (dry) (g) Wt. (g) Moisture 1 0-1.0 2.334 50.947 48.613 21.361 19.027 60.860 2 1.0-2.0 2.336 36.540 34.204 16.446 14.110 58.747 3 2.0-3.0 2.346 46.905 44.559 21.636 19.290 56.709 4 3.0-4.0 2.333 53.336 51.003 26.152 23.819 53.299 5 4.0-5.0 2.387 43.507 41.120 24.269 21.882 46.785 6 5.0-6.0 2.364 51.908 49.544 33.625 31.261 36.903 7 6.0-7.0 2.358 61.898 59.540 45.850 43.492 26.954 8 7.0-8.0 2.346 50.547 48.201 42.152 39.806 17.416 9 8.0-9.0 2.413 52.285 49.872 43.583 41.170 17.448 10 9.0-10.0 2.402 46.164 43.762 35.089 32.687 25.306 11 10.0-11.0 2.393 67.304 64.911 41.806 39.413 39.282 12 11.0-12.0 2.321 63.995 61.674 37.066 34.745 43.664 13 12.0-13.0 2.353 54.114 51.761 30.018 27.665 46.553 14 13.0-14.0 2.366 53.907 51.541 29.984 27.618 46.416 15 14.0-15.0 2.365 48.251 45.886 26.968 24.603 46.382 16 15.0-16.0 2.353 43.858 41.505 24.702 22.349 46.153 17 16.0-17.0 2.373 76.189 73.816 46.073 43.700 40.798 18 17.0-18.0 2.334 39.447 37.113 22.095 19.761 46.754 19 18.0-19.0 2.383 56.427 54.044 29.403 27.020 50.003 20 19.0-20.0 2.344 45.002 42.658 20.972 18.628 56.331 21 20.0-21.0 2.376 53.321 50.945 27.264 24.888 51.148 22 21.0-22.0 2.388 72.971 70.583 51.406 49.018 30.552 23 22.0-23.0 2.361 73.415 71.054 56.956 54.595 23.164 24 23.0-24.0 2.373 65.576 63.203 55.003 52.630 16.729 25 24.0-25.0 2.366 61.878 59.512 43.259 40.893 31.286

87 Table A.3 continued. Percent Moisture Data Results for Core 091605-3

Weighing Aluminum Sample Aluminum Tray Wt. + Wet Aluminum No. Tray Sample Spl. Tray Wt. + Dry (091605- Interval Weight Wt. (wet) Wgt. Sample Wt Spl. Pct. 03-) (cm) (tare) (g) (g) (g) (dry) (g) Wt. (g) Moisture 26 25.0-26.0 2.350 58.814 56.464 30.741 28.391 49.718 27 26.0-27.0 2.364 54.955 52.591 27.804 25.440 51.626 28 27.0-28.0 2.348 57.200 54.852 26.617 24.269 55.755 29 28.0-29.0 2.384 58.949 56.565 27.258 24.874 56.026 30 29.0-30.0 2.380 67.207 64.827 35.176 32.796 49.410 31 30.0-31.0 2.368 60.344 57.976 39.662 37.294 35.673 32 31.0-32.0 2.382 74.949 72.567 41.592 39.210 45.967 33 32.0-33.0 2.366 85.790 83.424 52.026 49.660 40.472 34 33.0-34.0 2.352 92.613 90.261 45.216 42.864 52.511 35 34.0-35.0 2.364 95.248 92.884 46.508 44.144 52.474 36 35.0-36.0 2.403 78.575 76.172 45.706 43.303 43.151 37 36.0-37.0 2.374 75.762 73.388 49.319 46.945 36.032 38 37.0-38.0 2.429 83.816 81.387 55.165 52.736 35.203 39 38.0-39.0 2.348 74.424 72.076 46.135 43.787 39.249 40 39.0-40.0 2.345 83.719 81.374 45.769 43.424 46.636 41 40.0-41.0 2.314 64.461 62.147 35.217 32.903 47.057 42 41.0-42.0 2.382 60.427 58.045 31.432 29.050 49.953 43 42.0-43.0 2.319 63.023 60.704 33.815 31.496 48.116 44 43.0-44.0 2.393 73.201 70.808 40.047 37.654 46.823 45 44.0-45.0 2.378 76.546 74.168 46.407 44.029 40.636 46 45.0-46.0 2.374 68.218 65.844 44.615 42.241 35.847 47 49.0-47.0 2.403 69.843 67.440 35.000 32.597 51.665 48 47.0-48.0 2.391 66.297 63.906 29.681 27.290 57.296 49 48.0-49.0 2.381 67.144 64.763 33.239 30.858 52.352 50 49.0-50.0 2.394 71.033 68.639 49.061 46.667 32.011 50b 50.0-51.0 2.346 73.906 71.560 45.063 42.717 40.306

88 Table A.3 continued. Percent Moisture Data Results for Core 091605-3

Weighing Aluminum Sample Aluminum Tray Wt. + Wet Aluminum No. Tray Sample Spl. Tray Wt. + Dry (091605- Interval Weight Wt. (wet) Wgt. Sample Wt Spl. Pct. 03-) (cm) (tare) (g) (g) (g) (dry) (g) Wt. (g) Moisture 51 51.0-52.0 2.346 85.910 83.564 53.331 50.985 38.987 52 52.0-53.0 2.330 72.051 69.721 48.383 46.053 33.947 53 53.0-54.0 2.343 85.184 82.841 61.999 59.656 27.987 54 54.0-55.0 2.327 84.677 82.350 59.364 57.037 30.738 55 55.0-56.0 2.359 85.203 82.844 57.493 55.134 33.448 56 56.0-57.0 2.309 80.953 78.644 51.682 49.373 37.220 57 57.0-58.0 2.327 75.009 72.682 47.074 44.747 38.435 58 58.0-59.0 2.398 69.302 66.904 36.688 34.290 48.748 59 59.0-60.0 2.361 65.702 63.341 30.498 28.137 55.578 60 60.0-61.0 2.444 67.922 65.478 31.505 29.061 55.617 61 61.0-62.0 2.386 68.448 66.062 33.745 31.359 52.531 62 62.0-63.0 2.358 66.501 64.143 36.043 33.685 47.485 63 63.0-64.0 2.372 83.473 81.101 46.509 44.137 45.578 64 64.0-65.0 2.377 74.135 71.758 36.303 33.926 52.722 65 65.0-66.0 2.935 63.648 60.713 29.406 26.471 56.400 66 66.0-67.0 3.01 45.046 42.036 23.257 20.247 51.834 67 67.0-68.0 2.919 67.240 64.321 35.416 32.497 49.477 68 68.0-69.0 2.936 54.542 51.606 28.384 25.448 50.688 69 69.0-70.0 2.915 55.749 52.834 29.359 26.444 49.948 70 70.0-71.0 2.919 75.961 73.042 43.822 40.903 44.000

89 Table A.4. Percent Moisture Data Results for Core 091605-4

Weighing Aluminum Sample Aluminum Tray Wt. + Wet Aluminum No. Tray Sample Spl. Tray Wt. + Dry (091605- Interval Weight Wt. (wet) Wgt. Sample Wt Spl. Pct. 04-) (cm) (tare) (g) (g) (g) (dry) (g) Wt. (g) Moisture 1 0-1.0 2.975 41.752 38.777 19.705 16.730 56.856 2 1.0-2.0 2.986 47.781 44.795 21.986 19.000 57.585 3 2.0-3.0 3.010 44.912 41.902 20.978 17.968 57.119 4 3.0-4.0 3.087 44.879 41.792 21.855 18.768 55.092 5 4.0-5.0 2.916 43.075 40.159 20.431 17.515 56.386 6 5.0-6.0 2.964 44.427 41.463 21.645 18.681 54.945 7 6.0-7.0 2.874 56.992 54.118 28.044 25.170 53.491 8 7.0-8.0 2.870 60.873 58.003 29.124 26.254 54.737 9 8.0-9.0 3.058 58.053 54.995 30.005 26.947 51.001 10 9.0-10.0 2.862 43.863 41.001 24.271 21.409 47.784 11 10.0-11.0 2.965 49.261 46.296 25.932 22.967 50.391 12 11.0-12.0 2.990 60.015 57.025 29.078 26.088 54.252 13 12.0-13.0 2.958 60.072 57.114 56.663 53.705 5.969 14 13.0-14.0 3.023 58.216 55.193 36.000 32.977 40.251 15 14.0-15.0 2.915 57.248 54.333 32.274 29.359 45.965 16 15.0-16.0 2.910 90.334 87.424 57.003 54.093 38.126 17 16.0-17.0 2.951 51.314 48.363 38.490 35.539 26.516 18 17.0-18.0 2.964 56.768 53.804 35.795 32.831 38.980 19 18.0-19.0 2.892 65.356 62.464 35.790 32.898 47.333 20 19.0-20.0 2.959 77.348 74.389 35.274 32.315 56.559

90 Table A.4 continued. Percent Moisture Data Results for Core 091605-4

Weighing Aluminum Sample Aluminum Tray Wt. + Wet Aluminum No. Tray Sample Spl. Tray Wt. + Dry (091605- Interval Weight Wt. (wet) Wgt. Sample Wt Spl. Pct. 04-) (cm) (tare) (g) (g) (g) (dry) (g) Wt. (g) Moisture 21 20.0-21.0 2.903 63.555 60.652 28.823 25.920 57.264 22 21.0-22.0 2.987 52.852 49.865 30.507 27.520 44.811 23 22.0-23.0 2.862 51.399 48.537 37.593 34.731 28.444 24 23.0-24.0 2.915 53.470 50.555 32.191 29.276 42.091 25 24.0-25.0 2.944 75.145 72.201 41.712 38.768 46.305 26 25.0-26.0 3.086 75.344 72.258 46.217 43.131 40.310 27 26.0-27.0 2.897 67.229 64.332 40.946 38.049 40.855 28 27.0-28.0 2.984 62.818 59.834 37.549 34.565 42.232 29 28.0-29.0 2.957 93.499 90.542 55.413 52.456 42.064 30 29.0-30.0 2.961 60.312 57.351 38.732 35.771 37.628 31 30.0-31.0 2.907 49.610 46.703 27.079 24.172 48.243 32 31.0-32.0 2.950 58.259 55.309 30.222 27.272 50.692 33 32.0-33.0 2.920 54.320 51.400 27.866 24.946 51.467 34 33.0-34.0 2.909 62.984 60.075 32.592 29.683 50.590 35 34.0-35.0 2.911 49.388 46.477 29.103 26.192 43.645 36 35.0-36.0 2.896 64.759 61.863 40.161 37.265 39.762 37 36.0-37.0 2.948 72.499 69.551 40.667 37.719 45.768 38 37.0-38.0 2.980 59.388 56.408 34.823 31.843 43.549 39 38.0-39.0 2.895 63.244 60.349 38.644 35.749 40.763 40 39.0-40.0 2.979 57.812 54.833 34.329 31.350 42.826

91 Table A.4 continued. Percent Moisture Data Results for Core 091605-4

Weighing Aluminum Sample Aluminum Tray Wt. + Aluminum No. Tray Sample Tray Wt. + Dry (091605- Interval Weight Wt. (wet) Wet Spl. Sample Wt Spl. Pct. 04-) (cm) (tare) (g) (g) Wgt. (g) (dry) (g) Wt. (g) Moisture 41 40.0-41.0 2.944 58.145 55.201 29.199 26.255 52.437 42 41.0-42.0 2.942 53.245 50.303 28.392 25.450 49.407 43 42.0-43.0 2.920 74.413 71.493 38.637 35.717 50.041 44 43.0-44.0 2.999 55.872 52.873 25.617 22.618 57.222 45 44.0-45.0 2.955 60.238 57.283 33.282 30.327 47.058 46 45.0-46.0 2.949 81.713 78.764 53.006 50.057 36.447 47 49.0-47.0 2.886 74.391 71.505 41.422 38.536 46.107 48 47.0-48.0 2.982 95.315 92.333 62.276 59.294 35.782 49 48.0-49.0 2.895 94.828 91.933 64.004 61.109 33.529 50 49.0-50.0 2.912 78.969 76.057 55.828 52.916 30.426 51 50.0-51.0 2.933 91.309 88.376 67.290 64.357 27.178 52 51.0-52.0 3.056 82.477 79.421 62.077 59.021 25.686 53 52.0-53.0 3.004 108.442 105.438 81.922 78.918 25.152 54 53.0-54.0 2.929 76.768 73.839 59.080 56.151 23.955 55 54.0-55.0 2.960 85.423 82.463 65.993 63.033 23.562 56 55.0-56.0 2.923 82.954 80.031 64.876 61.953 22.589 57 56.0-57.0 2.934 80.774 77.840 63.286 60.352 22.467 58 57.0-58.0 3.051 76.031 72.980 59.512 56.461 22.635 59 58.0-59.0 2.885 70.574 67.689 52.692 49.807 26.418 60 59.0-60.0 2.97 111.844 108.874 87.329 84.359 22.517 61 60.0-61.0 2.995 65.351 62.356 43.503 40.508 35.038 62 61.0-62.0 3.006 76.318 73.312 48.516 45.510 37.923 63 62.0-63.0 2.921 74.694 71.773 51.400 48.479 32.455 64 63.0-64.0 3.009 24.969 21.960 19.204 16.195 26.252

92 Table A.5. Percent Moisture Data Results for Core 091605-5

Weighing Aluminum Sample Aluminum Tray Wt. + Wet Aluminum No. Tray Sample Spl. Tray Wt. + Dry (091605- Interval Weight Wt. (wet) Wgt. Sample Wt Spl. Pct. 05-) (cm) (tare) (g) (g) (g) (dry) (g) Wt. (g) Moisture 1 0-1.0 2.963 47.679 44.716 20.058 17.095 61.770 2 1.0-2.0 2.969 47.809 44.840 20.274 17.305 61.407 3 2.0-3.0 2.978 42.742 39.764 18.225 15.247 61.656 4 3.0-4.0 2.973 44.234 41.261 18.268 15.295 62.931 5 4.0-5.0 3.017 38.123 35.106 15.886 12.869 63.342 6 5.0-6.0 3.002 50.028 47.026 20.950 17.948 61.834 7 6.0-7.0 3.013 38.868 35.855 17.467 14.454 59.688 8 7.0-8.0 2.926 46.496 43.570 20.902 17.976 58.742 9 8.0-9.0 2.902 51.971 49.069 23.451 20.549 58.122 10 9.0-10.0 2.971 50.168 47.197 23.343 20.372 56.836 11 10.0-11.0 3.006 48.849 45.843 24.154 21.148 53.869 12 11.0-12.0 2.937 52.032 49.095 22.283 19.346 60.595 13 12.0-13.0 2.939 51.384 48.445 22.793 19.854 59.017 14 13.0-14.0 3.005 57.208 54.203 27.179 24.174 55.401 15 14.0-15.0 2.993 49.464 46.471 24.871 21.878 52.921 16 15.0-16.0 2.905 53.320 50.415 26.798 23.893 52.607 17 16.0-17.0 2.946 54.183 51.237 29.858 26.912 47.475 18 17.0-18.0 2.957 60.438 57.481 30.072 27.115 52.828 19 18.0-19.0 2.940 46.216 43.276 21.579 18.639 56.930 20 19.0-20.0 2.975 55.007 52.032 26.181 23.206 55.401 21 20.0-21.0 2.961 51.037 48.076 22.654 19.693 59.038 22 21.0-22.0 2.928 53.486 50.558 22.721 19.793 60.851 23 22.0-23.0 2.942 57.783 54.841 21.208 18.266 66.693 24 23.0-24.0 2.949 47.507 44.558 17.814 14.865 66.639 25 24.0-25.0 2.945 50.062 47.117 18.897 15.952 66.144

93 Table A.5 continued. Percent Moisture Data Results for Core 091605-5

Weighing Aluminum Sample Aluminum Tray Wt. + Wet Aluminum No. Tray Sample Spl. Tray Wt. + Dry (091605- Interval Weight Wt. (wet) Wgt. Sample Wt Spl. Pct. 05-) (cm) (tare) (g) (g) (g) (dry) (g) Wt. (g) Moisture 26 25.0-26.0 2.957 42.151 39.194 14.685 11.728 70.077 27 26.0-27.0 2.987 50.684 47.697 16.825 13.838 70.988 28 27.0-28.0 2.941 42.916 39.975 13.942 11.001 72.480 29 28.0-29.0 2.954 49.910 46.956 15.518 12.564 73.243 30 29.0-30.0 2.918 42.753 39.835 13.619 10.701 73.137 31 30.0-31.0 2.923 49.645 46.722 15.833 12.910 72.368 32 31.0-32.0 2.990 50.581 47.591 19.371 16.381 65.580 33 32.0-33.0 2.994 58.111 55.117 26.309 23.315 57.699 34 33.0-34.0 2.945 57.414 54.469 28.496 25.551 53.091 35 34.0-35.0 2.964 55.677 52.713 20.214 17.250 67.276 36 35.0-36.0 2.927 52.829 49.902 18.041 15.114 69.713 37 36.0-37.0 3.001 51.425 48.424 17.478 14.477 70.104 38 37.0-38.0 2.957 64.912 61.955 23.383 20.426 67.031 39 38.0-39.0 2.962 56.439 53.477 27.845 24.883 53.470 40 39.0-40.0 2.982 41.757 38.775 21.759 18.777 51.574 41 40.0-41.0 2.901 61.359 58.458 29.597 26.696 54.333 42 41.0-42.0 2.975 64.693 61.718 33.581 30.606 50.410 43 42.0-43.0 2.963 80.712 77.749 63.361 60.398 22.317 44 43.0-44.0 3.010 73.768 70.758 43.853 40.843 42.278 45 44.0-45.0 2.901 54.864 51.963 18.079 15.178 70.791 46 45.0-46.0 2.917 52.756 49.839 16.297 13.380 73.154 47 49.0-47.0 2.967 47.347 44.380 15.125 12.158 72.605 48 47.0-48.0 2.975 59.787 56.812 19.202 16.227 71.437 49 48.0-49.0 2.928 54.050 51.122 17.391 14.463 71.709 50 49.0-50.0 2.967 52.868 49.901 17.016 14.049 71.846 51 50.0-51.0 2.921 52.989 50.068 19.113 16.192 67.660 52 51.0-52.0 2.942 51.174 48.232 19.795 16.853 65.058 53 52.0-53.0 3.020 55.078 52.058 20.771 17.751 65.901 54 53.0-54.0 2.988 53.060 50.072 19.901 16.913 66.223 55 54.0-55.0 2.943 61.762 58.819 30.537 27.594 53.087 56 55.0-56.0 2.951 22.221 19.270 12.215 9.264 51.925

94 Table A.6. Percent Moisture Data Results for Core 091605-6

Crucible Crucible Sample Weighing Wt. + Wt. + No. Crucible Sample Wet Sample (091605- Interval Weight Wt. (wet) Spl. Wt (dry) Dry Spl. Pct. 06-) (cm) (tare) (g) (g) Wgt. (g) (g) Wt. (g) Moisture 1 0-1.0 42.009 105.853 63.844 99.928 57.919 9.280 2 1.0-2.0 41.773 102.667 60.895 96.551 54.779 10.044 3 2.0-3.0 42.851 117.010 74.159 107.533 64.682 12.779 4 3.0-4.0 46.609 129.732 83.123 119.516 72.907 12.290 5 4.0-5.0 40.553 120.590 80.037 111.526 70.973 11.325 6 5.0-6.0 42.665 123.180 80.516 113.471 70.807 12.059 7 6.0-7.0 48.211 120.097 71.886 110.755 62.544 12.996 8 7.0-8.0 56.121 116.733 60.612 108.873 52.752 12.968 9 8.0-9.0 50.633 122.213 71.580 112.127 61.494 14.090 10 9.0-10.0 45.365 110.973 65.608 101.560 56.195 14.347 11 10.0-11.0 53.743 127.998 74.255 116.924 63.181 14.913 12 11.0-12.0 46.602 129.906 83.304 116.819 70.217 15.710 13 12.0-13.0 52.290 126.170 73.880 114.179 61.889 16.230 14 13.0-14.0 49.876 128.484 78.608 114.922 65.046 17.253 15 14.0-15.0 53.965 129.679 75.714 116.245 62.280 17.743 16 15.0-16.0 51.753 140.577 88.824 124.515 72.762 18.083 17 16.0-17.0 54.185 135.025 80.840 120.177 65.992 18.367 18 17.0-18.0 55.295 138.712 83.417 123.198 67.903 18.598 19 18.0-19.0 49.029 134.566 85.537 117.909 68.880 19.473 20 19.0-20.0 48.328 131.656 83.328 114.732 66.404 20.310

95 Table A.6 continued. Percent Moisture Data Results for Core 091605-6

Crucible Crucible Sample Weighing Wt. + Wt. + No. Crucible Sample Wet Sample (091605- Interval Weight Wt. (wet) Spl. Wt (dry) Dry Spl. Pct. 06-) (cm) (tare) (g) (g) Wgt. (g) (g) Wt. (g) Moisture 21 20.0-21.0 50.005 136.004 85.999 117.728 67.723 21.251 22 21.0-22.0 44.352 123.252 78.900 107.037 62.685 20.551 23 22.0-23.0 48.497 124.353 75.856 108.904 60.407 20.366 24 23.0-24.0 48.096 129.337 81.241 112.412 64.316 20.833 25 24.0-25.0 46.952 127.634 80.682 111.258 64.306 20.297 26 25.0-26.0 49.051 131.274 82.223 115.025 65.974 19.762 27 26.0-27.0 46.969 123.658 76.689 108.532 61.563 19.724 28 27.0-28.0 51.518 136.126 84.608 119.728 68.210 19.381 29 28.0-29.0 51.223 137.141 85.918 120.551 69.328 19.309 30 29.0-30.0 53.479 142.094 88.615 124.880 71.401 19.426 31 30.0-31.0 48.631 128.349 79.718 112.520 63.889 19.856 32 31.0-32.0 48.584 133.995 85.411 117.365 68.781 19.471 33 32.0-33.0 58.162 134.358 76.196 119.328 61.166 19.725 34 33.0-34.0 60.846 145.402 84.556 128.560 67.714 19.918 35 34.0-35.0 65.836 151.805 85.969 134.803 68.967 19.777 36 35.0-36.0 58.761 137.199 78.438 121.658 62.897 19.813 37 36.0-37.0 25.675 104.076 78.401 88.659 62.984 19.664 38 37.0-38.0 26.684 106.749 80.065 91.241 64.557 19.369 39 38.0-39.0 28.539 115.805 87.266 99.460 70.921 18.730 40 39.0-40.0 25.601 67.767 42.166 59.878 34.277 18.709

96 Table A.7. Percent Moisture Data Results for Core 091605-7

Weighing Aluminum Sample Aluminum Tray Wt. + Aluminum No. Tray Sample Tray Wt. + Dry (091605- Interval Weight Wt. (wet) Wet Spl. Sample Wt Spl. Pct. 07-) (cm) (tare) (g) (g) Wgt. (g) (dry) (g) Wt. (g) Moisture 1 0-2.0 2.390 67.269 64.879 28.856 26.466 59.207 2 2.0-4.0 2.414 68.183 65.769 28.614 26.200 60.164 3 4.0-6.0 2.339 76.589 74.250 31.696 29.357 60.462 4 6.0-8.0 2.355 65.764 63.409 27.506 25.151 60.335 5 8.0-10.0 2.350 74.175 71.825 31.120 28.770 59.944 6 10.0-12.0 2.373 81.994 79.621 36.110 33.737 57.628 7 12.0-14.0 2.399 74.203 71.804 30.826 28.427 60.410 8 14.0-16.0 2.396 80.981 78.585 34.414 32.018 59.257 9 16.0-18.0 2.376 86.028 83.652 39.082 36.706 56.121 10 18.0-20.0 2.369 74.247 71.878 34.108 31.739 55.843 11 20.0-22.0 2.368 79.974 77.606 34.285 31.917 58.873 12 22.0-24.0 2.343 72.805 70.462 30.830 28.487 59.571 13 24.0-26.0 2.407 60.459 58.052 26.904 24.497 57.802 14 26.0-28.0 2.368 84.475 82.107 31.758 29.390 64.205 15 28.0-30.0 2.389 85.833 83.444 28.496 26.107 68.713 16 30.0-32.0 2.388 84.562 82.174 28.068 25.680 68.749 17 32.0-34.0 2.402 82.822 80.420 26.153 23.751 70.466 18 34.0-36.0 2.365 83.721 81.356 27.067 24.702 69.637 19 36.0-38.0 2.388 95.316 92.928 40.073 37.685 59.447 20 38.0-40.0 2.338 79.618 77.280 36.997 34.659 55.151 21 40.0-42.0 2.342 94.296 91.954 44.012 41.670 54.684 22 42.0-44.0 2.329 82.622 80.293 39.511 37.182 53.692 23 44.0-46.0 2.365 93.883 91.518 33.841 31.476 65.607 24 46.0-48.0 2.323 102.855 100.532 38.713 36.390 63.803 25 48.0-49.0 2.388 50.552 48.164 22.109 19.721 59.054

97 Table A.7 continued. Percent Moisture Data Results for Core 091605-7

Weighing Aluminum Sample Aluminum Tray Wt. + Wet Aluminum No. Tray Sample Spl. Tray Wt. + Dry (091605- Interval Weight Wt. (wet) Wgt. Sample Wt Spl. Pct. 07-) (cm) (tare) (g) (g) (g) (dry) (g) Wt. (g) Moisture 26 49.0-50.0 2.371 55.692 53.321 24.201 21.830 59.059 27 50.0-51.0 2.397 61.705 59.308 28.514 26.117 55.964 28 51.0-52.0 2.393 60.975 58.582 30.721 28.328 51.644 29 52.0-53.0 2.373 71.492 69.119 41.496 39.123 43.398 30 53.0-54.0 2.359 77.190 74.831 34.848 32.489 56.584 31 54.0-55.0 2.368 46.924 44.556 24.399 22.031 50.554 32 55.0-56.0 2.338 62.229 59.891 29.077 26.739 55.354 33 56.0-57.0 2.361 57.577 55.216 28.371 26.010 52.894 34 57.0-58.0 2.348 71.312 68.964 43.506 41.158 40.320 35 58.0-59.0 2.444 70.131 67.687 42.554 40.110 40.742 36 59.0-60.0 2.359 73.747 71.388 42.057 39.698 44.391 37 60.0-61.0 2.355 61.827 59.472 30.506 28.151 52.665 38 61.0-62.0 2.373 60.882 58.509 22.418 20.045 65.740 39 62.0-63.0 2.424 58.812 56.388 23.774 21.350 62.137 40 63.0-64.0 2.368 63.675 61.307 25.401 23.033 62.430 41 64.0-65.0 2.317 51.979 49.662 17.887 15.570 68.648 42 65.0-66.0 2.448 66.579 64.131 21.694 19.246 69.990 43 66.0-67.0 2.400 54.163 51.763 18.149 15.749 69.575 44 67.0-68.0 2.361 56.254 53.893 19.837 17.476 67.573 45 68.0-69.0 2.377 58.511 56.134 22.195 19.818 64.695 46 69.0-70.0 2.355 64.097 61.742 25.955 23.600 61.776 47 70.0-71.0 2.401 57.430 55.029 23.969 21.568 60.806 48 71.0-72.0 2.423 61.339 58.916 25.543 23.120 60.758 49 72.0-73.0 2.368 90.854 88.486 46.560 44.192 50.058

98 Table A.8. Percent Moisture Data Results for Core 020507-1

Weighing Aluminum Sample Aluminum Tray Wt. + Wet Aluminum No. Tray Sample Spl. Tray Wt. + Dry (020507- Interval Weight Wt. (wet) Wgt. Sample Wt Spl. Pct. 01-) (cm) (tare) (g) (g) (g) (dry) (g) Wt. (g) Moisture 1 0-1.0 2.331 14.842 12.511 11.365 9.034 27.792 2 1.0-2.0 2.363 17.502 15.139 14.642 12.279 18.892 3 2.0-3.0 2.386 19.538 17.152 16.617 14.231 17.030 4 3.0-4.0 2.328 25.396 23.068 21.479 19.151 16.980 5 4.0-5.0 2.335 35.055 32.720 28.863 26.528 18.924 6 5.0-6.0 2.321 31.061 28.740 25.726 23.405 18.563 7 6.0-7.0 2.295 39.191 36.896 31.956 29.661 19.609 8 7.0-8.0 2.378 38.124 35.746 35.242 32.864 8.062 9 8.0-9.0 2.367 38.253 35.886 27.846 25.479 29.000 10 9.0-10.0 2.415 28.221 25.806 23.350 20.935 18.875 11 10.0-11.0 2.373 31.154 28.781 27.174 24.801 13.829 12 11.0-12.0 2.392 27.117 24.725 24.155 21.763 11.980 13 12.0-13.0 2.331 35.118 32.787 31.422 29.091 11.273 14 13.0-14.0 2.408 28.822 26.414 25.346 22.938 13.160 15 14.0-15.0 2.365 27.332 24.967 24.228 21.863 12.432 16 15.0-16.0 2.415 38.631 36.216 34.060 31.645 12.621 17 16.0-17.0 2.383 27.243 24.860 24.035 21.652 12.904 18 17.0-18.0 2.369 28.365 25.996 24.914 22.545 13.275 19 18.0-19.0 2.354 36.586 34.232 31.959 29.605 13.517 20 19.0-20.0 2.305 25.600 23.295 22.729 20.424 12.325 21 20.0-21.0 2.379 26.927 24.548 23.886 21.507 12.388 22 21.0-22.0 2.369 31.768 29.399 28.383 26.014 11.514 23 22.0-23.0 2.335 31.231 28.896 27.707 25.372 12.195 24 23.0-24.0 2.355 28.042 25.687 25.497 23.142 9.908 25 24.0-25.0 2.389 25.216 22.827 23.053 20.664 9.476

99 Table A.8 continued. Percent Moisture Data Results for Core 020507-1

Weighing Aluminum Sample Aluminum Tray Wt. + Wet Aluminum No. Tray Sample Spl. Tray Wt. + Dry (020507- Interval Weight Wt. (wet) Wgt. Sample Wt Spl. Pct. 01-) (cm) (tare) (g) (g) (g) (dry) (g) Wt. (g) Moisture 26 25.0-26.0 2.356 26.013 23.657 23.258 20.902 11.646 27 26.0-27.0 2.401 28.931 26.530 25.453 23.052 13.110 28 27.0-28.0 2.352 14.987 12.635 13.485 11.133 11.888 29 28.0-29.0 2.394 26.410 24.016 23.522 21.128 12.025 30 29.0-30.0 2.351 25.908 23.557 23.520 21.169 10.137 31 30.0-31.0 2.347 28.245 25.898 25.839 23.492 9.290 32 31.0-32.0 2.339 28.004 25.665 25.527 23.188 9.651 33 32.0-33.0 2.338 32.476 30.138 29.470 27.132 9.974 34 33.0-34.0 2.393 28.709 26.316 25.993 23.600 10.321 35 34.0-35.0 2.410 29.267 26.857 26.440 24.030 10.526 36 35.0-36.0 2.333 34.261 31.928 30.540 28.207 11.654 37 36.0-37.0 2.324 29.086 26.762 26.361 24.037 10.182 38 37.0-38.0 2.343 22.341 19.998 20.556 18.213 8.926 39 38.0-39.0 2.358 31.639 29.281 29.099 26.741 8.675 40 39.0-40.0 2.377 33.990 31.613 31.410 29.033 8.161 41 40.0-41.0 2.371 32.739 30.368 30.325 27.954 7.949 42 41.0-42.0 2.411 27.531 25.120 25.597 23.186 7.699 43 42.0-43.0 2.400 34.081 31.681 31.675 29.275 7.594 44 43.0-44.0 2.340 33.201 30.861 31.060 28.720 6.938 45 44.0-45.0 2.372 31.618 29.246 29.679 27.307 6.630 46 45.0-46.0 2.406 35.904 33.498 33.529 31.123 7.090 47 49.0-47.0 2.370 42.536 40.166 39.678 37.308 7.115 48 47.0-48.0 2.414 39.385 36.971 36.711 34.297 7.233 49 48.0-49.0 2.352 30.995 28.643 28.831 26.479 7.555 50 49.0-50.0 2.374 32.080 29.706 29.678 27.304 8.086

Note: Yellow highlight indicates dated horizon.

100 Table A.8 continued. Percent Moisture Data Results for Core 020507-1

Weighing Aluminum Sample Aluminum Tray Wt. + Wet Aluminum No. Tray Sample Spl. Tray Wt. + Dry (020507- Interval Weight Wt. (wet) Wgt. Sample Wt Spl. Pct. 01-) (cm) (tare) (g) (g) (g) (dry) (g) Wt. (g) Moisture 51 50.0-52.0 2.374 69.183 66.809 63.711 61.337 8.191 52 52.0-54.0 2.358 66.022 63.664 60.838 58.480 8.143 53 54.0-56.0 2.369 63.114 60.745 58.331 55.962 7.874 54 56.0-58.0 2.374 67.385 65.011 62.092 59.718 8.142 55 58.0-60.0 2.406 69.904 67.498 64.407 62.001 8.144 56 60.0-62.0 2.381 58.426 56.045 53.736 51.355 8.368 57 62.0-64.0 2.345 78.611 76.266 72.409 70.064 8.132 58 64.0-66.0 2.406 70.264 67.858 65.050 62.644 7.684 59 66.0-68.0 2.348 72.001 69.653 66.901 64.553 7.322 60 68.0-70.0 2.392 77.950 75.558 72.535 70.143 7.167 61 70.0-72.0 2.428 87.534 85.106 81.736 79.308 6.813 62 72.0-74.0 2.402 60.787 58.385 56.840 54.438 6.760 63 74.0-76.0 2.335 79.320 76.985 73.623 71.288 7.400 64 76.0-78.0 2.338 73.132 70.794 67.599 65.261 7.816 65 78.0-80.0 2.319 79.194 76.875 73.653 71.334 7.208 66 80.0-82.0 2.377 76.987 74.610 71.610 69.233 7.207 67 82.0-84.0 2.391 86.560 84.169 80.370 77.979 7.354 68 84.0-86.0 2.389 82.103 79.714 76.307 73.918 7.271 69 86.0-88.0 2.374 80.412 78.038 74.961 72.587 6.985 70 88.0-90.0 2.426 78.362 75.936 72.879 70.453 7.221 71 90.0-92.0 2.382 90.043 87.661 84.040 81.658 6.848 72 92.0-94.0 2.391 82.287 79.896 76.825 74.434 6.836 73 94.0-96.0 2.386 80.787 78.401 75.063 72.677 7.301 74 96.0-98.0 2.401 89.362 86.961 83.108 80.707 7.192 75 98.0-100.0 2.359 83.256 80.897 77.141 74.782 7.559

Note: Yellow highlight indicates dated horizon.

101 Table A.8 continued. Percent Moisture Data Results for Core 020507-1

Weighing Aluminum Aluminum Sample Aluminum Tray Wt. + Tray Wt. + No. Tray Sample Sample Dry (020507- Weight Wt. (wet) Wet Spl. Wt (dry) Spl. Pct. 01-) Interval (cm) (tare) (g) (g) Wgt. (g) (g) Wt. (g) Moisture 76 100.0-102.0 2.378 86.792 84.414 80.287 77.909 7.706 77 102.0-104.0 2.340 84.627 82.287 78.878 76.538 6.987 78 104.0-106.0 2.328 95.167 92.839 88.902 86.574 6.748 79 106.0-108.0 2.322 81.543 79.221 76.409 74.087 6.481 80 108.0-110.0 2.368 82.321 79.953 77.052 74.684 6.590 81 110.0-112.0 2.321 82.680 80.359 77.364 75.043 6.615 82 112.0-114.0 2.376 83.157 80.781 77.857 75.481 6.561 83 114.0-116.0 2.360 96.016 93.656 89.782 87.422 6.656 84 116.0-118.0 2.360 73.606 71.246 69.156 66.796 6.246 85 118.0-120.0 2.363 84.258 81.895 78.968 76.605 6.459 86 120.0-122.0 2.383 83.976 81.593 78.671 76.288 6.502 87 122.0-124.0 2.394 73.391 70.997 68.896 66.502 6.331 88 124.0-126.0 2.346 76.273 73.927 71.077 68.731 7.029 89 126.0-128.0 2.364 76.403 74.039 69.706 67.342 9.045 90 128.0-130.0 2.354 79.186 76.832 68.291 65.937 14.180 91 130.0-132.0 2.323 70.003 67.680 58.287 55.964 17.311 92 132.0-134.0 2.346 59.865 57.519 56.213 53.867 6.349 93 134.0-136.0 2.370 54.578 52.208 50.799 48.429 7.238 94 136.0-139.0 2.347 65.301 62.954 62.442 60.095 4.541 95 139.0-141.0 2.420 89.841 87.421 76.022 73.602 15.807 96 141.0-143.0 2.403 108.648 106.245 91.303 88.900 16.325 97 143.0-145.0 2.378 100.945 98.567 84.799 82.421 16.380 98 145.0-147.0 2.370 118.033 115.663 98.733 96.363 16.686 99 147.0-149.0 2.361 100.125 97.764 83.850 81.489 16.647 100 149.0-151.0 2.365 100.100 97.735 84.028 81.663 16.444

102 Table A.8 continued. Percent Moisture Data Results for Core 020507-1

Weighing Aluminum Aluminum Sample Aluminum Tray Wt. + Tray Wt. + No. Tray Sample Sample Dry (020507- Weight Wt. (wet) Wet Spl. Wt (dry) Spl. Pct. 01-) Interval (cm) (tare) (g) (g) Wgt. (g) (g) Wt. (g) Moisture 101 151.0-153.0 2.385 107.374 104.989 89.880 87.495 16.662 102 153.0-155.0 2.348 94.537 92.189 79.385 77.037 16.436 103 155.0-157.0 2.363 106.408 104.045 89.393 87.030 16.353 104 157.0-159.0 2.355 96.308 93.953 80.864 78.509 16.438 105 159.0-161.0 2.370 104.526 102.156 88.141 85.771 16.039 106 161.0-163.0 2.411 55.107 52.696 46.562 44.151 16.215 107 163.0-165.0 2.459 52.851 50.392 44.756 42.297 16.064 108 165.0-167.0 2.387 50.300 47.913 42.714 40.327 15.833 109 167.0-169.0 2.329 32.436 30.107 27.695 25.366 15.747 110 169.0-171.0 2.340 24.731 22.391 21.187 18.847 15.828 111 171.0-173.0 2.346 26.199 23.853 22.358 20.012 16.103 112 173.0-175.0 2.334 29.698 27.364 25.186 22.852 16.489 113 175.0-177.0 2.370 35.825 33.455 30.532 28.162 15.822 114 177.0-179.0 2.381 41.792 39.411 35.671 33.290 15.531 115 179.0-181.0 2.355 42.676 40.321 36.505 34.150 15.304 116 181.0-183.0 2.381 64.240 61.859 55.071 52.690 14.822 117 183.0-185.0 2.398 73.643 71.245 63.171 60.773 14.699 118 185.0-187.0 2.372 71.785 69.413 61.516 59.144 14.793 119 187.0-189.0 2.354 87.966 85.612 75.436 73.082 14.636 120 189.0-191.0 2.369 81.359 78.990 69.777 67.408 14.662 121 191.0-193.0 2.375 69.348 66.973 59.863 57.488 14.163 122 193.0-195.0 2.393 94.080 91.687 81.526 79.133 13.692 123 195.0-197.0 2.416 89.752 87.336 77.983 75.567 13.476 124 197.0-201.0 2.401 82.291 79.890 71.615 69.214 13.363 125 201.0-203.0 2.384 93.146 90.762 81.173 78.789 13.192

Note: Yellow highlight indicates dated horizon.

103 Table A.8 continued. Percent Moisture Data Results for Core 020507-1

Weighing Aluminum Aluminum Sample Aluminum Tray Wt. + Tray Wt. + No. Tray Sample Sample Dry (020507- Weight Wt. (wet) Wet Spl. Wt (dry) Spl. Pct. 01-) Interval (cm) (tare) (g) (g) Wgt. (g) (g) Wt. (g) Moisture 126 205.0-207.0 2.357 74.317 71.960 64.872 62.515 13.126 127 209.0-211.0 2.380 70.616 68.236 61.960 59.580 12.685 128 213.0-215.0 2.423 71.139 68.716 62.566 60.143 12.475 129 217.0-219.0 2.340 84.153 81.813 74.150 71.810 12.227 130 221.0-223.0 2.394 69.057 66.663 61.039 58.645 12.028 131 225.0-227.0 2.337 74.317 71.980 65.597 63.260 12.115 132 229.0-231.0 2.375 84.334 81.959 74.620 72.245 11.852 133 233.0-235.0 2.384 68.054 65.670 60.369 57.985 11.702 134 237.0-239.0 2.349 69.504 67.155 60.583 58.234 13.284 135 241.0-243.0 2.330 70.619 68.289 61.936 59.606 12.715 136 245.0-247.0 2.336 70.581 68.245 61.708 59.372 13.002 137 249.0-251.0 2.317 55.994 53.677 48.926 46.609 13.167 138 253.0-255.0 2.413 29.831 27.418 26.191 23.778 13.276 139 257.0-259.0 2.370 41.781 39.411 35.137 32.767 16.858 140 261.0-263.0 2.383 71.399 69.016 59.768 57.385 16.853 141 265.0-267.0 2.355 66.860 64.505 56.177 53.822 16.562 142 269.0-271.0 2.361 60.052 57.691 51.242 48.881 15.271 143 273.0-275.0 2.415 90.195 87.780 75.233 72.818 17.045 144 277.0-279.0 2.319 87.903 85.584 74.405 72.086 15.772 145 281.0-283.0 2.398 76.747 74.349 65.927 63.529 14.553 146 285.0-287.0 2.455 76.627 74.172 65.506 63.051 14.994 147 289.0-291.0 2.383 64.728 62.345 57.679 55.296 11.306 148 293.0-295.0 2.395 88.652 86.257 78.518 76.123 11.749 149 297.0-299.0 2.362 106.061 103.699 91.284 88.922 14.250 150 301.0-303.0 2.357 95.737 93.380 84.143 81.786 12.416 151 305.0-307.0 2.367 80.456 78.089 71.502 69.135 11.466 152 309.0-311.0 2.372 107.576 105.204 96.958 94.586 10.093 153 313.0-315.0 2.367 60.852 58.485 55.155 52.788 9.741 154 317.0-319.0 2.359 72.766 70.407 66.977 64.618 8.222

Note: Yellow highlight indicates dated horizon.

104

APPENDIX B

PERCENT ORGANICS DATA RESULTS

105 Table B.1. Percent Organics Data Results for Core 091605-1

(post- Sample Aluminum Dry combustion) No. Aluminum Tray + Spl. Aluminum Combusted Pct. (091605- Interval Tray Dry Dry Spl. Wgt. Tray + Dry Spl Wgt. Organics 01-) (cm) Wt. (g) Wgt. (g) (g) Spl. Wgt (g) (g) (g) 1 0-1.0 2.981 52.874 49.893 52.203 48.504 2.784 2 1.0-2.0 3.054 67.832 64.778 67.069 63.466 2.026 3 2.0-3.0 3.017 61.809 58.792 60.09 56.424 4.028 4 3.0-4.0 3.056 44.632 41.576 42.663 39.154 5.826 5 4.0-5.0 3.015 40.612 37.597 38.862 35.251 6.241 6 5.0-6.0 3.010 53.290 50.280 53.582 49.903 0.749 7 6.0-7.0 2.901 61.198 58.297 60.253 56.595 2.920 8 7.0-8.0 2.989 59.644 56.655 58.843 55.249 2.481 9 8.0-9.0 2.944 66.132 63.188 65.31 61.757 2.265 10 9.0-10.0 3.001 71.162 68.161 70.69 66.996 1.709 11 10.0-11.0 3.007 77.073 74.066 76.623 72.896 1.580 12 11.0-12.0 2.953 77.575 74.622 77.214 73.564 1.417 13 12.0-13.0 2.978 73.531 70.553 73.183 69.505 1.486 14 13.0-14.0 2.952 69.511 66.559 69.244 65.681 1.319 15 14.0-15.0 3.016 77.696 74.680 77.429 73.868 1.088 16 15.0-16.0 3.005 73.153 70.148 72.84 69.231 1.308 17 16.0-17.0 2.994 64.957 61.963 63.936 60.284 2.709 18 17.0-18.0 3.016 66.820 63.804 65.358 61.680 3.328 19 18.0-19.0 2.971 48.054 45.083 45.83 42.202 6.392 20 19.0-20.0 3.009 47.718 44.709 45.918 42.291 5.409 21 20.0-21.0 2.935 75.115 72.180 74.501 70.824 1.879 22 21.0-22.0 2.895 68.633 65.738 68.33 64.696 1.586 23 22.0-23.0 2.924 72.234 69.310 71.965 68.310 1.443 24 23.0-24.0 2.934 64.369 61.435 64.133 60.492 1.534 25 24.0-25.0 3.041 71.202 68.161 70.943 67.368 1.163 26 25.0-26.0 2.996 70.024 67.028 69.766 66.144 1.319 27 26.0-27.0 2.888 82.755 79.867 82.491 78.838 1.289 28 27.0-28.0 2.898 77.453 74.555 77.215 73.536 1.366 29 28.0-29.0 2.905 64.066 61.161 63.875 60.247 1.495

106 Table B.2. Percent Organics Data Results for Core 091605-2

Aluminum (post- Sample Tray + Dry combustion) No. Aluminum Dry Spl. Spl. Aluminum Combusted Pct. (091605- Interval Tray Dry Wgt. (g) Wgt. Tray + Dry Spl Wgt. Organics 02-) (cm) Wt. (g) *** (g) Spl. Wgt (g) (g) (g) 1 0-1.0 2.912 15.117 12.205 14.965 12.053 1.245 2 1.0-2.0 2.928 12.223 9.295 11.965 9.037 2.776 3 2.0-3.0 2.922 13.034 10.112 12.816 9.894 2.156 4 3.0-4.0 2.897 16.491 13.594 N/A N/A N/A 5 4.0-5.0 2.937 15.755 12.818 N/A N/A N/A 6 5.0-6.0 2.990 16.620 13.630 16.326 13.336 2.157 7 6.0-7.0 2.916 19.577 16.661 19.274 16.358 1.819 8 7.0-8.0 2.876 17.396 14.520 17.190 14.314 1.419 9 8.0-9.0 2.920 18.449 15.529 18.263 15.343 1.198 10 9.0-10.0 2.975 14.653 11.678 N/A N/A N/A 11 10.0-11.0 2.956 20.750 17.794 N/A N/A N/A 12 11.0-12.0 2.964 18.216 15.252 N/A N/A N/A 13 12.0-13.0 2.957 18.541 15.584 N/A N/A N/A 14 13.0-14.0 3.001 18.562 15.561 N/A N/A N/A 15 14.0-15.0 2.988 21.049 18.061 N/A N/A N/A 16 15.0-16.0 2.982 19.597 16.615 N/A N/A N/A 17 16.0-17.0 2.968 18.262 15.294 18.258 15.293 0.007 18 17.0-18.0 2.946 21.387 18.441 N/A N/A N/A 19 18.0-19.0 2.927 18.015 15.088 17.970 15.043 0.298 20 19.0-20.0 2.969 20.245 17.276 20.218 17.249 0.156

Note: Missing values (N/A) are due to non-calibration of muffle furnace.

107 Table B.2 continued. Percent Organics Data Results for Core 091605-2

Aluminum (post- Sample Tray + Dry combustion) No. Aluminum Dry Spl. Spl. Aluminum Combusted Pct. (091605- Interval Tray Dry Wgt. (g) Wgt. Tray + Dry Spl Wgt. Organics 02-) (cm) Wt. (g) *** (g) Spl. Wgt (g) (g) (g) 21 20.0-21.0 2.979 24.261 21.282 24.195 21.216 0.310 22 21.0-22.0 2.960 22.979 20.019 22.929 19.969 0.250 23 22.0-23.0 2.956 16.974 14.018 16.945 13.989 0.207 24 23.0-24.0 2.921 22.271 19.350 22.233 19.312 0.196 25 24.0-25.0 2.919 18.644 15.725 18.612 15.693 0.203 26 25.0-26.0 3.011 20.267 17.256 20.237 17.226 0.174 27 26.0-27.0 2.962 13.282 10.320 13.261 10.299 0.203 28 27.0-28.0 2.960 18.283 15.323 18.124 15.164 1.038 29 28.0-29.0 2.941 17.099 14.158 17.082 14.141 0.120 30 29.0-30.0 3.005 21.586 18.581 21.458 18.453 0.689 31 30.0-31.0 2.974 13.546 10.572 13.497 10.523 0.463 32 31.0-32.0 2.999 17.040 14.041 16.664 13.665 2.678 33 32.0-33.0 2.939 23.784 20.845 23.546 20.607 1.142 34 33.0-34.0 2.938 17.806 14.868 17.712 14.774 0.632 35 34.0-35.0 2.993 19.539 16.546 19.283 16.290 1.547 36 35.0-36.0 2.895 19.328 16.433 19.189 16.294 0.846 37 36.0-37.0 2.925 20.335 17.410 20.136 17.211 1.143 38 37.0-38.0 2.910 30.837 27.927 30.584 27.674 0.906

108 Table B.3. Percent Organics Data Results for Core 091605-3

(post- Sample Aluminum Dry combustion) No. Aluminum Tray + Spl. Aluminum Combusted Pct. (091605- Interval Tray Dry Dry Spl. Wgt. Tray + Dry Spl Wgt. Organics 03-) (cm) Wt. (g) Wgt. (g) (g) Spl. Wgt (g) (g) (g) 1 0-1.0 2.334 21.361 19.027 18.449 16.115 15.305 2 1.0-2.0 2.336 16.446 14.110 14.656 12.320 12.686 3 2.0-3.0 2.346 21.636 19.290 19.393 17.047 11.628 4 3.0-4.0 2.333 26.152 23.819 23.816 21.483 9.807 5 4.0-5.0 2.387 24.269 21.882 22.621 20.234 7.531 6 5.0-6.0 2.364 33.625 31.261 32.188 29.824 4.597 7 6.0-7.0 2.358 45.850 43.492 44.762 42.404 2.502 8 7.0-8.0 2.346 42.152 39.806 41.620 39.274 1.336 9 8.0-9.0 2.413 43.583 41.170 42.931 40.518 1.584 10 9.0-10.0 2.402 35.089 32.687 34.278 31.876 2.481 11 10.0-11.0 2.393 41.806 39.413 39.995 37.602 4.595 12 11.0-12.0 2.321 37.066 34.745 35.215 32.894 5.327 13 12.0-13.0 2.353 30.018 27.665 28.365 26.012 5.975 14 13.0-14.0 2.366 29.984 27.618 28.356 25.990 5.895 15 14.0-15.0 2.365 26.968 24.603 25.540 23.175 5.804 16 15.0-16.0 2.353 24.702 22.349 23.579 21.226 5.025 17 16.0-17.0 2.373 46.073 43.700 44.236 41.863 4.204 18 17.0-18.0 2.334 22.095 19.761 21.063 18.729 5.222 19 18.0-19.0 2.383 29.403 27.020 27.601 25.218 6.669 20 19.0-20.0 2.344 20.972 18.628 19.396 17.052 8.460 21 20.0-21.0 2.376 27.264 24.888 25.478 23.102 7.176 22 21.0-22.0 2.388 51.406 49.018 50.054 47.666 2.758 23 22.0-23.0 2.361 56.956 54.595 55.006 52.645 3.572 24 23.0-24.0 2.373 55.003 52.630 54.436 52.063 1.077 25 24.0-25.0 2.366 43.259 40.893 42.117 39.751 2.793

109 Table B.3 continued. Percent Organics Data Results for Core 091605-3

(post- Sample Aluminum Dry combustion) No. Aluminum Tray + Spl. Aluminum Combusted Pct. (091605- Interval Tray Dry Dry Spl. Wgt. Tray + Dry Spl Wgt. Organics 03-) (cm) Wt. (g) Wgt. (g) (g) Spl. Wgt (g) (g) (g) 26 25.0-26.0 2.350 30.741 28.391 28.889 26.539 6.523 27 26.0-27.0 2.364 27.804 25.440 26.026 23.662 6.989 28 27.0-28.0 2.348 26.617 24.269 24.448 22.100 8.937 29 28.0-29.0 2.384 27.258 24.874 25.112 22.728 8.627 30 29.0-30.0 2.380 35.176 32.796 33.078 30.698 6.397 31 30.0-31.0 2.368 39.662 37.294 38.411 36.043 3.354 32 31.0-32.0 2.382 41.592 39.210 39.473 37.091 5.404 33 32.0-33.0 2.366 52.026 49.660 50.207 47.841 3.663 34 33.0-34.0 2.352 45.216 42.864 42.446 40.094 6.462 35 34.0-35.0 2.364 46.508 44.144 44.245 41.881 5.126 36 35.0-36.0 2.403 45.706 43.303 43.854 41.451 4.277 37 36.0-37.0 2.374 49.319 46.945 47.910 45.536 3.001 38 37.0-38.0 2.429 55.165 52.736 53.656 51.227 2.861 39 38.0-39.0 2.348 46.135 43.787 44.614 42.266 3.474 40 39.0-40.0 2.345 45.769 43.424 43.659 41.314 4.859 41 40.0-41.0 2.314 35.217 32.903 33.605 31.291 4.899 42 41.0-42.0 2.382 31.432 29.050 29.829 27.447 5.518 43 42.0-43.0 2.319 33.815 31.496 32.323 30.004 4.737 44 43.0-44.0 2.393 40.047 37.654 38.418 36.025 4.326 45 44.0-45.0 2.378 46.407 44.029 45.003 42.625 3.189 46 45.0-46.0 2.374 44.615 42.241 43.574 41.200 2.464 47 49.0-47.0 2.403 35.000 32.597 34.315 31.912 2.101 48 47.0-48.0 2.391 29.681 27.290 27.864 25.473 6.658 49 48.0-49.0 2.381 33.239 30.858 31.623 29.242 5.237 50 49.0-50.0 2.394 49.061 46.667 48.270 45.876 1.695 50b 50.0-51.0 2.346 45.063 42.717 44.057 41.711 2.355

110 Table B.3 continued. Percent Organics Data Results for Core 091605-3

(post- Sample Aluminum Dry combustion) No. Aluminum Tray + Spl. Aluminum Combusted Pct. (091605- Interval Tray Dry Dry Spl. Wgt. Tray + Dry Spl Wgt. Organics 03-) (cm) Wt. (g) Wgt. (g) (g) Spl. Wgt (g) (g) (g) 51 51.0-52.0 2.346 53.331 50.985 51.999 49.653 2.613 52 52.0-53.0 2.330 48.383 46.053 47.556 45.226 1.796 53 53.0-54.0 2.343 61.999 59.656 61.384 59.041 1.031 54 54.0-55.0 2.327 59.364 57.037 58.418 56.091 1.659 55 55.0-56.0 2.359 57.493 55.134 56.367 54.008 2.042 56 56.0-57.0 2.309 51.682 49.373 50.390 48.081 2.617 57 57.0-58.0 2.327 47.074 44.747 46.028 43.701 2.338 58 58.0-59.0 2.398 36.688 34.290 35.288 32.890 4.083 59 59.0-60.0 2.361 30.498 28.137 28.939 26.578 5.541 60 60.0-61.0 2.444 31.505 29.061 29.893 27.449 5.547 61 61.0-62.0 2.386 33.745 31.359 32.149 29.763 5.089 62 62.0-63.0 2.358 36.043 33.685 34.573 32.215 4.364 63 63.0-64.0 2.372 46.509 44.137 44.741 42.369 4.006 64 64.0-65.0 2.377 36.303 33.926 34.301 31.924 5.901 65 65.0-66.0 2.935 29.406 26.471 27.625 24.690 6.728 66 66.0-67.0 3.01 23.257 20.247 22.101 19.091 5.709 67 67.0-68.0 2.919 35.416 32.497 34.007 31.088 4.336 68 68.0-69.0 2.936 28.384 25.448 27.141 24.205 4.884 69 69.0-70.0 2.915 29.359 26.444 27.787 24.872 5.945 70 70.0-71.0 2.919 43.822 40.903 41.782 38.863 4.987

111 Table B.4. Percent Organics Data Results for Core 091605-4

(post- Sample Aluminum Dry combustion) No. Aluminum Tray + Spl. Aluminum Combusted Pct. (091605- Interval Tray Dry Dry Spl. Wgt. Tray + Dry Spl Wgt. Organics 04-) (cm) Wt. (g) Wgt. (g) (g) Spl. Wgt (g) (g) (g) 1 0-1.0 2.975 19.705 16.730 17.159 14.184 15.218 2 1.0-2.0 2.986 21.986 19.000 19.133 16.147 15.016 3 2.0-3.0 3.010 20.978 17.968 18.384 15.374 14.437 4 3.0-4.0 3.087 21.855 18.768 19.408 16.321 13.038 5 4.0-5.0 2.916 20.431 17.515 17.446 14.530 17.043 6 5.0-6.0 2.964 21.645 18.681 18.603 15.639 16.284 7 6.0-7.0 2.874 28.044 25.170 24.270 21.396 14.994 8 7.0-8.0 2.870 29.124 26.254 24.911 22.041 16.047 9 8.0-9.0 3.058 30.005 26.947 26.193 23.135 14.146 10 9.0-10.0 2.862 24.271 21.409 21.643 18.781 12.275 11 10.0-11.0 2.965 25.932 22.967 22.764 19.799 13.794 12 11.0-12.0 2.990 29.078 26.088 24.871 21.881 16.126 13 12.0-13.0 2.958 56.663 53.705 51.203 48.245 10.167 14 13.0-14.0 3.023 36.000 32.977 33.157 30.134 8.621 15 14.0-15.0 2.915 32.274 29.359 29.569 26.654 9.214 16 15.0-16.0 2.910 57.003 54.093 54.062 51.152 5.437 17 16.0-17.0 2.951 38.490 35.539 37.261 34.310 3.458 18 17.0-18.0 2.964 35.795 32.831 33.715 30.751 6.335 19 18.0-19.0 2.892 35.790 32.898 32.822 29.930 9.022 20 19.0-20.0 2.959 35.274 32.315 31.070 28.111 13.009

112 Table B.4 continued. Percent Organics Data Results for Core 091605-4

(post- Sample Aluminum Dry combustion) No. Aluminum Tray + Spl. Aluminum Combusted Pct. (091605- Interval Tray Dry Dry Spl. Wgt. Tray + Dry Spl Wgt. Organics 04-) (cm) Wt. (g) Wgt. (g) (g) Spl. Wgt (g) (g) (g) 21 20.0-21.0 2.903 28.823 25.920 24.981 22.078 14.823 22 21.0-22.0 2.987 30.507 27.520 28.558 25.571 7.082 23 22.0-23.0 2.862 37.593 34.731 36.827 33.965 2.206 24 23.0-24.0 2.915 32.191 29.276 30.649 27.734 5.267 25 24.0-25.0 2.944 41.712 38.768 38.304 35.360 8.791 26 25.0-26.0 3.086 46.217 43.131 43.642 40.556 5.970 27 26.0-27.0 2.897 40.946 38.049 38.678 35.781 5.961 28 27.0-28.0 2.984 37.549 34.565 35.433 32.449 6.122 29 28.0-29.0 2.957 55.413 52.456 52.314 49.357 5.908 30 29.0-30.0 2.961 38.732 35.771 36.950 33.989 4.982 31 30.0-31.0 2.907 27.079 24.172 25.702 22.795 5.697 32 31.0-32.0 2.950 30.222 27.272 28.745 25.795 5.416 33 32.0-33.0 2.920 27.866 24.946 25.784 22.864 8.346 34 33.0-34.0 2.909 32.592 29.683 29.943 27.034 8.924 35 34.0-35.0 2.911 29.103 26.192 27.330 24.419 6.769 36 35.0-36.0 2.896 40.161 37.265 38.882 35.986 3.432 37 36.0-37.0 2.948 40.667 37.719 38.168 35.220 6.625 38 37.0-38.0 2.980 34.823 31.843 32.831 29.851 6.256 39 38.0-39.0 2.895 38.644 35.749 37.065 34.170 4.417 40 39.0-40.0 2.979 34.329 31.350 33.195 30.216 3.617

113 Table B.4 continued. Percent Organics Data Results for Core 091605-4

(post- Sample Aluminum Dry combustion) No. Aluminum Tray + Spl. Aluminum Combusted Pct. (091605- Interval Tray Dry Dry Spl. Wgt. Tray + Dry Spl Wgt. Organics 04-) (cm) Wt. (g) Wgt. (g) (g) Spl. Wgt (g) (g) (g) 41 40.0-41.0 2.944 29.199 26.255 27.020 24.076 8.299 42 41.0-42.0 2.942 28.392 25.450 26.519 23.577 7.360 43 42.0-43.0 2.920 38.637 35.717 35.774 32.854 8.016 44 43.0-44.0 2.999 25.617 22.618 24.245 21.246 6.066 45 44.0-45.0 2.955 33.282 30.327 31.538 28.583 5.751 46 45.0-46.0 2.949 53.006 50.057 51.728 48.779 2.553 47 49.0-47.0 2.886 41.422 38.536 39.635 36.749 4.637 48 47.0-48.0 2.982 62.276 59.294 61.830 58.848 0.752 49 48.0-49.0 2.895 64.004 61.109 62.386 59.491 2.648 50 49.0-50.0 2.912 55.828 52.916 54.652 51.740 2.222 51 50.0-51.0 2.933 67.290 64.357 66.045 63.112 1.935 52 51.0-52.0 3.056 62.077 59.021 61.780 58.724 0.503 53 52.0-53.0 3.004 81.922 78.918 80.779 77.775 1.448 54 53.0-54.0 2.929 59.080 56.151 58.360 55.431 1.282 55 54.0-55.0 2.960 65.993 63.033 65.150 62.190 1.337 56 55.0-56.0 2.923 64.876 61.953 64.679 61.756 0.318 57 56.0-57.0 2.934 63.286 60.352 62.735 59.801 0.913 58 57.0-58.0 3.051 59.512 56.461 58.954 55.903 0.988 59 58.0-59.0 2.885 52.692 49.807 51.838 48.953 1.715 60 59.0-60.0 2.970 87.329 84.359 86.430 83.460 1.066 61 60.0-61.0 2.995 43.503 40.508 42.208 39.213 3.197 62 61.0-62.0 3.006 48.516 45.510 46.784 43.778 3.806 63 62.0-63.0 2.921 51.400 48.479 50.133 47.212 2.614 64 63.0-64.0 3.009 19.204 16.195 18.931 15.922 1.686

114 Table B.5. Percent Organics Data Results for Core 091605-5

Aluminum (post- Sample Tray + Dry combustion) No. Aluminum Dry Spl. Spl. Aluminum Combusted Pct. (091605- Interval Tray Dry Wgt. (g) Wgt. Tray + Dry Spl Wgt. Organics 05-) (cm) Wt. (g) *** (g) Spl. Wgt (g) (g) (g) 1 0-1.0 2.963 20.058 17.095 16.918 13.955 18.368 2 1.0-2.0 2.969 20.274 17.305 17.336 14.367 16.978 3 2.0-3.0 2.978 18.225 15.247 15.971 12.993 14.783 4 3.0-4.0 2.973 18.268 15.295 16.091 13.118 14.233 5 4.0-5.0 3.017 15.886 12.869 14.071 11.054 14.104 6 5.0-6.0 3.002 20.950 17.948 18.173 15.171 15.472 7 6.0-7.0 3.013 17.467 14.454 15.604 12.591 12.889 8 7.0-8.0 2.926 20.902 17.976 18.841 15.915 11.465 9 8.0-9.0 2.902 23.451 20.549 21.131 18.229 11.290 10 9.0-10.0 2.971 23.343 20.372 20.952 17.981 11.737 11 10.0-11.0 3.006 24.154 21.148 22.043 19.037 9.982 12 11.0-12.0 2.937 22.283 19.346 19.734 16.797 13.176 13 12.0-13.0 2.939 22.793 19.854 20.637 17.698 10.859 14 13.0-14.0 3.005 27.179 24.174 24.658 21.653 10.429 15 14.0-15.0 2.993 24.871 21.878 22.853 19.860 9.224 16 15.0-16.0 2.905 26.798 23.893 24.541 21.636 9.446 17 16.0-17.0 2.946 29.858 26.912 27.824 24.878 7.558 18 17.0-18.0 2.957 30.072 27.115 27.806 24.849 8.357 19 18.0-19.0 2.940 21.579 18.639 19.635 16.695 10.430 20 19.0-20.0 2.975 26.181 23.206 24.502 21.527 7.235 21 20.0-21.0 2.961 22.654 19.693 20.868 17.907 9.069 22 21.0-22.0 2.928 22.721 19.793 20.100 17.172 13.242 23 22.0-23.0 2.942 21.208 18.266 18.917 15.975 12.542 24 23.0-24.0 2.949 17.814 14.865 16.201 13.252 10.851 25 24.0-25.0 2.945 18.897 15.952 17.111 14.166 11.196

115 Table B.5 continued. Percent Organics Data Results for Core 091605-5

Aluminum (post- Sample Tray + Dry combustion) No. Aluminum Dry Spl. Spl. Aluminum Combusted Pct. (091605- Interval Tray Dry Wgt. (g) Wgt. Tray + Dry Spl Wgt. Organics 05-) (cm) Wt. (g) *** (g) Spl. Wgt (g) (g) (g) 26 25.0-26.0 2.957 14.685 11.728 13.111 10.154 13.421 27 26.0-27.0 2.987 16.825 13.838 14.783 11.796 14.756 28 27.0-28.0 2.941 13.942 11.001 12.305 9.364 14.880 29 28.0-29.0 2.954 15.518 12.564 13.398 10.444 16.874 30 29.0-30.0 2.918 13.619 10.701 11.828 8.910 16.737 31 30.0-31.0 2.923 15.833 12.910 13.799 10.876 15.755 32 31.0-32.0 2.990 19.371 16.381 17.518 14.528 11.312 33 32.0-33.0 2.994 26.309 23.315 24.586 21.592 7.390 34 33.0-34.0 2.945 28.496 25.551 26.854 23.909 6.426 35 34.0-35.0 2.964 20.214 17.250 18.409 15.445 10.464 36 35.0-36.0 2.927 18.041 15.114 16.096 13.169 12.869 37 36.0-37.0 3.001 17.478 14.477 16.242 13.241 8.538 38 37.0-38.0 2.957 23.383 20.426 22.234 19.277 5.625 39 38.0-39.0 2.962 27.845 24.883 27.078 24.116 3.082 40 39.0-40.0 2.982 21.759 18.777 21.198 18.216 2.988 41 40.0-41.0 2.901 29.597 26.696 28.814 25.913 2.933 42 41.0-42.0 2.975 33.581 30.606 32.551 29.576 3.365 43 42.0-43.0 2.963 63.361 60.398 63.346 60.383 0.025 44 43.0-44.0 3.010 43.853 40.843 43.322 40.312 1.300 45 44.0-45.0 2.901 18.079 15.178 16.589 13.688 9.817 46 45.0-46.0 2.917 16.297 13.380 14.821 11.904 11.031 47 49.0-47.0 2.967 15.125 12.158 13.910 10.943 9.993 48 47.0-48.0 2.975 19.202 16.227 17.654 14.679 9.540 49 48.0-49.0 2.928 17.391 14.463 16.212 13.284 8.152 50 49.0-50.0 2.967 17.016 14.049 15.688 12.721 9.453 51 50.0-51.0 2.921 19.113 16.192 18.070 15.149 6.441 52 51.0-52.0 2.942 19.795 16.853 18.858 15.916 5.560 53 52.0-53.0 3.020 20.771 17.751 19.574 16.554 6.743 54 53.0-54.0 2.988 19.901 16.913 18.688 15.700 7.172 55 54.0-55.0 2.943 30.537 27.594 29.428 26.485 4.019 56 55.0-56.0 2.951 12.215 9.264 11.824 8.873 4.221

116 Table B.6. Percent Organics Data Results for Core 091605-6

(post- Sample Crucible Dry combustion) No. Crucible + Dry Spl. Crucible + Pct. (091605- Interval Dry Wt. Spl. Wgt. Dry Spl. Wgt Combusted Organics 06-) (cm) (g) Wgt. (g) (g) (g) Spl Wgt. (g) (g) 1 0-1.0 42.009 99.928 57.919 98.960 56.951 1.671 2 1.0-2.0 41.773 96.551 54.779 96.342 54.570 0.382 3 2.0-3.0 42.851 107.533 64.682 107.249 64.398 0.439 4 3.0-4.0 46.609 119.516 72.907 119.257 72.648 0.355 5 4.0-5.0 40.553 111.526 70.973 111.294 70.741 0.327 6 5.0-6.0 42.665 113.471 70.807 113.231 70.567 0.339 7 6.0-7.0 48.211 110.755 62.544 110.434 62.223 0.513 8 7.0-8.0 56.121 108.873 52.752 108.712 52.591 0.305 9 8.0-9.0 50.633 112.127 61.494 111.901 61.268 0.368 10 9.0-10.0 45.365 101.560 56.195 101.382 56.017 0.317 11 10.0-11.0 53.743 116.924 63.181 116.723 62.980 0.318 12 11.0-12.0 46.602 116.819 70.217 116.598 69.996 0.315 13 12.0-13.0 52.290 114.179 61.889 113.942 61.652 0.383 14 13.0-14.0 49.876 114.922 65.046 114.651 64.775 0.417 15 14.0-15.0 53.965 116.245 62.280 115.982 62.017 0.422 16 15.0-16.0 51.753 124.515 72.762 120.026 68.273 6.169 17 16.0-17.0 54.185 120.177 65.992 119.589 65.404 0.891 18 17.0-18.0 55.295 123.198 67.903 122.842 67.547 0.524 19 18.0-19.0 49.029 117.909 68.880 117.619 68.590 0.421 20 19.0-20.0 48.328 114.732 66.404 114.389 66.061 0.517

117 Table B.6 continued. Percent Organics Data Results for Core 091605-6

(post- Sample Crucible Dry combustion) No. Crucible + Dry Spl. Crucible + Pct. (091605- Interval Dry Wt. Spl. Wgt. Dry Spl. Wgt Combusted Organics 06-) (cm) (g) Wgt. (g) (g) (g) Spl Wgt. (g) (g) 21 20.0-21.0 50.005 117.728 67.723 117.285 67.280 0.654 22 21.0-22.0 44.352 107.037 62.685 106.735 62.383 0.482 23 22.0-23.0 48.497 108.904 60.407 108.634 60.137 0.447 24 23.0-24.0 48.096 112.412 64.316 112.079 63.983 0.518 25 24.0-25.0 46.952 111.258 64.306 110.931 63.979 0.509 26 25.0-26.0 49.051 115.025 65.974 114.731 65.680 0.446 27 26.0-27.0 46.969 108.532 61.563 108.273 61.304 0.421 28 27.0-28.0 51.518 119.728 68.210 119.481 67.963 0.362 29 28.0-29.0 51.223 120.551 69.328 120.235 69.012 0.456 30 29.0-30.0 53.479 124.880 71.401 124.528 71.049 0.493 31 30.0-31.0 48.631 112.520 63.889 112.204 63.573 0.495 32 31.0-32.0 48.584 117.365 68.781 117.082 68.498 0.411 33 32.0-33.0 58.162 119.328 61.166 119.093 60.931 0.384 34 33.0-34.0 60.846 128.560 67.714 128.268 67.422 0.431 35 34.0-35.0 65.836 134.803 68.967 134.563 68.727 0.348 36 35.0-36.0 58.761 121.658 62.897 121.440 62.679 0.347 37 36.0-37.0 25.675 88.659 62.984 88.230 62.555 0.681 38 37.0-38.0 26.684 91.241 64.557 90.899 64.215 0.530 39 38.0-39.0 28.539 99.460 70.921 98.299 69.760 1.637 40 39.0-40.0 25.601 59.878 34.277 59.758 34.157 0.350

118 Table B.7. Percent Organics Data Results for Core 091605-7

(post- Sample Aluminum Dry combustion) No. Aluminum Tray + Spl. Aluminum Combusted Pct. (091605- Interval Tray Dry Dry Spl. Wgt. Tray + Dry Spl Wgt. Organics 07-) (cm) Wt. (g) Wgt. (g) (g) Spl. Wgt (g) (g) (g) 1 0-2.0 2.390 28.856 26.466 25.343 22.953 13.274 2 2.0-4.0 2.414 28.614 26.200 25.186 22.772 13.084 3 4.0-6.0 2.339 31.696 29.357 27.762 25.423 13.401 4 6.0-8.0 2.355 27.506 25.151 23.960 21.605 14.099 5 8.0-10.0 2.350 31.120 28.770 27.232 24.882 13.514 6 10.0-12.0 2.373 36.110 33.737 32.031 29.658 12.091 7 12.0-14.0 2.399 30.826 28.427 26.943 24.544 13.660 8 14.0-16.0 2.396 34.414 32.018 30.602 28.206 11.906 9 16.0-18.0 2.376 39.082 36.706 35.005 32.629 11.107 10 18.0-20.0 2.369 34.108 31.739 30.292 27.923 12.023 11 20.0-22.0 2.368 34.285 31.917 30.070 27.702 13.206 12 22.0-24.0 2.343 30.830 28.487 27.503 25.160 11.679 13 24.0-26.0 2.407 26.904 24.497 24.235 21.828 10.895 14 26.0-28.0 2.368 31.758 29.390 28.277 25.909 11.844 15 28.0-30.0 2.389 28.496 26.107 25.076 22.687 13.100 16 30.0-32.0 2.388 28.068 25.680 24.684 22.296 13.178 17 32.0-34.0 2.402 26.153 23.751 22.712 20.310 14.488 18 34.0-36.0 2.365 27.067 24.702 23.149 20.784 15.861 19 36.0-38.0 2.388 40.073 37.685 36.195 33.807 10.291 20 38.0-40.0 2.338 36.997 34.659 34.021 31.683 8.587 21 40.0-42.0 2.342 44.012 41.670 40.841 38.499 7.610 22 42.0-44.0 2.329 39.511 37.182 36.825 34.496 7.224 23 44.0-46.0 2.365 33.841 31.476 30.009 27.644 12.174 24 46.0-48.0 2.323 38.713 36.390 34.782 32.459 10.802 25 48.0-49.0 2.388 22.109 19.721 20.368 17.980 8.828

119 Table B.7 continued. Percent Organics Data Results for Core 091605-7

(post- Sample Aluminum Dry combustion) No. Aluminum Tray + Spl. Aluminum Combusted Pct. (091605- Interval Tray Dry Dry Spl. Wgt. Tray + Dry Spl Wgt. Organics 07-) (cm) Wt. (g) Wgt. (g) (g) Spl. Wgt (g) (g) (g) 26 49.0-50.0 2.371 24.201 21.830 22.278 19.907 8.809 27 50.0-51.0 2.397 28.514 26.117 26.402 24.005 8.087 28 51.0-52.0 2.393 30.721 28.328 28.897 26.504 6.439 29 52.0-53.0 2.373 41.496 39.123 39.811 37.438 4.307 30 53.0-54.0 2.359 34.848 32.489 32.464 30.105 7.338 31 54.0-55.0 2.368 24.399 22.031 23.167 20.799 5.592 32 55.0-56.0 2.338 29.077 26.739 27.382 25.044 6.339 33 56.0-57.0 2.361 28.371 26.010 26.972 24.611 5.379 34 57.0-58.0 2.348 43.506 41.158 42.322 39.974 2.877 35 58.0-59.0 2.444 42.554 40.110 41.459 39.015 2.730 36 59.0-60.0 2.359 42.057 39.698 40.760 38.401 3.267 37 60.0-61.0 2.355 30.506 28.151 29.065 26.710 5.119 38 61.0-62.0 2.373 22.418 20.045 20.344 17.971 10.347 39 62.0-63.0 2.424 23.774 21.350 22.007 19.583 8.276 40 63.0-64.0 2.368 25.401 23.033 23.383 21.015 8.761 41 64.0-65.0 2.317 17.887 15.570 16.090 13.773 11.541 42 65.0-66.0 2.448 21.694 19.246 19.449 17.001 11.665 43 66.0-67.0 2.400 18.149 15.749 16.247 13.847 12.077 44 67.0-68.0 2.361 19.837 17.476 17.819 15.458 11.547 45 68.0-69.0 2.377 22.195 19.818 20.340 17.963 9.360 46 69.0-70.0 2.355 25.955 23.600 24.095 21.740 7.881 47 70.0-71.0 2.401 23.969 21.568 22.350 19.949 7.506 48 71.0-72.0 2.423 25.543 23.120 23.660 21.237 8.144 49 72.0-73.0 2.368 46.560 44.192 44.091 41.723 5.587

120 Table B.8. Percent Organics Data Results for Core 020507-1

(post- Sample Aluminum Dry combustion) No. Aluminum Tray + Spl. Aluminum Combusted Pct. (020507- Interval Tray Dry Dry Spl. Wgt. Tray + Dry Spl Wgt. Organics 01-) (cm) Wt. (g) Wgt. (g) (g) Spl. Wgt (g) (g) (g) 1 0-1.0 2.331 11.365 9.034 11.074 8.743 3.221 2 1.0-2.0 2.363 14.642 12.279 14.469 12.106 1.409 3 2.0-3.0 2.386 16.617 14.231 16.516 14.130 0.710 4 3.0-4.0 2.328 21.479 19.151 21.269 18.941 1.097 5 4.0-5.0 2.335 28.863 26.528 28.430 26.095 1.632 6 5.0-6.0 2.321 25.726 23.405 25.355 23.034 1.585 7 6.0-7.0 2.295 31.956 29.661 31.525 29.230 1.453 8 7.0-8.0 2.378 35.242 32.864 34.780 32.402 1.406 9 8.0-9.0 2.367 27.846 25.479 27.452 25.085 1.546 10 9.0-10.0 2.415 23.350 20.935 23.068 20.653 1.347 11 10.0-11.0 2.373 27.174 24.801 26.945 24.572 0.923 12 11.0-12.0 2.392 24.155 21.763 24.010 21.618 0.666 13 12.0-13.0 2.331 31.422 29.091 31.282 28.951 0.481 14 13.0-14.0 2.408 25.346 22.938 25.275 22.867 0.310 15 14.0-15.0 2.365 24.228 21.863 24.120 21.755 0.494 16 15.0-16.0 2.415 34.060 31.645 33.918 31.503 0.449 17 16.0-17.0 2.383 24.035 21.652 23.937 21.554 0.453 18 17.0-18.0 2.369 24.914 22.545 24.799 22.430 0.510 19 18.0-19.0 2.354 31.959 29.605 31.773 29.419 0.628 20 19.0-20.0 2.305 22.729 20.424 22.635 20.330 0.460 21 20.0-21.0 2.379 23.886 21.507 23.791 21.412 0.442 22 21.0-22.0 2.369 28.383 26.014 28.285 25.916 0.377 23 22.0-23.0 2.335 27.707 25.372 27.580 25.245 0.501 24 23.0-24.0 2.355 25.497 23.142 25.428 23.073 0.298 25 24.0-25.0 2.389 23.053 20.664 22.985 20.596 0.329

121 Table B.8 continued. Percent Organics Data Results for Core 020507-1

(post- Sample Aluminum Dry combustion) No. Aluminum Tray + Spl. Aluminum Combusted Pct. (020507- Interval Tray Dry Dry Spl. Wgt. Tray + Dry Spl Wgt. Organics 01-) (cm) Wt. (g) Wgt. (g) (g) Spl. Wgt (g) (g) (g) 26 25.0-26.0 2.356 23.258 20.902 23.117 20.761 0.675 27 26.0-27.0 2.401 25.453 23.052 25.282 22.881 0.742 28 27.0-28.0 2.352 13.485 11.133 13.432 11.080 0.476 29 28.0-29.0 2.394 23.522 21.128 23.403 21.009 0.563 30 29.0-30.0 2.351 23.520 21.169 23.457 21.106 0.298 31 30.0-31.0 2.347 25.839 23.492 25.789 23.442 0.213 32 31.0-32.0 2.339 25.527 23.188 25.481 23.142 0.198 33 32.0-33.0 2.338 29.470 27.132 29.409 27.071 0.225 34 33.0-34.0 2.393 25.993 23.600 25.946 23.553 0.199 35 34.0-35.0 2.410 26.440 24.030 26.391 23.981 0.204 36 35.0-36.0 2.333 30.540 28.207 30.470 28.137 0.248 37 36.0-37.0 2.324 26.361 24.037 26.320 23.996 0.171 38 37.0-38.0 2.343 20.556 18.213 20.532 18.189 0.132 39 38.0-39.0 2.358 29.099 26.741 29.067 26.709 0.120 40 39.0-40.0 2.377 31.410 29.033 31.379 29.002 0.107 41 40.0-41.0 2.371 30.325 27.954 30.293 27.922 0.114 42 41.0-42.0 2.411 25.597 23.186 25.565 23.154 0.138 43 42.0-43.0 2.400 31.675 29.275 31.644 29.244 0.106 44 43.0-44.0 2.340 31.060 28.720 31.027 28.687 0.115 45 44.0-45.0 2.372 29.679 27.307 29.648 27.276 0.114 46 45.0-46.0 2.406 33.529 31.123 33.491 31.085 0.122 47 49.0-47.0 2.370 39.678 37.308 39.643 37.273 0.094 48 47.0-48.0 2.414 36.711 34.297 36.676 34.262 0.102 49 48.0-49.0 2.352 28.831 26.479 28.803 26.451 0.106 50 49.0-50.0 2.374 29.678 27.304 29.645 27.271 0.121

Note: Yellow highlight indicates dated horizon.

122 Table B.16 continued. Percent Organics Data Results for Core 020507-1

(post- Sample Aluminum Dry combustion) No. Aluminum Tray + Spl. Aluminum Combusted Pct. (020507- Interval Tray Dry Dry Spl. Wgt. Tray + Dry Spl Wgt. Organics 01-) (cm) Wt. (g) Wgt. (g) (g) Spl. Wgt (g) (g) (g) 51 50.0-52.0 2.374 63.711 61.337 63.632 61.258 0.129 52 52.0-54.0 2.358 60.838 58.480 60.759 58.401 0.135 53 54.0-56.0 2.369 58.331 55.962 58.272 55.903 0.105 54 56.0-58.0 2.374 62.092 59.718 62.029 59.655 0.105 55 58.0-60.0 2.406 64.407 62.001 64.335 61.929 0.116 56 60.0-62.0 2.381 53.736 51.355 53.648 51.267 0.171 57 62.0-64.0 2.345 72.409 70.064 72.320 69.975 0.127 58 64.0-66.0 2.406 65.050 62.644 65.000 62.594 0.080 59 66.0-68.0 2.348 66.901 64.553 66.843 64.495 0.090 60 68.0-70.0 2.392 72.535 70.143 72.475 70.083 0.086 61 70.0-72.0 2.428 81.736 79.308 81.672 79.244 0.081 62 72.0-74.0 2.402 56.840 54.438 56.803 54.401 0.068 63 74.0-76.0 2.335 73.623 71.288 73.563 71.228 0.084 64 76.0-78.0 2.338 67.599 65.261 67.533 65.195 0.101 65 78.0-80.0 2.319 73.653 71.334 73.598 71.279 0.077 66 80.0-82.0 2.377 71.610 69.233 71.577 69.200 0.048 67 82.0-84.0 2.391 80.370 77.979 80.307 77.916 0.081 68 84.0-86.0 2.389 76.307 73.918 76.258 73.869 0.066 69 86.0-88.0 2.374 74.961 72.587 74.916 72.542 0.062 70 88.0-90.0 2.426 72.879 70.453 72.815 70.389 0.091 71 90.0-92.0 2.382 84.040 81.658 84.005 81.623 0.043 72 92.0-94.0 2.391 76.825 74.434 76.787 74.396 0.051 73 94.0-96.0 2.386 75.063 72.677 75.029 72.643 0.047 74 96.0-98.0 2.401 83.108 80.707 83.066 80.665 0.052 75 98.0-100.0 2.359 77.141 74.782 77.095 74.736 0.062

Note: Yellow highlight indicates dated horizon.

123 Table B.8 continued. Percent Organics Data Results for Core 020507-1

(post- Sample Aluminum Dry combustion) No. Aluminum Tray + Spl. Aluminum Combusted Pct. (020507- Interval Tray Dry Dry Spl. Wgt. Tray + Dry Spl Wgt. Organics 01-) (cm) Wt. (g) Wgt. (g) (g) Spl. Wgt (g) (g) (g) 76 100.0-102.0 2.378 80.287 77.909 80.222 77.844 0.083 77 102.0-104.0 2.340 78.878 76.538 78.797 76.457 0.106 78 104.0-106.0 2.328 88.902 86.574 88.872 86.544 0.035 79 106.0-108.0 2.322 76.409 74.087 76.385 74.063 0.032 80 108.0-110.0 2.368 77.052 74.684 77.021 74.653 0.042 81 110.0-112.0 2.321 77.364 75.043 77.324 75.003 0.053 82 112.0-114.0 2.376 77.857 75.481 77.821 75.445 0.048 83 114.0-116.0 2.360 89.782 87.422 89.755 87.395 0.031 84 116.0-118.0 2.360 69.156 66.796 69.138 66.778 0.027 85 118.0-120.0 2.363 78.968 76.605 78.946 76.583 0.029 86 120.0-122.0 2.383 78.671 76.288 78.644 76.261 0.035 87 122.0-124.0 2.394 68.896 66.502 68.875 66.481 0.032 88 124.0-126.0 2.346 71.077 68.731 71.024 68.678 0.077 89 126.0-128.0 2.364 69.706 67.342 69.577 67.213 0.192 90 128.0-130.0 2.354 68.291 65.937 67.904 65.550 0.587 91 130.0-132.0 2.323 58.287 55.964 57.778 55.455 0.910 92 132.0-134.0 2.346 56.213 53.867 56.157 53.811 0.104 93 134.0-136.0 2.346 50.799 48.429 50.731 48.361 0.140 94 136.0-139.0 2.347 62.442 60.095 62.405 60.058 0.062 95 139.0-141.0 2.420 76.022 73.602 75.875 73.455 0.200 96 141.0-143.0 2.403 91.303 88.900 91.090 88.687 0.240 97 143.0-145.0 2.378 84.799 82.421 84.622 82.244 0.215 98 145.0-147.0 2.370 98.733 96.363 98.485 96.115 0.257 99 147.0-149.0 2.361 83.850 81.489 83.663 81.302 0.229 100 149.0-151.0 2.365 84.028 81.663 83.858 81.493 0.208

124 Table B.8 continued. Percent Organics Data Results for Core 020507-1

(post- Sample Aluminum Dry combustion) No. Aluminum Tray + Spl. Aluminum Combusted Pct. (020507- Interval Tray Dry Dry Spl. Wgt. Tray + Dry Spl Wgt. Organics 01-) (cm) Wt. (g) Wgt. (g) (g) Spl. Wgt (g) (g) (g) 101 151.0-153.0 2.385 89.880 87.495 89.688 87.303 0.219 102 153.0-155.0 2.348 79.385 77.037 79.219 76.871 0.215 103 155.0-157.0 2.363 89.393 87.030 89.214 86.851 0.206 104 157.0-159.0 2.355 80.864 78.509 80.679 78.324 0.236 105 159.0-161.0 2.370 88.141 85.771 87.986 85.616 0.181 106 161.0-163.0 2.411 46.562 44.151 46.477 44.066 0.193 107 163.0-165.0 2.459 44.756 42.297 44.694 42.235 0.147 108 165.0-167.0 2.387 42.714 40.327 42.644 40.257 0.174 109 167.0-169.0 2.329 27.695 25.366 27.646 25.317 0.193 110 169.0-171.0 2.340 21.187 18.847 21.140 18.800 0.249 111 171.0-173.0 2.346 22.358 20.012 22.304 19.958 0.270 112 173.0-175.0 2.334 25.186 22.852 25.131 22.797 0.241 113 175.0-177.0 2.370 30.532 28.162 30.468 28.098 0.227 114 177.0-179.0 2.381 35.671 33.290 35.593 33.212 0.234 115 179.0-181.0 2.355 36.505 34.150 36.412 34.057 0.272 116 181.0-183.0 2.381 55.071 52.690 54.936 52.555 0.256 117 183.0-185.0 2.398 63.171 60.773 63.035 60.637 0.224 118 185.0-187.0 2.372 61.516 59.144 61.379 59.007 0.232 119 187.0-189.0 2.354 75.436 73.082 75.249 72.895 0.256 120 189.0-191.0 2.369 69.777 67.408 69.581 67.212 0.291 121 191.0-193.0 2.375 59.863 57.488 59.685 57.310 0.310 122 193.0-195.0 2.393 81.526 79.133 81.266 78.873 0.329 123 195.0-197.0 2.416 77.983 75.567 77.764 75.348 0.290 124 197.0-201.0 2.401 71.615 69.214 71.424 69.023 0.276 125 201.0-203.0 2.384 81.173 78.789 80.983 78.599 0.241

Note: Yellow highlight indicates dated horizon.

125 Table B.8 continued. Percent Organics Data Results for Core 020507-1

(post- Sample Aluminum Dry combustion) No. Aluminum Tray + Spl. Aluminum Combusted Pct. (020507- Interval Tray Dry Dry Spl. Wgt. Tray + Dry Spl Wgt. Organics 01-) (cm) Wt. (g) Wgt. (g) (g) Spl. Wgt (g) (g) (g) 126 205.0-207.0 2.357 64.872 62.515 64.725 62.368 0.235 127 209.0-211.0 2.380 61.960 59.580 61.822 59.442 0.232 128 213.0-215.0 2.423 62.566 60.143 62.501 60.078 0.108 129 217.0-219.0 2.340 74.150 71.810 74.094 71.754 0.078 130 221.0-223.0 2.394 61.039 58.645 60.921 58.527 0.201 131 225.0-227.0 2.337 65.597 63.260 65.487 63.150 0.174 132 229.0-231.0 2.375 74.620 72.245 74.476 72.101 0.199 133 233.0-235.0 2.384 60.369 57.985 60.228 57.844 0.243 134 237.0-239.0 2.349 60.583 58.234 60.445 58.096 0.237 135 241.0-243.0 2.330 61.936 59.606 61.831 59.501 0.176 136 245.0-247.0 2.336 61.708 59.372 61.566 59.230 0.239 137 249.0-251.0 2.317 48.926 46.609 48.859 46.542 0.144 138 253.0-255.0 2.413 26.191 23.778 26.147 23.734 0.185 139 257.0-259.0 2.370 35.137 32.767 35.054 32.684 0.253 140 261.0-263.0 2.383 59.768 57.385 59.653 57.270 0.200 141 265.0-267.0 2.355 56.177 53.822 56.076 53.721 0.188 142 269.0-271.0 2.361 51.242 48.881 51.157 48.796 0.174 143 273.0-275.0 2.415 75.233 72.818 75.087 72.672 0.200 144 277.0-279.0 2.319 74.405 72.086 74.282 71.963 0.171 145 281.0-283.0 2.398 65.927 63.529 65.766 63.368 0.253 146 285.0-287.0 2.455 65.506 63.051 65.313 62.858 0.306 147 289.0-291.0 2.383 57.679 55.296 57.615 55.232 0.116 148 293.0-295.0 2.395 78.518 76.123 78.375 75.980 0.188 149 297.0-299.0 2.362 91.284 88.922 91.081 88.719 0.228 150 301.0-303.0 2.357 84.143 81.786 83.997 81.640 0.179 151 305.0-307.0 2.367 71.502 69.135 71.388 69.021 0.165 152 309.0-311.0 2.372 96.958 94.586 96.835 94.463 0.130 153 313.0-315.0 2.367 55.155 52.788 55.104 52.737 0.097 154 317.0-319.0 2.359 66.977 64.618 66.926 64.567 0.079

Note: Yellow highlight indicates dated horizon.

126

APPENDIX C

INDIVIDUAL SETTLING TUBE ANALYSIS RESULTS

127 Table C.1. GRANPLOT analysis of Core 091605-1-4 (depth of 4 cm)

Sample I.D.: 091605-1-4 - Total Sample Sample I.D.: 091605-1-4 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 6/7/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.481 Dry Sieved Fines Wt.: 0.090 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.571 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.0431 φ 0.1213 mm 0.1944 mm -0.75 -0.875 0.006 1.0508 1.0508Standard Deviation: 1.3000 phi-units MV 0.2568 mm -0.50 -0.625 0.000 0.0000 1.0508Skewness: -0.5545 NU MV 3.6212 NU -0.25 -0.375 0.000 0.0000 1.0508Kurtosis: 3.2658 NU MV 19.7806 NU 0.00 -0.125 0.002 0.3503 1.40115th Moment Measure: -4.472 NU MV 3.92 NU 0.25 0.125 0.001 0.1751 1.57626th Moment Measure: 15.937 NU MV 12.31 NU 0.50 0.375 0.034 5.9545 7.5306Median: 3.0765 φ 0.1185 mm 0.1188 mm 0.75 0.625 0.006 1.0508 8.5814Relative Dispersion: MV MV 1.3214 NU 1.00 0.875 0.001 0.1751 8.7566 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.009 1.5762 10.3327 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.016 2.8021 13.1349 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.009 1.5762 14.7110 2.00 1.875 0.021 3.6778 18.3888 18 2.25 2.125 0.015 2.6270 21.0158 2.50 2.375 0.029 5.0788 26.0946 2.75 2.625 0.033 5.7793 31.8739 3.00 2.875 0.064 11.2084 43.0823 16 3.25 3.125 0.049 8.5814 51.6637 3.50 3.375 0.080 14.0105 65.6743 3.75 3.625 0.063 11.0333 76.7075 14 4.00 3.875 0.043 7.5306 84.2382 6.00 5 0.090 15.7618 100.0000 6.00 5 0.000 0.0000 100.0000 12 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

128 Table C.2. GRANPLOT analysis of Core 091605-1-7 (depth of 7 cm)

Sample I.D.: 091605-1-7 - Total Sample Sample I.D.: 091605-1-7 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 6/7/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.374 Dry Sieved Fines Wt.: 0.043 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.417 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 2.7812 φ 0.1455 mm 0.2813 mm -0.75 -0.875 0.029 6.9544 6.9544Standard Deviation: 1.4231 phi-units MV 0.4693 mm -0.50 -0.625 0.007 1.6787 8.6331Skewness: -1.0425 NU MV 2.7989 NU -0.25 -0.375 0.000 0.0000 8.6331Kurtosis: 4.3050 NU MV 9.2303 NU 0.00 -0.125 0.000 0.0000 8.63315th Moment Measure: -8.206 NU MV 4.51 NU 0.25 0.125 0.000 0.0000 8.63316th Moment Measure: 24.737 NU MV 10.08 NU 0.50 0.375 0.000 0.0000 8.6331Median: 2.8566 φ 0.1381 mm 0.1382 mm 0.75 0.625 0.000 0.0000 8.6331Relative Dispersion: MV MV 1.6685 NU 1.00 0.875 0.001 0.2398 8.8729 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.005 1.1990 10.0719 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.013 3.1175 13.1894 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.008 1.9185 15.1079 2.00 1.875 0.021 5.0360 20.1439 16 2.25 2.125 0.010 2.3981 22.5420 2.50 2.375 0.028 6.7146 29.2566 2.75 2.625 0.030 7.1942 36.4508 3.00 2.875 0.061 14.6283 51.0791 14 3.25 3.125 0.039 9.3525 60.4317 3.50 3.375 0.058 13.9089 74.3405 3.75 3.625 0.039 9.3525 83.6930 4.00 3.875 0.025 5.9952 89.6882 12 6.00 5 0.043 10.3118 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

129 Table C.3. GRANPLOT analysis of Core 091605-1-8 (depth of 8 cm)

Sample I.D.: 091605-1-8 - Total Sample Sample I.D.: 091605-1-8 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 6/7/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.547 Dry Sieved Fines Wt.: 0.129 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.676 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.2047 φ 0.1085 mm 0.2020 mm -0.75 -0.875 0.017 2.5148 2.5148Standard Deviation: 1.3637 phi-units MV 0.3565 mm -0.50 -0.625 0.011 1.6272 4.1420Skewness: -1.0629 NU MV 3.5786 NU -0.25 -0.375 0.000 0.0000 4.1420Kurtosis: 4.5786 NU MV 15.1246 NU 0.00 -0.125 0.013 1.9231 6.06515th Moment Measure: -10.252 NU MV 4.91 NU 0.25 0.125 0.002 0.2959 6.36096th Moment Measure: 31.926 NU MV 12.79 NU 0.50 0.375 0.001 0.1479 6.5089Median: 3.2150 φ 0.1077 mm 0.1081 mm 0.75 0.625 0.001 0.1479 6.6568Relative Dispersion: MV MV 1.7650 NU 1.00 0.875 0.000 0.0000 6.6568 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.004 0.5917 7.2485 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.015 2.2189 9.4675 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.008 1.1834 10.6509 2.00 1.875 0.020 2.9586 13.6095 25 2.25 2.125 0.010 1.4793 15.0888 2.50 2.375 0.026 3.8462 18.9349 2.75 2.625 0.037 5.4734 24.4083 3.00 2.875 0.077 11.3905 35.7988 3.25 3.125 0.060 8.8757 44.6746 3.50 3.375 0.100 14.7929 59.4675 20 3.75 3.625 0.082 12.1302 71.5976 4.00 3.875 0.063 9.3195 80.9172 6.00 5 0.129 19.0828 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 15 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 5 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

130 Table C.4. GRANPLOT analysis of Core 091605-1-11 (depth of 11 cm)

Sample I.D.: 091605-1-11 - Total Sample Sample I.D.: 091605-1-11 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/18/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.206 Dry Sieved Fines Wt.: 0.038 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.244 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.1117 φ 0.1157 mm 0.1782 mm -0.75 -0.875 0.001 0.4098 0.4098Standard Deviation: 1.2037 phi-units MV 0.2619 mm -0.50 -0.625 0.006 2.4590 2.8689Skewness: -0.6038 NU MV 4.5368 NU -0.25 -0.375 0.000 0.0000 2.8689Kurtosis: 4.2254 NU MV 24.7507 NU 0.00 -0.125 0.000 0.0000 2.86895th Moment Measure: -7.970 NU MV 4.77 NU 0.25 0.125 0.000 0.0000 2.86896th Moment Measure: 30.905 NU MV 13.52 NU 0.50 0.375 0.000 0.0000 2.8689Median: 3.0298 φ 0.1224 mm 0.1229 mm 0.75 0.625 0.001 0.4098 3.2787Relative Dispersion: MV MV 1.4698 NU 1.00 0.875 0.000 0.0000 3.2787 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.005 2.0492 5.3279 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.008 3.2787 8.6066 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.005 2.0492 10.6557 2.00 1.875 0.011 4.5082 15.1639 18 2.25 2.125 0.007 2.8689 18.0328 2.50 2.375 0.014 5.7377 23.7705 2.75 2.625 0.019 7.7869 31.5574 3.00 2.875 0.032 13.1148 44.6721 16 3.25 3.125 0.021 8.6066 53.2787 3.50 3.375 0.031 12.7049 65.9836 3.75 3.625 0.027 11.0656 77.0492 14 4.00 3.875 0.018 7.3770 84.4262 6.00 5 0.038 15.5738 100.0000 6.00 5 0.000 0.0000 100.0000 12 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

131 Table C.5. GRANPLOT analysis of Core 091605-1-16 (depth of 16 cm)

Sample I.D.: 091605-1-16 - Total Sample Sample I.D.: 091605-1-16 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/18/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.386 Dry Sieved Fines Wt.: 0.036 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.422 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 2.8027 φ 0.1433 mm 0.1986 mm -0.75 -0.875 0.001 0.2370 0.2370Standard Deviation: 1.1166 phi-units MV 0.2113 mm -0.50 -0.625 0.003 0.7109 0.9479Skewness: -0.2531 NU MV 3.8893 NU -0.25 -0.375 0.000 0.0000 0.9479Kurtosis: 3.5377 NU MV 23.5535 NU 0.00 -0.125 0.003 0.7109 1.65885th Moment Measure: -2.782 NU MV 3.12 NU 0.25 0.125 0.001 0.2370 1.89576th Moment Measure: 19.248 NU MV 9.68 NU 0.50 0.375 0.001 0.2370 2.1327Median: 2.7672 φ 0.1469 mm 0.1474 mm 0.75 0.625 0.009 2.1327 4.2654Relative Dispersion: MV MV 1.0641 NU 1.00 0.875 0.009 2.1327 6.3981 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.009 2.1327 8.5308 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.019 4.5024 13.0332 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.015 3.5545 16.5877 2.00 1.875 0.026 6.1611 22.7488 16 2.25 2.125 0.012 2.8436 25.5924 2.50 2.375 0.032 7.5829 33.1754 2.75 2.625 0.038 9.0047 42.1801 3.00 2.875 0.058 13.7441 55.9242 14 3.25 3.125 0.043 10.1896 66.1137 3.50 3.375 0.051 12.0853 78.1991 3.75 3.625 0.036 8.5308 86.7299 4.00 3.875 0.020 4.7393 91.4692 12 6.00 5 0.036 8.5308 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

132 Table C.6. GRANPLOT analysis of Core 091605-1-23 (depth of 23 cm)

Sample I.D.: 091605-1-23 - Total Sample Sample I.D.: 091605-1-23 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/18/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.319 Dry Sieved Fines Wt.: 0.026 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.345 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.0272 φ 0.1227 mm 0.1494 mm -0.75 -0.875 0.000 0.0000 0.0000Standard Deviation: 0.8869 phi-units MV 0.1213 mm -0.50 -0.625 0.001 0.2899 0.2899Skewness: 0.0000 NU MV 5.3753 NU -0.25 -0.375 0.000 0.0000 0.2899Kurtosis: 4.1450 NU MV 53.8523 NU 0.00 -0.125 0.000 0.0000 0.28995th Moment Measure: -2.108 NU MV 3.02 NU 0.25 0.125 0.000 0.0000 0.28996th Moment Measure: 29.592 NU MV 11.94 NU 0.50 0.375 0.000 0.0000 0.2899Median: 2.8689 φ 0.1369 mm 0.1369 mm 0.75 0.625 0.002 0.5797 0.8696Relative Dispersion: MV MV 0.8117 NU 1.00 0.875 0.002 0.5797 1.4493 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.004 1.1594 2.6087 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.009 2.6087 5.2174 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.007 2.0290 7.2464 2.00 1.875 0.014 4.0580 11.3043 20 2.25 2.125 0.013 3.7681 15.0725 2.50 2.375 0.025 7.2464 22.3188 2.75 2.625 0.036 10.4348 32.7536 18 3.00 2.875 0.061 17.6812 50.4348 3.25 3.125 0.038 11.0145 61.4493 3.50 3.375 0.050 14.4928 75.9420 16 3.75 3.625 0.031 8.9855 84.9275 4.00 3.875 0.026 7.5362 92.4638 6.00 5 0.026 7.5362 100.0000 14 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 12 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

133 Table C.7. GRANPLOT analysis of Core 091605-1-26 (depth of 26 cm)

Sample I.D.: 091605-1-26 - Total Sample Sample I.D.: 091605-1-26 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/18/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.484 Dry Sieved Fines Wt.: 0.035 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.519 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 2.9374 φ 0.1305 mm 0.1614 mm -0.75 -0.875 0.000 0.0000 0.0000Standard Deviation: 0.9076 phi-units MV 0.1365 mm -0.50 -0.625 0.001 0.1927 0.1927Skewness: -0.1240 NU MV 4.2635 NU -0.25 -0.375 0.000 0.0000 0.1927Kurtosis: 4.3467 NU MV 31.4967 NU 0.00 -0.125 0.001 0.1927 0.38545th Moment Measure: -2.521 NU MV 1.82 NU 0.25 0.125 0.002 0.3854 0.77076th Moment Measure: 29.307 NU MV 6.13 NU 0.50 0.375 0.001 0.1927 0.9634Median: 2.8211 φ 0.1415 mm 0.1419 mm 0.75 0.625 0.006 1.1561 2.1195Relative Dispersion: MV MV 0.8456 NU 1.00 0.875 0.003 0.5780 2.6975 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.004 0.7707 3.4682 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.018 3.4682 6.9364 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.010 1.9268 8.8632 2.00 1.875 0.024 4.6243 13.4875 20 2.25 2.125 0.015 2.8902 16.3776 2.50 2.375 0.042 8.0925 24.4701 2.75 2.625 0.058 11.1753 35.6455 18 3.00 2.875 0.095 18.3044 53.9499 3.25 3.125 0.066 12.7168 66.6667 3.50 3.375 0.069 13.2948 79.9615 16 3.75 3.625 0.043 8.2852 88.2466 4.00 3.875 0.026 5.0096 93.2563 6.00 5 0.035 6.7437 100.0000 14 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 12 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

134 Table C.8. GRANPLOT analysis of Core 091605-2-5 (depth of 5 cm)

Sample I.D.: 091605-2-5 - Total Sample Sample I.D.: 091605-2-5 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/25/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.611 Dry Sieved Fines Wt.: 0.075 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.686 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 1.2210 φ 0.4290 mm 0.7257 mm -0.75 -0.875 0.000 0.0000 0.0000Standard Deviation: 1.8819 phi-units MV 0.4656 mm -0.50 -0.625 0.000 0.0000 0.0000Skewness: 0.9496 NU MV -0.5709 NU -0.25 -0.375 0.000 0.0000 0.0000Kurtosis: 2.2852 NU MV 1.4145 NU 0.00 -0.125 0.412 60.0583 60.05835th Moment Measure: 3.894 NU MV -0.22 NU 0.25 0.125 0.000 0.0000 60.05836th Moment Measure: 7.807 NU MV 0.25 NU 0.50 0.375 0.021 3.0612 63.1195Median: -0.1669 φ 1.1226 mm 1.1251 mm 0.75 0.625 0.000 0.0000 63.1195Relative Dispersion: MV MV 0.6417 NU 1.00 0.875 0.002 0.2915 63.4111 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.012 1.7493 65.1603 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.004 0.5831 65.7434 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.007 1.0204 66.7638 2.00 1.875 0.011 1.6035 68.3673 70 2.25 2.125 0.007 1.0204 69.3878 2.50 2.375 0.010 1.4577 70.8455 2.75 2.625 0.014 2.0408 72.8863 3.00 2.875 0.022 3.2070 76.0933 60 3.25 3.125 0.015 2.1866 78.2799 3.50 3.375 0.025 3.6443 81.9242 3.75 3.625 0.025 3.6443 85.5685 4.00 3.875 0.024 3.4985 89.0671 6.00 5 0.075 10.9329 100.0000 50 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 40 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 30

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 20 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

135 Table C.9. GRANPLOT analysis of Core 091605-2-9 (depth of 9 cm)

Sample I.D.: 091605-2-9 - Total Sample Sample I.D.: 091605-2-9 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/25/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.136 Dry Sieved Fines Wt.: 0.048 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.184 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.0693 φ 0.1191 mm 0.2698 mm -0.75 -0.875 0.007 3.8043 3.8043Standard Deviation: 1.6661 phi-units MV 0.4588 mm -0.50 -0.625 0.010 5.4348 9.2391Skewness: -0.8046 NU MV 2.6115 NU -0.25 -0.375 0.000 0.0000 9.2391Kurtosis: 3.1110 NU MV 8.3863 NU 0.00 -0.125 0.000 0.0000 9.23915th Moment Measure: -5.327 NU MV 3.77 NU 0.25 0.125 0.000 0.0000 9.23916th Moment Measure: 13.936 NU MV 8.16 NU 0.50 0.375 0.000 0.0000 9.2391Median: 3.1583 φ 0.112 mm 0.1122 mm 0.75 0.625 0.000 0.0000 9.2391Relative Dispersion: MV MV 1.7003 NU 1.00 0.875 0.002 1.0870 10.3261 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.001 0.5435 10.8696 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.010 5.4348 16.3043 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.004 2.1739 18.4783 2.00 1.875 0.005 2.7174 21.1957 30 2.25 2.125 0.007 3.8043 25.0000 2.50 2.375 0.009 4.8913 29.8913 2.75 2.625 0.008 4.3478 34.2391 3.00 2.875 0.015 8.1522 42.3913 3.25 3.125 0.012 6.5217 48.9130 25 3.50 3.375 0.015 8.1522 57.0652 3.75 3.625 0.016 8.6957 65.7609 4.00 3.875 0.015 8.1522 73.9130 6.00 5 0.048 26.0870 100.0000 6.00 5 0.000 0.0000 100.0000 20 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 15 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 5 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

136 Table C.10. GRANPLOT analysis of Core 091605-2-13 (depth of 13 cm)

Sample I.D.: 091605-2-13 - Total Sample Sample I.D.: 091605-2-13 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/25/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.385 Dry Sieved Fines Wt.: 0.084 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.469 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 1.7870 φ 0.2898 mm 0.7439 mm -0.75 -0.875 0.140 29.8507 29.8507Standard Deviation: 2.2775 phi-units MV 0.7663 mm -0.50 -0.625 0.000 0.0000 29.8507Skewness: 0.0837 NU MV 0.5229 NU -0.25 -0.375 0.000 0.0000 29.8507Kurtosis: 1.3990 NU MV 1.5179 NU 0.00 -0.125 0.000 0.0000 29.85075th Moment Measure: 0.395 NU MV 0.76 NU 0.25 0.125 0.057 12.1535 42.00436th Moment Measure: 2.256 NU MV 1.22 NU 0.50 0.375 0.020 4.2644 46.2687Median: 2.1944 φ 0.2185 mm 0.2191 mm 0.75 0.625 0.000 0.0000 46.2687Relative Dispersion: MV MV 1.0301 NU 1.00 0.875 0.005 1.0661 47.3348 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.000 0.0000 47.3348 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.001 0.2132 47.5480 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.000 0.0000 47.5480 2.00 1.875 0.001 0.2132 47.7612 35 2.25 2.125 0.008 1.7058 49.4670 2.50 2.375 0.009 1.9190 51.3859 2.75 2.625 0.014 2.9851 54.3710 3.00 2.875 0.024 5.1173 59.4883 30 3.25 3.125 0.018 3.8380 63.3262 3.50 3.375 0.031 6.6098 69.9360 3.75 3.625 0.030 6.3966 76.3326 4.00 3.875 0.027 5.7569 82.0896 6.00 5 0.084 17.9104 100.0000 25 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 20 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 15

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 5 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

137 Table C.11. GRANPLOT analysis of Core 091605-2-18 (depth of 18 cm)

Sample I.D.: 091605-2-18 - Total Sample Sample I.D.: 091605-2-18 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/25/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.858 Dry Sieved Fines Wt.: 0.138 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.996 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 2.7530 φ 0.1483 mm 0.3212 mm -0.75 -0.875 0.000 0.0000 0.0000Standard Deviation: 1.6295 phi-units MV 0.4882 mm -0.50 -0.625 0.129 12.9518 12.9518Skewness: -0.8514 NU MV 1.9744 NU -0.25 -0.375 0.000 0.0000 12.9518Kurtosis: 3.0628 NU MV 5.1412 NU 0.00 -0.125 0.000 0.0000 12.95185th Moment Measure: -4.456 NU MV 2.11 NU 0.25 0.125 0.014 1.4056 14.35746th Moment Measure: 11.550 NU MV 3.70 NU 0.50 0.375 0.002 0.2008 14.5582Median: 2.9727 φ 0.1274 mm 0.1278 mm 0.75 0.625 0.003 0.3012 14.8594Relative Dispersion: MV MV 1.5201 NU 1.00 0.875 0.002 0.2008 15.0602 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.009 0.9036 15.9639 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.023 2.3092 18.2731 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.010 1.0040 19.2771 2.00 1.875 0.030 3.0120 22.2892 16 2.25 2.125 0.014 1.4056 23.6948 2.50 2.375 0.053 5.3213 29.0161 2.75 2.625 0.055 5.5221 34.5382 3.00 2.875 0.120 12.0482 46.5863 14 3.25 3.125 0.087 8.7349 55.3213 3.50 3.375 0.139 13.9558 69.2771 3.75 3.625 0.099 9.9398 79.2169 4.00 3.875 0.069 6.9277 86.1446 12 6.00 5 0.138 13.8554 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

138 Table C.12. GRANPLOT analysis of Core 091605-2-20 (depth of 20 cm)

Sample I.D.: 091605-2-20 - Total Sample Sample I.D.: 091605-2-20 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/25/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 5.576 Dry Sieved Fines Wt.: 0.160 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 5.736 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: -0.3286 φ 1.2558 mm 1.6089 mm -0.75 -0.875 4.945 86.2099 86.2099Standard Deviation: 1.4641 phi-units MV 0.5704 mm -0.50 -0.625 0.000 0.0000 86.2099Skewness: 2.5425 NU MV -2.1903 NU -0.25 -0.375 0.000 0.0000 86.2099Kurtosis: 8.0111 NU MV 5.8956 NU 0.00 -0.125 0.000 0.0000 86.20995th Moment Measure: 25.673 NU MV -3.80 NU 0.25 0.125 0.052 0.9066 87.11656th Moment Measure: 85.059 NU MV 7.61 NU 0.50 0.375 0.030 0.5230 87.6395Median: -0.9800 φ 1.9725 mm 1.9798 mm 0.75 0.625 0.014 0.2441 87.8835Relative Dispersion: MV MV 0.3545 NU 1.00 0.875 0.000 0.0000 87.8835 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.013 0.2266 88.1102 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.010 0.1743 88.2845 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.008 0.1395 88.4240 2.00 1.875 0.024 0.4184 88.8424 100 2.25 2.125 0.015 0.2615 89.1039 2.50 2.375 0.037 0.6450 89.7490 2.75 2.625 0.039 0.6799 90.4289 90 3.00 2.875 0.076 1.3250 91.7538 3.25 3.125 0.066 1.1506 92.9045 3.50 3.375 0.103 1.7957 94.7001 80 3.75 3.625 0.094 1.6388 96.3389 4.00 3.875 0.050 0.8717 97.2106 6.00 5 0.160 2.7894 100.0000 70 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 60 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 50 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 40 6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 30 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 20 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

139 Table C.13. GRANPLOT analysis of Core 091605-2-30 (depth of 30 cm)

Sample I.D.: 091605-2-30 - Total Sample Sample I.D.: 091605-2-30 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/25/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.639 Dry Sieved Fines Wt.: 0.067 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.706 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 2.6687 φ 0.1573 mm 0.2323 mm -0.75 -0.875 0.004 0.5666 0.5666Standard Deviation: 1.2420 phi-units MV 0.2593 mm -0.50 -0.625 0.009 1.2748 1.8414Skewness: -0.1807 NU MV 3.3848 NU -0.25 -0.375 0.000 0.0000 1.8414Kurtosis: 3.0895 NU MV 17.6441 NU 0.00 -0.125 0.000 0.0000 1.84145th Moment Measure: -1.807 NU MV 3.26 NU 0.25 0.125 0.007 0.9915 2.83296th Moment Measure: 13.988 NU MV 9.27 NU 0.50 0.375 0.011 1.5581 4.3909Median: 2.6469 φ 0.1597 mm 0.1598 mm 0.75 0.625 0.018 2.5496 6.9405Relative Dispersion: MV MV 1.1158 NU 1.00 0.875 0.019 2.6912 9.6317 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.017 2.4079 12.0397 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.047 6.6572 18.6969 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.021 2.9745 21.6714 2.00 1.875 0.053 7.5071 29.1785 12 2.25 2.125 0.027 3.8244 33.0028 2.50 2.375 0.051 7.2238 40.2266 2.75 2.625 0.062 8.7819 49.0085 3.00 2.875 0.080 11.3314 60.3399 3.25 3.125 0.048 6.7989 67.1388 10 3.50 3.375 0.078 11.0482 78.1870 3.75 3.625 0.054 7.6487 85.8357 4.00 3.875 0.033 4.6742 90.5099 6.00 5 0.067 9.4901 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

140 Table C.14. GRANPLOT analysis of Core 091605-2-35 (depth of 35 cm)

Sample I.D.: 091605-2-35 - Total Sample Sample I.D.: 091605-2-35 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/25/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.173 Dry Sieved Fines Wt.: 0.029 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.202 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 2.8830 φ 0.1356 mm 0.2104 mm -0.75 -0.875 0.001 0.4950 0.4950Standard Deviation: 1.3195 phi-units MV 0.2361 mm -0.50 -0.625 0.000 0.0000 0.4950Skewness: -0.2750 NU MV 2.7889 NU -0.25 -0.375 0.000 0.0000 0.4950Kurtosis: 2.7019 NU MV 14.1904 NU 0.00 -0.125 0.000 0.0000 0.49505th Moment Measure: -1.883 NU MV 2.26 NU 0.25 0.125 0.001 0.4950 0.99016th Moment Measure: 9.719 NU MV 7.13 NU 0.50 0.375 0.016 7.9208 8.9109Median: 2.8424 φ 0.1394 mm 0.1397 mm 0.75 0.625 0.001 0.4950 9.4059Relative Dispersion: MV MV 1.1224 NU 1.00 0.875 0.002 0.9901 10.3960 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.003 1.4851 11.8812 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.010 4.9505 16.8317 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.003 1.4851 18.3168 2.00 1.875 0.011 5.4455 23.7624 16 2.25 2.125 0.007 3.4653 27.2277 2.50 2.375 0.012 5.9406 33.1683 2.75 2.625 0.014 6.9307 40.0990 3.00 2.875 0.023 11.3861 51.4851 14 3.25 3.125 0.015 7.4257 58.9109 3.50 3.375 0.021 10.3960 69.3069 3.75 3.625 0.019 9.4059 78.7129 4.00 3.875 0.014 6.9307 85.6436 12 6.00 5 0.029 14.3564 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

141 Table C.15. GRANPLOT analysis of Core 091605-6-22 (depth of 22 cm)

Sample I.D.: 091605-6-22 - Total Sample Sample I.D.: 091605-6-22 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 6/7/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.399 Dry Sieved Fines Wt.: 0.080 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.479 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 2.9836 φ 0.1264 mm 0.2084 mm -0.75 -0.875 0.008 1.6701 1.6701Standard Deviation: 1.3432 phi-units MV 0.2914 mm -0.50 -0.625 0.001 0.2088 1.8789Skewness: -0.4834 NU MV 3.7520 NU -0.25 -0.375 0.000 0.0000 1.8789Kurtosis: 3.2632 NU MV 19.0317 NU 0.00 -0.125 0.009 1.8789 3.75785th Moment Measure: -4.500 NU MV 4.57 NU 0.25 0.125 0.001 0.2088 3.96666th Moment Measure: 16.618 NU MV 13.32 NU 0.50 0.375 0.005 1.0438 5.0104Median: 2.9594 φ 0.1286 mm 0.1290 mm 0.75 0.625 0.006 1.2526 6.2630Relative Dispersion: MV MV 1.3983 NU 1.00 0.875 0.007 1.4614 7.7244 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.010 2.0877 9.8121 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.018 3.7578 13.5699 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.012 2.5052 16.0752 2.00 1.875 0.025 5.2192 21.2944 18 2.25 2.125 0.016 3.3403 24.6347 2.50 2.375 0.027 5.6367 30.2714 2.75 2.625 0.032 6.6806 36.9520 3.00 2.875 0.049 10.2296 47.1816 16 3.25 3.125 0.040 8.3507 55.5324 3.50 3.375 0.057 11.8998 67.4322 3.75 3.625 0.045 9.3946 76.8267 14 4.00 3.875 0.031 6.4718 83.2985 6.00 5 0.080 16.7015 100.0000 6.00 5 0.000 0.0000 100.0000 12 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

142 Table C.16. GRANPLOT analysis of Core 091605-6-27 (depth of 27 cm)

Sample I.D.: 091605-6-27 - Total Sample Sample I.D.: 091605-6-27 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 6/7/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.544 Dry Sieved Fines Wt.: 0.177 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.721 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.2736 φ 0.1034 mm 0.1742 mm -0.75 -0.875 0.001 0.1387 0.1387Standard Deviation: 1.3397 phi-units MV 0.2646 mm -0.50 -0.625 0.018 2.4965 2.6352Skewness: -0.6225 NU MV 4.0636 NU -0.25 -0.375 0.000 0.0000 2.6352Kurtosis: 3.4347 NU MV 20.7829 NU 0.00 -0.125 0.002 0.2774 2.91265th Moment Measure: -6.264 NU MV 3.88 NU 0.25 0.125 0.000 0.0000 2.91266th Moment Measure: 20.504 NU MV 10.52 NU 0.50 0.375 0.006 0.8322 3.7448Median: 3.1930 φ 0.1093 mm 0.1097 mm 0.75 0.625 0.006 0.8322 4.5770Relative Dispersion: MV MV 1.5194 NU 1.00 0.875 0.009 1.2483 5.8252 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.007 0.9709 6.7961 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.017 2.3578 9.1540 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.013 1.8031 10.9570 2.00 1.875 0.033 4.5770 15.5340 30 2.25 2.125 0.018 2.4965 18.0305 2.50 2.375 0.041 5.6865 23.7171 2.75 2.625 0.037 5.1318 28.8488 3.00 2.875 0.077 10.6796 39.5284 3.25 3.125 0.054 7.4896 47.0180 25 3.50 3.375 0.079 10.9570 57.9750 3.75 3.625 0.073 10.1248 68.0999 4.00 3.875 0.053 7.3509 75.4508 6.00 5 0.177 24.5492 100.0000 6.00 5 0.000 0.0000 100.0000 20 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 15 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 5 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

143 Table C.17. GRANPLOT analysis of Core 091605-6-30 (depth of 30 cm)

Sample I.D.: 091605-6-30 - Total Sample Sample I.D.: 091605-6-30 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 6/7/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.636 Dry Sieved Fines Wt.: 0.148 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.784 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.0118 φ 0.1240 mm 0.1900 mm -0.75 -0.875 0.000 0.0000 0.0000Standard Deviation: 1.3272 phi-units MV 0.2026 mm -0.50 -0.625 0.002 0.2551 0.2551Skewness: -0.1570 NU MV 2.6507 NU -0.25 -0.375 0.000 0.0000 0.2551Kurtosis: 2.4313 NU MV 12.4225 NU 0.00 -0.125 0.011 1.4031 1.65825th Moment Measure: -1.412 NU MV 1.15 NU 0.25 0.125 0.001 0.1276 1.78576th Moment Measure: 8.039 NU MV 2.87 NU 0.50 0.375 0.005 0.6378 2.4235Median: 2.9282 φ 0.1314 mm 0.1317 mm 0.75 0.625 0.026 3.3163 5.7398Relative Dispersion: MV MV 1.0665 NU 1.00 0.875 0.014 1.7857 7.5255 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.011 1.4031 8.9286 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.051 6.5051 15.4337 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.026 3.3163 18.7500 2.00 1.875 0.044 5.6122 24.3622 20 2.25 2.125 0.026 3.3163 27.6786 2.50 2.375 0.042 5.3571 33.0357 2.75 2.625 0.048 6.1224 39.1582 18 3.00 2.875 0.075 9.5663 48.7245 3.25 3.125 0.047 5.9949 54.7194 3.50 3.375 0.083 10.5867 65.3061 16 3.75 3.625 0.072 9.1837 74.4898 4.00 3.875 0.052 6.6327 81.1224 6.00 5 0.148 18.8776 100.0000 14 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 12 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

144 Table C.18. GRANPLOT analysis of Core 091605-6-37 (depth of 37 cm)

Sample I.D.: 091605-6-37 - Total Sample Sample I.D.: 091605-6-37 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 6/7/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 1.001 Dry Sieved Fines Wt.: 0.122 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 1.123 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 2.6887 φ 0.1551 mm 0.2178 mm -0.75 -0.875 0.002 0.1781 0.1781Standard Deviation: 1.2089 phi-units MV 0.2054 mm -0.50 -0.625 0.004 0.3562 0.5343Skewness: 0.1122 NU MV 3.0147 NU -0.25 -0.375 0.000 0.0000 0.5343Kurtosis: 2.8476 NU MV 17.3450 NU 0.00 -0.125 0.007 0.6233 1.15765th Moment Measure: 0.175 NU MV 2.07 NU 0.25 0.125 0.010 0.8905 2.04816th Moment Measure: 11.246 NU MV 6.37 NU 0.50 0.375 0.009 0.8014 2.8495Median: 2.6293 φ 0.1616 mm 0.1617 mm 0.75 0.625 0.018 1.6028 4.4524Relative Dispersion: MV MV 0.9430 NU 1.00 0.875 0.028 2.4933 6.9457 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.044 3.9181 10.8638 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.076 6.7676 17.6313 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.056 4.9866 22.6180 2.00 1.875 0.089 7.9252 30.5432 14 2.25 2.125 0.048 4.2743 34.8175 2.50 2.375 0.085 7.5690 42.3865 2.75 2.625 0.083 7.3909 49.7774 3.00 2.875 0.146 13.0009 62.7783 12 3.25 3.125 0.085 7.5690 70.3473 3.50 3.375 0.092 8.1923 78.5396 3.75 3.625 0.066 5.8771 84.4167 4.00 3.875 0.053 4.7195 89.1362 6.00 5 0.122 10.8638 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

145 Table C.19. GRANPLOT analysis of Core 091605-6-39 (depth of 39 cm)

Sample I.D.: 091605-6-39 - Total Sample Sample I.D.: 091605-6-39 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 6/7/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.656 Dry Sieved Fines Wt.: 0.138 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.794 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.0211 φ 0.1232 mm 0.1798 mm -0.75 -0.875 0.000 0.0000 0.0000Standard Deviation: 1.2599 phi-units MV 0.1739 mm -0.50 -0.625 0.000 0.0000 0.0000Skewness: -0.0843 NU MV 2.2002 NU -0.25 -0.375 0.000 0.0000 0.0000Kurtosis: 2.4470 NU MV 8.8529 NU 0.00 -0.125 0.004 0.5038 0.50385th Moment Measure: -0.881 NU MV 0.46 NU 0.25 0.125 0.004 0.5038 1.00766th Moment Measure: 7.654 NU MV 0.85 NU 0.50 0.375 0.010 1.2594 2.2670Median: 2.9196 φ 0.1322 mm 0.1324 mm 0.75 0.625 0.014 1.7632 4.0302Relative Dispersion: MV MV 0.9673 NU 1.00 0.875 0.017 2.1411 6.1713 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.017 2.1411 8.3123 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.048 6.0453 14.3577 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.021 2.6448 17.0025 2.00 1.875 0.043 5.4156 22.4181 20 2.25 2.125 0.029 3.6524 26.0705 2.50 2.375 0.047 5.9194 31.9899 2.75 2.625 0.051 6.4232 38.4131 18 3.00 2.875 0.082 10.3275 48.7406 3.25 3.125 0.056 7.0529 55.7935 3.50 3.375 0.088 11.0831 66.8766 16 3.75 3.625 0.071 8.9421 75.8186 4.00 3.875 0.054 6.8010 82.6196 6.00 5 0.138 17.3804 100.0000 14 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 12 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

146 Table C.20. GRANPLOT analysis of Core 020507-1-6 (depth of 6 cm)

Sample I.D.: 020507-1-6 - Total Sample Sample I.D.: 020507-1-6 Sampled by: A. C. Lower Start Sieve Size (phi): -1 Sample Date: 4/30/2007 Analyzed by: A. C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.215 Dry Sieved Fines Wt.: 0.022 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.237 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 2.8149 φ 0.1421 mm 0.2116 mm -0.75 -0.875 0.002 0.8439 0.8439Standard Deviation: 1.1567 phi-units MV 0.2843 mm -0.50 -0.625 0.003 1.2658 2.1097Skewness: -0.6083 NU MV 3.8213 NU -0.25 -0.375 0.000 0.0000 2.1097Kurtosis: 4.6313 NU MV 18.1458 NU 0.00 -0.125 0.008 3.3755 5.48525th Moment Measure: -7.174 NU MV 3.84 NU 0.25 0.125 0.000 0.0000 5.48526th Moment Measure: 31.125 NU MV 10.44 NU 0.50 0.375 0.000 0.0000 5.4852Median: 2.7599 φ 0.1476 mm 0.1482 mm 0.75 0.625 0.000 0.0000 5.4852Relative Dispersion: MV MV 1.3433 NU 1.00 0.875 0.000 0.0000 5.4852 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.000 0.0000 5.4852 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.003 1.2658 6.7511 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.013 5.4852 12.2363 2.00 1.875 0.018 7.5949 19.8312 18 2.25 2.125 0.009 3.7975 23.6287 2.50 2.375 0.017 7.1730 30.8017 2.75 2.625 0.025 10.5485 41.3502 3.00 2.875 0.038 16.0338 57.3840 16 3.25 3.125 0.024 10.1266 67.5105 3.50 3.375 0.031 13.0802 80.5907 3.75 3.625 0.017 7.1730 87.7637 14 4.00 3.875 0.007 2.9536 90.7173 6.00 5 0.022 9.2827 100.0000 6.00 5 0.000 0.0000 100.0000 12 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

147 Table C.21. GRANPLOT analysis of Core 020507-1-19 (depth of 19 cm)

Sample I.D.: 020507-1-19 - Total Sample Sample I.D.: 020507-1-19 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/30/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25

Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.734 Dry Sieved Fines Wt.: 0.065 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.799 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.0375 φ 0.1218 mm 0.1614 mm -0.75 -0.875 0.006 0.7509 0.7509Standard Deviation: 0.9562 phi-units MV 0.2083 mm -0.50 -0.625 0.006 0.7509 1.5019Skewness: -0.6359 NU MV 6.1755 NU -0.25 -0.375 0.000 0.0000 1.5019Kurtosis: 6.0251 NU MV 45.9601 NU 0.00 -0.125 0.000 0.0000 1.50195th Moment Measure: -13.304 NU MV 6.88 NU 0.25 0.125 0.000 0.0000 1.50196th Moment Measure: 68.026 NU MV 23.96 NU 0.50 0.375 0.000 0.0000 1.5019Median: 2.9163 φ 0.1325 mm 0.1327 mm 0.75 0.625 0.001 0.1252 1.6270Relative Dispersion: MV MV 1.2909 NU 1.00 0.875 0.007 0.8761 2.5031 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.007 0.8761 3.3792 MV = meaningless value; NU = no units ( i.e. , dimensionless) 1.50 1.375 0.016 2.0025 5.3817 Transformed data are calculated using mm = 2 -φ 1.75 1.625 0.013 1.6270 7.0088 2.00 1.875 0.033 4.1302 11.1389 25 2.25 2.125 0.018 2.2528 13.3917 2.50 2.375 0.052 6.5081 19.8999 2.75 2.625 0.068 8.5106 28.4105 3.00 2.875 0.155 19.3992 47.8098 3.25 3.125 0.106 13.2666 61.0763 3.50 3.375 0.117 14.6433 75.7196 20 3.75 3.625 0.082 10.2628 85.9825 4.00 3.875 0.047 5.8824 91.8648 6.00 5 0.065 8.1352 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 15 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 5 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

148 Table C.22. GRANPLOT analysis of Core 020507-1-33 (depth of 33 cm)

Sample I.D.: 020507-1-33 - Total Sample Sample I.D.: 020507-1-33 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/33/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.478 Dry Sieved Fines Wt.: 0.081 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.559 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.4021 φ 0.0946 mm 0.1390 mm -0.75 -0.875 0.010 1.7889 1.7889Standard Deviation: 1.0038 phi-units MV 0.2532 mm -0.50 -0.625 0.002 0.3578 2.1467Skewness: -1.3201 NU MV 6.0364 NU -0.25 -0.375 0.000 0.0000 2.1467Kurtosis: 8.3425 NU MV 39.5203 NU 0.00 -0.125 0.000 0.0000 2.14675th Moment Measure: -28.736 NU MV 8.38 NU 0.25 0.125 0.001 0.1789 2.32566th Moment Measure: 128.025 NU MV 27.85 NU 0.50 0.375 0.000 0.0000 2.3256Median: 3.2848 φ 0.1026 mm 0.1030 mm 0.75 0.625 0.001 0.1789 2.5045Relative Dispersion: MV MV 1.8214 NU 1.00 0.875 0.000 0.0000 2.5045 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.001 0.1789 2.6834 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.001 0.1789 2.8623 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.001 0.1789 3.0411 2.00 1.875 0.009 1.6100 4.6512 25 2.25 2.125 0.006 1.0733 5.7245 2.50 2.375 0.019 3.3989 9.1234 2.75 2.625 0.028 5.0089 14.1324 3.00 2.875 0.067 11.9857 26.1181 3.25 3.125 0.060 10.7335 36.8515 3.50 3.375 0.115 20.5725 57.4240 20 3.75 3.625 0.092 16.4580 73.8819 4.00 3.875 0.065 11.6279 85.5098 6.00 5 0.081 14.4902 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 15 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 5 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

149 Table C.23. GRANPLOT analysis of Core 020507-1-34 (depth of 34 cm)

Sample I.D.: 020507-1-34 - Total Sample Sample I.D.: 020507-1-34 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/30/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.214 Dry Sieved Fines Wt.: 0.019 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.233 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.0612 φ 0.1198 mm 0.1659 mm -0.75 -0.875 0.003 1.2876 1.2876Standard Deviation: 1.0119 phi-units MV 0.2283 mm -0.50 -0.625 0.000 0.0000 1.2876Skewness: -0.8358 NU MV 5.6543 NU -0.25 -0.375 0.000 0.0000 1.2876Kurtosis: 5.6564 NU MV 39.1472 NU 0.00 -0.125 0.002 0.8584 2.14595th Moment Measure: -13.222 NU MV 6.91 NU 0.25 0.125 0.000 0.0000 2.14596th Moment Measure: 59.274 NU MV 23.76 NU 0.50 0.375 0.000 0.0000 2.1459Median: 3.0625 φ 0.1197 mm 0.1200 mm 0.75 0.625 0.001 0.4292 2.5751Relative Dispersion: MV MV 1.3765 NU 1.00 0.875 0.000 0.0000 2.5751 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.001 0.4292 3.0043 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.010 4.2918 7.2961 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.005 2.1459 9.4421 2.00 1.875 0.009 3.8627 13.3047 25 2.25 2.125 0.005 2.1459 15.4506 2.50 2.375 0.011 4.7210 20.1717 2.75 2.625 0.017 7.2961 27.4678 3.00 2.875 0.033 14.1631 41.6309 3.25 3.125 0.026 11.1588 52.7897 3.50 3.375 0.045 19.3133 72.1030 20 3.75 3.625 0.028 12.0172 84.1202 4.00 3.875 0.018 7.7253 91.8455 6.00 5 0.019 8.1545 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 15 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 5 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

150 Table C.24. GRANPLOT analysis of Core 020507-1-46 (depth of 46 cm)

Sample I.D.: 020507-1-46 - Total Sample Sample I.D.: 020507-1-46 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/30/2007 Analyzed by: End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.293 Dry Sieved Fines Wt.: 0.030 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.323 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 2.7976 φ 0.1438 mm 0.2055 mm -0.75 -0.875 0.004 1.2384 1.2384Standard Deviation: 1.1018 phi-units MV 0.2764 mm -0.50 -0.625 0.006 1.8576 3.0960Skewness: -0.4440 NU MV 4.6156 NU -0.25 -0.375 0.000 0.0000 3.0960Kurtosis: 5.0690 NU MV 25.1173 NU 0.00 -0.125 0.000 0.0000 3.09605th Moment Measure: -7.818 NU MV 5.50 NU 0.25 0.125 0.000 0.0000 3.09606th Moment Measure: 40.103 NU MV 15.95 NU 0.50 0.375 0.000 0.0000 3.0960Median: 2.6897 φ 0.155 mm 0.1554 mm 0.75 0.625 0.000 0.0000 3.0960Relative Dispersion: MV MV 1.3452 NU 1.00 0.875 0.000 0.0000 3.0960 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.006 1.8576 4.9536 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.012 3.7152 8.6687 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.008 2.4768 11.1455 2.00 1.875 0.024 7.4303 18.5759 20 2.25 2.125 0.015 4.6440 23.2198 2.50 2.375 0.029 8.9783 32.1981 2.75 2.625 0.043 13.3127 45.5108 18 3.00 2.875 0.056 17.3375 62.8483 3.25 3.125 0.028 8.6687 71.5170 3.50 3.375 0.037 11.4551 82.9721 16 3.75 3.625 0.017 5.2632 88.2353 4.00 3.875 0.008 2.4768 90.7121 6.00 5 0.030 9.2879 100.0000 14 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 12 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

151 Table C.25. GRANPLOT analysis of Core 020507-1-57 (depth interval of 62-64 cm)

Sample I.D.: 020507-1-57 - Total Sample Sample I.D.: 020507-1-57 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/30/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.479 Dry Sieved Fines Wt.: 0.038 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.517 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.0747 φ 0.1187 mm 0.1560 mm -0.75 -0.875 0.006 1.1605 1.1605Standard Deviation: 0.9256 phi-units MV 0.2087 mm -0.50 -0.625 0.001 0.1934 1.3540Skewness: -0.7697 NU MV 6.6797 NU -0.25 -0.375 0.000 0.0000 1.3540Kurtosis: 6.6097 NU MV 52.4475 NU 0.00 -0.125 0.000 0.0000 1.35405th Moment Measure: -17.065 NU MV 8.26 NU 0.25 0.125 0.000 0.0000 1.35406th Moment Measure: 87.082 NU MV 30.01 NU 0.50 0.375 0.000 0.0000 1.3540Median: 2.9955 φ 0.1254 mm 0.1259 mm 0.75 0.625 0.000 0.0000 1.3540Relative Dispersion: MV MV 1.3375 NU 1.00 0.875 0.004 0.7737 2.1277 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.004 0.7737 2.9014 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.010 1.9342 4.8356 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.004 0.7737 5.6093 2.00 1.875 0.021 4.0619 9.6712 20 2.25 2.125 0.014 2.7079 12.3791 2.50 2.375 0.033 6.3830 18.7621 2.75 2.625 0.048 9.2843 28.0464 18 3.00 2.875 0.087 16.8279 44.8743 3.25 3.125 0.055 10.6383 55.5126 3.50 3.375 0.094 18.1818 73.6944 16 3.75 3.625 0.061 11.7988 85.4932 4.00 3.875 0.037 7.1567 92.6499 6.00 5 0.038 7.3501 100.0000 14 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 12 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

152 Table C.26. GRANPLOT analysis of Core 020507-1-74 (depth interval of 96-98 cm)

Sample I.D.: 020507-1-74 - Total Sample Sample I.D.: 020507-1-74 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/30/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.340 Dry Sieved Fines Wt.: 0.045 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.385 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.1247 φ 0.1147 mm 0.1778 mm -0.75 -0.875 0.009 2.3377 2.3377Standard Deviation: 1.1336 phi-units MV 0.2937 mm -0.50 -0.625 0.002 0.5195 2.8571Skewness: -1.0354 NU MV 4.7871 NU -0.25 -0.375 0.000 0.0000 2.8571Kurtosis: 5.8321 NU MV 26.2387 NU 0.00 -0.125 0.000 0.0000 2.85715th Moment Measure: -14.745 NU MV 6.77 NU 0.25 0.125 0.000 0.0000 2.85716th Moment Measure: 57.200 NU MV 20.38 NU 0.50 0.375 0.003 0.7792 3.6364Median: 3.1098 φ 0.1158 mm 0.1159 mm 0.75 0.625 0.002 0.5195 4.1558Relative Dispersion: MV MV 1.6523 NU 1.00 0.875 0.002 0.5195 4.6753 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.000 0.0000 4.6753 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.006 1.5584 6.2338 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.007 1.8182 8.0519 2.00 1.875 0.011 2.8571 10.9091 18 2.25 2.125 0.010 2.5974 13.5065 2.50 2.375 0.022 5.7143 19.2208 2.75 2.625 0.029 7.5325 26.7532 3.00 2.875 0.051 13.2468 40.0000 16 3.25 3.125 0.041 10.6494 50.6494 3.50 3.375 0.062 16.1039 66.7532 3.75 3.625 0.050 12.9870 79.7403 14 4.00 3.875 0.033 8.5714 88.3117 6.00 5 0.045 11.6883 100.0000 6.00 5 0.000 0.0000 100.0000 12 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

153 Table C.27. GRANPLOT analysis of Core 020507-1-79 (depth interval of 106-108 cm)

Sample I.D.: 020507-1-79 - Total Sample Sample I.D.: 020507-1-79 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/30/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.786 Dry Sieved Fines Wt.: 0.157 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.943 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.1779 φ 0.1105 mm 0.1402 mm -0.75 -0.875 0.001 0.1060 0.1060Standard Deviation: 1.0176 phi-units MV 0.1187 mm -0.50 -0.625 0.001 0.1060 0.2121Skewness: 0.2864 NU MV 6.0113 NU -0.25 -0.375 0.000 0.0000 0.2121Kurtosis: 3.1518 NU MV 71.1515 NU 0.00 -0.125 0.001 0.1060 0.31815th Moment Measure: -0.597 NU MV 4.43 NU 0.25 0.125 0.000 0.0000 0.31816th Moment Measure: 16.524 NU MV 20.29 NU 0.50 0.375 0.000 0.0000 0.3181Median: 2.8883 φ 0.1351 mm 0.1352 mm 0.75 0.625 0.001 0.1060 0.4242Relative Dispersion: MV MV 0.8465 NU 1.00 0.875 0.005 0.5302 0.9544 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.006 0.6363 1.5907 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.022 2.3330 3.9236 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.021 2.2269 6.1506 2.00 1.875 0.044 4.6660 10.8165 20 2.25 2.125 0.032 3.3934 14.2100 2.50 2.375 0.064 6.7869 20.9968 2.75 2.625 0.100 10.6045 31.6013 18 3.00 2.875 0.168 17.8155 49.4168 3.25 3.125 0.103 10.9226 60.3393 3.50 3.375 0.112 11.8770 72.2163 16 3.75 3.625 0.070 7.4231 79.6394 4.00 3.875 0.035 3.7116 83.3510 6.00 5 0.157 16.6490 100.0000 14 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 12 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

154 Table C.28. GRANPLOT analysis of Core 020507-1-82 (depth interval of 112-114 cm)

Sample I.D.: 020507-1-82 - Total Sample Sample I.D.: 020507-1-82 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/30/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 1.013 Dry Sieved Fines Wt.: 0.127 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 1.140 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.2966 φ 0.1018 mm 0.1237 mm -0.75 -0.875 0.001 0.0877 0.0877Standard Deviation: 0.8247 phi-units MV 0.1380 mm -0.50 -0.625 0.007 0.6140 0.7018Skewness: -0.2236 NU MV 8.7239 NU -0.25 -0.375 0.000 0.0000 0.7018Kurtosis: 6.7268 NU MV 91.3535 NU 0.00 -0.125 0.000 0.0000 0.70185th Moment Measure: -16.153 NU MV 6.88 NU 0.25 0.125 0.002 0.1754 0.87726th Moment Measure: 102.020 NU MV 27.56 NU 0.50 0.375 0.000 0.0000 0.8772Median: 3.0907 φ 0.1174 mm 0.1176 mm 0.75 0.625 0.000 0.0000 0.8772Relative Dispersion: MV MV 1.1150 NU 1.00 0.875 0.000 0.0000 0.8772 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.000 0.0000 0.8772 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.007 0.6140 1.4912 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.006 0.5263 2.0175 2.00 1.875 0.021 1.8421 3.8596 25 2.25 2.125 0.014 1.2281 5.0877 2.50 2.375 0.044 3.8596 8.9474 2.75 2.625 0.065 5.7018 14.6491 3.00 2.875 0.233 20.4386 35.0877 3.25 3.125 0.197 17.2807 52.3684 3.50 3.375 0.200 17.5439 69.9123 20 3.75 3.625 0.132 11.5789 81.4912 4.00 3.875 0.084 7.3684 88.8596 6.00 5 0.127 11.1404 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 15 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 5 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

155 Table C.29. GRANPLOT analysis of Core 020507-1-83 (depth interval of 114-116 cm)

Sample I.D.: 020507-1-83 - Total Sample Sample I.D.: 020507-1-83 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 4/30/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 1.424 Dry Sieved Fines Wt.: 0.121 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 1.545 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.1516 φ 0.1125 mm 0.1532 mm -0.75 -0.875 0.000 0.0000 0.0000Standard Deviation: 0.9212 phi-units MV 0.2304 mm -0.50 -0.625 0.039 2.5243 2.5243Skewness: -1.2666 NU MV 5.5314 NU -0.25 -0.375 0.000 0.0000 2.5243Kurtosis: 8.7618 NU MV 33.3903 NU 0.00 -0.125 0.000 0.0000 2.52435th Moment Measure: -27.233 NU MV 5.12 NU 0.25 0.125 0.000 0.0000 2.52436th Moment Measure: 126.064 NU MV 14.83 NU 0.50 0.375 0.000 0.0000 2.5243Median: 3.0484 φ 0.1209 mm 0.1213 mm 0.75 0.625 0.000 0.0000 2.5243Relative Dispersion: MV MV 1.5037 NU 1.00 0.875 0.000 0.0000 2.5243 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.005 0.3236 2.8479 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.015 0.9709 3.8188 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.006 0.3883 4.2071 2.00 1.875 0.013 0.8414 5.0485 25 2.25 2.125 0.024 1.5534 6.6019 2.50 2.375 0.053 3.4304 10.0324 2.75 2.625 0.169 10.9385 20.9709 3.00 2.875 0.298 19.2880 40.2589 3.25 3.125 0.217 14.0453 54.3042 3.50 3.375 0.298 19.2880 73.5922 20 3.75 3.625 0.180 11.6505 85.2427 4.00 3.875 0.107 6.9256 92.1683 6.00 5 0.121 7.8317 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 15 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 5 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

156 Table C.30. GRANPLOT analysis of Core 020507-1-97 (depth interval of 143-145 cm)

Sample I.D.: 020507-1-97 - Total Sample Sample I.D.: 020507-1-97 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 5/29/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 1.257 Dry Sieved Fines Wt.: 0.148 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 1.405 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 2.9471 φ 0.1297 mm 0.1775 mm -0.75 -0.875 0.010 0.7117 0.7117Standard Deviation: 1.0710 phi-units MV 0.2061 mm -0.50 -0.625 0.002 0.1423 0.8541Skewness: -0.2961 NU MV 5.0266 NU -0.25 -0.375 0.000 0.0000 0.8541Kurtosis: 4.2534 NU MV 35.6660 NU 0.00 -0.125 0.004 0.2847 1.13885th Moment Measure: -5.157 NU MV 5.17 NU 0.25 0.125 0.011 0.7829 1.92176th Moment Measure: 29.413 NU MV 18.22 NU 0.50 0.375 0.007 0.4982 2.4199Median: 2.7949 φ 0.1441 mm 0.1446 mm 0.75 0.625 0.013 0.9253 3.3452Relative Dispersion: MV MV 1.1615 NU 1.00 0.875 0.019 1.3523 4.6975 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.016 1.1388 5.8363 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.037 2.6335 8.4698 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.024 1.7082 10.1779 2.00 1.875 0.071 5.0534 15.2313 25 2.25 2.125 0.045 3.2028 18.4342 2.50 2.375 0.103 7.3310 25.7651 2.75 2.625 0.138 9.8221 35.5872 3.00 2.875 0.298 21.2100 56.7972 3.25 3.125 0.121 8.6121 65.4093 3.50 3.375 0.157 11.1744 76.5836 20 3.75 3.625 0.109 7.7580 84.3416 4.00 3.875 0.072 5.1246 89.4662 6.00 5 0.148 10.5338 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 15 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 5 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

157 Table C.31. GRANPLOT analysis of Core 020507-1-100 (depth interval of 149-151 cm)

Sample I.D.: 020507-1-100 - Total Sample Sample I.D.: 020507-1-100 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 5/29/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.855 Dry Sieved Fines Wt.: 0.099 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.954 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 2.8101 φ 0.1426 mm 0.1893 mm -0.75 -0.875 0.001 0.1048 0.1048Standard Deviation: 1.1016 phi-units MV 0.1612 mm -0.50 -0.625 0.000 0.0000 0.1048Skewness: 0.1310 NU MV 2.7997 NU -0.25 -0.375 0.000 0.0000 0.1048Kurtosis: 3.0773 NU MV 17.6761 NU 0.00 -0.125 0.001 0.1048 0.20965th Moment Measure: 0.485 NU MV 1.45 NU 0.25 0.125 0.003 0.3145 0.52416th Moment Measure: 12.568 NU MV 5.35 NU 0.50 0.375 0.010 1.0482 1.5723Median: 2.6990 φ 0.154 mm 0.1545 mm 0.75 0.625 0.019 1.9916 3.5639Relative Dispersion: MV MV 0.8513 NU 1.00 0.875 0.018 1.8868 5.4507 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.021 2.2013 7.6520 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.051 5.3459 12.9979 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.028 2.9350 15.9329 2.00 1.875 0.065 6.8134 22.7463 18 2.25 2.125 0.034 3.5639 26.3103 2.50 2.375 0.085 8.9099 35.2201 2.75 2.625 0.096 10.0629 45.2830 3.00 2.875 0.152 15.9329 61.2159 16 3.25 3.125 0.082 8.5954 69.8113 3.50 3.375 0.087 9.1195 78.9308 3.75 3.625 0.057 5.9748 84.9057 14 4.00 3.875 0.045 4.7170 89.6226 6.00 5 0.099 10.3774 100.0000 6.00 5 0.000 0.0000 100.0000 12 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

158 Table C.32. GRANPLOT analysis of Core 020507-1-103 (depth interval of 155-157 cm)

Sample I.D.: 020507-1-103 - Total Sample Sample I.D.: 020507-1-103 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 5/29/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.802 Dry Sieved Fines Wt.: 0.129 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.931 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 2.9793 φ 0.1268 mm 0.1918 mm -0.75 -0.875 0.014 1.5038 1.5038Standard Deviation: 1.2174 phi-units MV 0.2584 mm -0.50 -0.625 0.003 0.3222 1.8260Skewness: -0.4184 NU MV 4.5800 NU -0.25 -0.375 0.000 0.0000 1.8260Kurtosis: 3.7232 NU MV 27.5749 NU 0.00 -0.125 0.000 0.0000 1.82605th Moment Measure: -5.331 NU MV 5.76 NU 0.25 0.125 0.001 0.1074 1.93346th Moment Measure: 23.178 NU MV 18.28 NU 0.50 0.375 0.011 1.1815 3.1149Median: 2.8624 φ 0.1375 mm 0.1376 mm 0.75 0.625 0.016 1.7186 4.8335Relative Dispersion: MV MV 1.3475 NU 1.00 0.875 0.012 1.2889 6.1224 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.010 1.0741 7.1966 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.033 3.5446 10.7411 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.019 2.0408 12.7820 2.00 1.875 0.057 6.1224 18.9044 16 2.25 2.125 0.029 3.1149 22.0193 2.50 2.375 0.066 7.0892 29.1085 2.75 2.625 0.072 7.7336 36.8421 3.00 2.875 0.129 13.8561 50.6982 14 3.25 3.125 0.078 8.3781 59.0763 3.50 3.375 0.108 11.6004 70.6767 3.75 3.625 0.083 8.9151 79.5918 4.00 3.875 0.061 6.5521 86.1439 12 6.00 5 0.129 13.8561 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

159 Table C.33. GRANPLOT analysis of Core 020507-1-105 (depth interval of 159-161 cm)

Sample I.D.: 020507-1-105 - Total Sample Sample I.D.: 020507-1-105 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 5/29/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 1.088 Dry Sieved Fines Wt.: 0.153 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 1.241 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 2.9122 φ 0.1328 mm 0.1769 mm -0.75 -0.875 0.001 0.0806 0.0806Standard Deviation: 1.1107 phi-units MV 0.1517 mm -0.50 -0.625 0.001 0.0806 0.1612Skewness: 0.1426 NU MV 3.1400 NU -0.25 -0.375 0.000 0.0000 0.1612Kurtosis: 2.9268 NU MV 22.6086 NU 0.00 -0.125 0.001 0.0806 0.24175th Moment Measure: 0.196 NU MV 1.75 NU 0.25 0.125 0.004 0.3223 0.56416th Moment Measure: 11.648 NU MV 6.64 NU 0.50 0.375 0.000 0.0000 0.5641Median: 2.7355 φ 0.1502 mm 0.1507 mm 0.75 0.625 0.023 1.8533 2.4174Relative Dispersion: MV MV 0.8575 NU 1.00 0.875 0.022 1.7728 4.1902 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.027 2.1757 6.3658 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.061 4.9154 11.2812 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.037 2.9815 14.2627 2.00 1.875 0.079 6.3658 20.6285 14 2.25 2.125 0.044 3.5455 24.1741 2.50 2.375 0.098 7.8969 32.0709 2.75 2.625 0.150 12.0870 44.1579 3.00 2.875 0.164 13.2151 57.3731 12 3.25 3.125 0.096 7.7357 65.1088 3.50 3.375 0.118 9.5085 74.6172 3.75 3.625 0.094 7.5745 82.1918 4.00 3.875 0.068 5.4795 87.6712 6.00 5 0.153 12.3288 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

160 Table C.34. GRANPLOT analysis of Core 020507-1-106 (depth interval of 161-163 cm)

Sample I.D.: 020507-1-106 - Total Sample Sample I.D.: 020507-1-106 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 5/29/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 1.060 Dry Sieved Fines Wt.: 0.119 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 1.179 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 2.7674 φ 0.1469 mm 0.1961 mm -0.75 -0.875 0.002 0.1696 0.1696Standard Deviation: 1.1048 phi-units MV 0.1760 mm -0.50 -0.625 0.001 0.0848 0.2545Skewness: 0.1212 NU MV 3.3315 NU -0.25 -0.375 0.000 0.0000 0.2545Kurtosis: 3.2773 NU MV 21.7375 NU 0.00 -0.125 0.003 0.2545 0.50895th Moment Measure: 0.149 NU MV 2.13 NU 0.25 0.125 0.009 0.7634 1.27236th Moment Measure: 14.770 NU MV 7.46 NU 0.50 0.375 0.010 0.8482 2.1204Median: 2.6586 φ 0.1584 mm 0.1586 mm 0.75 0.625 0.021 1.7812 3.9016Relative Dispersion: MV MV 0.8975 NU 1.00 0.875 0.017 1.4419 5.3435 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.025 2.1204 7.4640 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.069 5.8524 13.3164 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.035 2.9686 16.2850 2.00 1.875 0.079 6.7006 22.9856 18 2.25 2.125 0.053 4.4953 27.4809 2.50 2.375 0.110 9.3299 36.8109 2.75 2.625 0.130 11.0263 47.8372 3.00 2.875 0.190 16.1154 63.9525 16 3.25 3.125 0.087 7.3791 71.3316 3.50 3.375 0.113 9.5844 80.9160 3.75 3.625 0.063 5.3435 86.2595 14 4.00 3.875 0.043 3.6472 89.9067 6.00 5 0.119 10.0933 100.0000 6.00 5 0.000 0.0000 100.0000 12 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 8 6.00 5 0.000 0.0000 100.0000

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 4 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 2 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

161 Table C.35. GRANPLOT analysis of Core 020507-1-139 (depth interval of 257-259 cm)

Sample I.D.: 020507-1-139 - Total Sample Sample I.D.: 020507-1-139 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 5/29/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.779 Dry Sieved Fines Wt.: 0.320 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 1.099 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.5620 φ 0.0847 mm 0.1357 mm -0.75 -0.875 0.006 0.5460 0.5460Standard Deviation: 1.2204 phi-units MV 0.2230 mm -0.50 -0.625 0.010 0.9099 1.4559Skewness: -0.8616 NU MV 5.3105 NU -0.25 -0.375 0.000 0.0000 1.4559Kurtosis: 4.2523 NU MV 34.9760 NU 0.00 -0.125 0.005 0.4550 1.91085th Moment Measure: -10.542 NU MV 5.61 NU 0.25 0.125 0.000 0.0000 1.91086th Moment Measure: 36.639 NU MV 18.52 NU 0.50 0.375 0.003 0.2730 2.1838Median: 3.4273 φ 0.093 mm 0.0932 mm 0.75 0.625 0.015 1.3649 3.5487Relative Dispersion: MV MV 1.6425 NU 1.00 0.875 0.004 0.3640 3.9126 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.003 0.2730 4.1856 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.014 1.2739 5.4595 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.011 1.0009 6.4604 2.00 1.875 0.029 2.6388 9.0992 35 2.25 2.125 0.019 1.7288 10.8280 2.50 2.375 0.043 3.9126 14.7407 2.75 2.625 0.047 4.2766 19.0173 3.00 2.875 0.090 8.1893 27.2066 30 3.25 3.125 0.084 7.6433 34.8499 3.50 3.375 0.137 12.4659 47.3157 3.75 3.625 0.141 12.8298 60.1456 4.00 3.875 0.118 10.7370 70.8826 6.00 5 0.320 29.1174 100.0000 25 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 20 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 15

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 5 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

162 Table C.36. GRANPLOT analysis of Core 020507-1-141 (depth interval of 265-267 cm)

Sample I.D.: 020507-1-141 - Total Sample Sample I.D.: 020507-1-141 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 5/29/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.715 Dry Sieved Fines Wt.: 0.185 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.900 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.3093 φ 0.1009 mm 0.1533 mm -0.75 -0.875 0.010 1.1111 1.1111Standard Deviation: 1.1993 phi-units MV 0.2205 mm -0.50 -0.625 0.000 0.0000 1.1111Skewness: -0.5798 NU MV 5.4165 NU -0.25 -0.375 0.000 0.0000 1.1111Kurtosis: 3.7757 NU MV 38.8838 NU 0.00 -0.125 0.000 0.0000 1.11115th Moment Measure: -7.287 NU MV 6.61 NU 0.25 0.125 0.000 0.0000 1.11116th Moment Measure: 27.477 NU MV 23.47 NU 0.50 0.375 0.016 1.7778 2.8889Median: 3.2306 φ 0.1065 mm 0.1069 mm 0.75 0.625 0.005 0.5556 3.4444Relative Dispersion: MV MV 1.4384 NU 1.00 0.875 0.003 0.3333 3.7778 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.007 0.7778 4.5556 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.024 2.6667 7.2222 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.020 2.2222 9.4444 2.00 1.875 0.036 4.0000 13.4444 25 2.25 2.125 0.019 2.1111 15.5556 2.50 2.375 0.041 4.5556 20.1111 2.75 2.625 0.048 5.3333 25.4444 3.00 2.875 0.093 10.3333 35.7778 3.25 3.125 0.079 8.7778 44.5556 3.50 3.375 0.116 12.8889 57.4444 20 3.75 3.625 0.109 12.1111 69.5556 4.00 3.875 0.089 9.8889 79.4444 6.00 5 0.185 20.5556 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 15 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 5 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

163 Table C.37. GRANPLOT analysis of Core 020507-1-142 (depth interval of 269-271 cm)

Sample I.D.: 020507-1-142 - Total Sample Sample I.D.: 020507-1-142 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 5/29/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.705 Dry Sieved Fines Wt.: 0.244 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 0.949 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.4214 φ 0.0933 mm 0.1690 mm -0.75 -0.875 0.023 2.4236 2.4236Standard Deviation: 1.3140 phi-units MV 0.3209 mm -0.50 -0.625 0.012 1.2645 3.6881Skewness: -1.0652 NU MV 4.4049 NU -0.25 -0.375 0.000 0.0000 3.6881Kurtosis: 4.9008 NU MV 21.9281 NU 0.00 -0.125 0.001 0.1054 3.79355th Moment Measure: -12.704 NU MV 6.39 NU 0.25 0.125 0.001 0.1054 3.89886th Moment Measure: 42.680 NU MV 18.21 NU 0.50 0.375 0.000 0.0000 3.8988Median: 3.3351 φ 0.0991 mm 0.0993 mm 0.75 0.625 0.001 0.1054 4.0042Relative Dispersion: MV MV 1.8991 NU 1.00 0.875 0.001 0.1054 4.1096 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.009 0.9484 5.0580 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.015 1.5806 6.6386 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.012 1.2645 7.9031 2.00 1.875 0.029 3.0558 10.9589 30 2.25 2.125 0.014 1.4752 12.4341 2.50 2.375 0.032 3.3720 15.8061 2.75 2.625 0.049 5.1633 20.9694 3.00 2.875 0.108 11.3804 32.3498 3.25 3.125 0.070 7.3762 39.7260 25 3.50 3.375 0.116 12.2234 51.9494 3.75 3.625 0.113 11.9073 63.8567 4.00 3.875 0.099 10.4320 74.2887 6.00 5 0.244 25.7113 100.0000 6.00 5 0.000 0.0000 100.0000 20 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 15 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 5 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

164 Table C.38. GRANPLOT analysis of Core 020507-1-148 (depth interval of 293-295 cm)

Sample I.D.: 020507-1-148 - Total Sample Sample I.D.: 020507-1-148 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 5/29/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 0.979 Dry Sieved Fines Wt.: 0.291 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 1.270 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.6558 φ 0.0793 mm 0.1163 mm -0.75 -0.875 0.000 0.0000 0.0000Standard Deviation: 1.0262 phi-units MV 0.1878 mm -0.50 -0.625 0.008 0.6299 0.6299Skewness: -1.3217 NU MV 5.1498 NU -0.25 -0.375 0.000 0.0000 0.6299Kurtosis: 7.0658 NU MV 31.3885 NU 0.00 -0.125 0.003 0.2362 0.86615th Moment Measure: -22.184 NU MV 3.13 NU 0.25 0.125 0.032 2.5197 3.38586th Moment Measure: 85.905 NU MV 9.33 NU 0.50 0.375 0.003 0.2362 3.6220Median: 3.4375 φ 0.0923 mm 0.0926 mm 0.75 0.625 0.000 0.0000 3.6220Relative Dispersion: MV MV 1.6157 NU 1.00 0.875 0.002 0.1575 3.7795 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.003 0.2362 4.0157 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.000 0.0000 4.0157 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.001 0.0787 4.0945 2.00 1.875 0.001 0.0787 4.1732 30 2.25 2.125 0.006 0.4724 4.6457 2.50 2.375 0.011 0.8661 5.5118 2.75 2.625 0.014 1.1024 6.6142 3.00 2.875 0.060 4.7244 11.3386 3.25 3.125 0.115 9.0551 20.3937 25 3.50 3.375 0.316 24.8819 45.2756 3.75 3.625 0.240 18.8976 64.1732 4.00 3.875 0.164 12.9134 77.0866 6.00 5 0.291 22.9134 100.0000 6.00 5 0.000 0.0000 100.0000 20 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 15 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000

6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 5 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

165 Table C.39. GRANPLOT analysis of Core 020507-1-152 (depth interval of 309-311 cm)

Sample I.D.: 020507-1-152 - Total Sample Sample I.D.: 020507-1-152 Sampled by: A.C. Lower Start Sieve Size (phi): -1 Sample Date: 5/29/2007 Analyzed by: A.C. Lower End Sieve Size (phi): 4 Fraction Processed Total Sample Pan Sieve Size (phi): 6 Longitude: Latitude: Datum: Sieve Interval (phi): 0.25 Surface Elev: Datum: Water Depth: Number of Splits: 0 Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ? Original Sample Dried? yesAir Dried no Oven Dried yes Original Dry Sample Wt.: 0.127 grams Sample Wet Sieved? no Comments: Mass of Sample Remaining: grams Dry Sieved Sand Wt.: 1.065 Dry Sieved Fines Wt.: 0.116 grams Wet Sieved Fines Wt.: grams Wet Sieved Silt Wt.: grams Wet Sieved Clay Wt.: grams Final Total Sample Wt.: 1.181 grams

Sieve Sieve Weight Freq Cumulative Statistical Results Size Midpoint Weight Weight Original Data Transformed Original Data Measure (phi) (phi) (grams) % % in φ Units Data in Millimeters -1.00 -1.125 0.000 0.0000 0.0000Mean: 3.2598 φ 0.1044 mm 0.1476 mm -0.75 -0.875 0.025 2.1169 2.1169Standard Deviation: 0.9438 phi-units MV 0.2558 mm -0.50 -0.625 0.000 0.0000 2.1169Skewness: -1.4271 NU MV 6.0927 NU -0.25 -0.375 0.000 0.0000 2.1169Kurtosis: 9.5080 NU MV 40.0888 NU 0.00 -0.125 0.000 0.0000 2.11695th Moment Measure: -33.260 NU MV 8.73 NU 0.25 0.125 0.000 0.0000 2.11696th Moment Measure: 156.333 NU MV 29.11 NU 0.50 0.375 0.000 0.0000 2.1169Median: 3.1268 φ 0.1145 mm 0.1145 mm 0.75 0.625 0.003 0.2540 2.3709Relative Dispersion: MV MV 1.7332 NU 1.00 0.875 0.002 0.1693 2.5402 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method of moments. 1.25 1.125 0.003 0.2540 2.7942 MV = meaningless value; NU = no units (i.e. , dimensionless) 1.50 1.375 0.010 0.8467 3.6410 Transformed data are calculated using mm = 2-φ 1.75 1.625 0.002 0.1693 3.8103 2.00 1.875 0.016 1.3548 5.1651 25 2.25 2.125 0.009 0.7621 5.9272 2.50 2.375 0.035 2.9636 8.8908 2.75 2.625 0.051 4.3184 13.2091 3.00 2.875 0.200 16.9348 30.1439 3.25 3.125 0.233 19.7290 49.8730 3.50 3.375 0.203 17.1888 67.0618 20 3.75 3.625 0.178 15.0720 82.1338 4.00 3.875 0.095 8.0440 90.1778 6.00 5 0.116 9.8222 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 15 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 10 6.00 5 0.000 0.0000 100.0000 Frequency Percent 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 5 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 6.00 5 0.000 0.0000 100.0000 0 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 Grain Size (Phi)

Relative Disperison Scale < 0.5 Excellent homogeneity (e.g. beaches) Tweak ACUMPLOT X-axis here: 0.5 to 1.0 Good homogeneity X-axis minimum -1 1.0 to 1.33 Fair homogeneity X-axis maximum 5.5 > 1.33 Poor homogeneity

166 REFERENCES

Aitken, M.J., 1998, An Introduction to Optical Dating: The Dating of Quaternary Sediments by the use of Photon-Stimulated Luminescence: New York, Oxford University Press

Anonymous, Unpublished Report, Grayton Beach State Park Acquisition History Report.

Balsillie, James H., 2002. Expedient assessments of coastal storm and hurricane damage potential: Environmental Geosciences, vol. 9, pg. 102-108.

Balsillie, J.H., Donoghue, J.F., Butler, K.M., and Koch, J.L, 2002, Plotting equations for Gaussian percentiles and a spreadsheet program for generating probability plots: Journal of Sedimentary Research, vol. 72, pg. 929-933.

Balsillie, J.H., and Donoghue, J.F., 2004, High Resolution sea-level history for the Gulf of Mexico since the last glacial maximum: Florida Geological Survey Report of Investigation #103. Tallahassee, FL, Florida Geological Survey, 31 p.

Cabanes, C., Cazenave, A., Le Provost, C., 2001, Sea level rise during past 40 years determined from satellite and in situ observations: Science, vol. 294, no. 5543, pg. 840- 842.

Collins, E.S., D.B. Scott, and P.T. Gayes, 1999, Hurricane records on the South Carolina Coast: Can they be detected in the sediment record? Quaternary International: vol. 56, pg. 15-26.

Crown Weather Service, http://www.crownweather.com/tropical.html

Culliton, T.J., 1998, Population: distribution, density and growth: NOAA – State of the Coast Report, http://oceanservice.noaa.gov/websites/retiredsites/sotc_pdf/POP.PDF

Davis, J.L, and Annan, A.P., 1989, Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy: Geophysical Prospecting, vol. 37, no. 5, pg. 531-551.

Dean, Walter E. Jr., 1974, Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods: Journal of Sedimentary Petrology, vol. 44, no.1, pg. 242-248.

Donnelly, J.P., Bryant, S.S., Butler, J., Dowling, J., Fan, L., Hausmann, N., Newby, P., Shuman, B., Stern, J., Westover, K., and Webb, T., 2001, 700 yr sedimentary record of intense hurricane landfalls in southern New England: Geological Society of America Bulletin: vol. 113, No. 6, pp. 714–727.

167

Donnelly, J.P., Roll, S., Wingmen, M., Butler, J., Lederer, R., and Webb, T., 2001, Sedimentary evidence of intense hurricane strikes from New Jersey: Geology, vol. 29, p. 615-618.

Donoghue, J.F., and Tanner, W.F., 1992, Quaternary terraces and shorelines of the Panhandle Florida region: In Quaternary Coasts of the United States: Marine and Lacustrine Systems, SEPM Special Publication 48, C.H. Fletcher and J.F. Wehmiller, (eds.) pg. 233-241.

FDEP, 2004, Hurricane Ivan, beach and dune erosion and structural damage assessment and post-storm recovery plan for the panhandle coast of Florida: Report, Florida Department of Environmental Protection, Bureau of Beaches and Coastal Systems, Tallahassee, FL, 61 p.

FDEP, 2006, Hurricane Dennis and Hurricane Katrina: Final Report on 2005 Hurricane Season Impacts to Northwest Florida: Unpubl. Rept., Florida Department of Environmental Protection, Division of Water Resource Management, Bureau of Beaches and Coastal Systems, 116 p (http://bcs.dep.state.fl.us/reports/2005/2005hurr.pdf).

Florida Commission on Tourism, 2007, Visit Florida Research: http://media.visitflorida.org/about/research/

Folk, R.L., and Ward, W.C., 1957, Brazos river bar (Texas); a study in the significance of grain size parameters: Journal of Sedimentary Petrology, vol. 27, no. 1, pg. 3-26.

Google Earth, http://earth.google.com/

Hutt, G.I., and Raukas, A., 1995, Thermoluminescence dating of sediments: in Rutter, N.W., and Catto, N.R., eds., Dating Methods for Quaternary Deposits: Newfoundland, Geological Association of Canada, pg. 73-79.

HydroGeoLogic Inc., 2000, Modeling of Ground Water Flow in Walton, Okaloosa and Santa Rosa Counties, Florida: Unpublished Report. to Northwest Florida Water Management District, 117 p.

Isphording, W. C. and Isphording, G.W., 1991, Identification of ancient storm events in buried Gulf Coast sediments: Transactions - Gulf Coast Association of Geological Societies, vol. 4, pg. 339-347.

Jol, H. M., Lawton, D. C., and Smith, D. G., 2003, Ground penetrating radar; 2-D and 3- D subsurface imaging of a coastal barrier spit, Long Beach, WA, USA: in Shroder, J.F., and Bishop, M.P., eds., Integration of computer modeling and field observations in geomorphology; Binghamton Geomorphology Symposium 2000: Geomorphology, vol.53, no.1-2, pp.165-181.

168 Lane, E., 1994, Florida’s geological history and geological resources: Special Publication, Florida Geological Survey, vol. 35, 64 pp.

Lepper, K., 2003, (website) North Dakota State University, http://www.ndsu.nodak.edu/ndsu/klepper/

Liu, K., Fearn, M. L., 1993, Lake-sediment record of late Holocene hurricane activities from coastal Alabama: Geology, vol.21, no.9, p 793-796.

Liu, K., and Fearn, M. L., 2000, Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwestern Florida from lake sediment records: Quaternary Research, vol.54, no.2, p 238-245.

MALA, 2001, unpublished technical materials provided by J. Cook, MALA GeoScience.

Moore, L.J., Jol, H. M., Kruse, S., Vanderburgh, S., and Kaminsky, G.M., 2004. Annual layers revealed by GPR in the subsurface of a prograding coastal barrier, Southwest Washington, U.S.A.: Journal of Sedimentary Research, vol. 74, no. 5, p 690-696.

Mora, Claudia I., Miller, Dana L., and Grissino-Mayer, Henri D., 2006, Tempest in a tree ring; paleotempestology and the record of past hurricanes: The Sedimentary Record, vol. 4, no. 3, pg. 4-8.

Muller, R.A., and Stone, G.W., 2001. A climatology of tropical storm and hurricane strikes to enhance vulnerability prediction for the Southeast U.S. coast: Journal of Coastal Research, v. 17, p. 949-956.

NASA World Wind , http://www.worldwind.arc.nasa.gov/

Neal, Adrian, Pontee, Nigel I., Pye, Ken, and Richards, Julie. 2002, Internal structure of mixed-sand-and-gravel beach deposits revealed using ground-penetrating radar: Sedimentology, vol. 49, p 789-804.

Nichol, S.L., 2002, Morphology, stratigraphy and origin of last interglacial beach ridges at Bream Bay, New Zealand: Journal of Coastal Research, v18 (1), p.149-159.

NOAA, 2006b, http://www.ngdc.noaa.gov/mgg/ibcaa/gaz/gulf_names.pdf

NOAA Coastal Services, http://maps.csc.noaa.gov/hurricanes/viewer.html

Nott, Jonathon, 2004. Palaeotempestology: the study of prehistoric tropical cyclones—a review and implications for hazard assessment: Environment International, vol. 30, no. 3, p 433-447.

NWS, 2008, http://www.prh.noaa.gov/cphc/pages/FAQ/Basic_Definitions.php

169 Randazzo, A.F., and Jones, P.S., 1997, The Geology of Florida: Gainesville, University Press of Florida, 327 pp.

Raymo, M.E., Lisiecki, L.E., and Nisancioglu, K.H., 2006, Plio-Pleistocene ice volume, Antarctic Climate, and the global 18O record: Science, vol. 313, no. 5786, pg. 492-495.

Reynolds, J.M., 1997, An introduction to applied environmental geophysics: West Sussex, John Wiley and Sons Ltd., 796 pp.

Roberts, H.H., 1995, Sedimentological characteristics of vibracores collected in support of the “Coast of Florida seismic survey and sediment coring study”: Unpubl. Report, Evans-Hamilton, Inc. and U.S. Army Corps of Engineers.

Robinson, R.A., Osborne, R.H., Gorsline, D.S., and Robertson, M.C., 1995, A digital system for recording and rapidly processing settling-tube data: Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes, vol. 65, no. 3, pp. 575.

Schmidt, W., 1984, Notes on the Geology of Walton County: Open File Report 3- Florida Geological Survey: 34 pp.

Scott, Thomas M., 2001, Geologic Map of Florida: Open File Report 80– Florida Geological Survey: 29 pp.

Simpson, R.H., and Lawrence, M., 1971. Atlantic Hurricane Frequencies Along the U.S. Coastline: NOAA Technical Memorandum NWS-SR-58, 14p.

Springer, Abby L., 2005, Assessment of Paleotempestology in Middleton Pond, SC: Unpubl. MS. Thesis, University of South Carolina, 72 pp.

Stewart, R.A., and Gorsline, D.S., 1962, Recent sedimentary history of St. Joseph Bay, Florida: Sedimentology, vol. 1, pg. 256-286.

Tanner, W.F., 1964, Nearly ideal drift systems along the Florida Panhandle coast: Zeitscrift fur Geomorphologie Neue Folge, vol. 8, pg. 334-342.

Tsoar, H., Blumberg, D.G. and Stoler, Y., 2004, Elongation and migration of sand dunes: Geomorphology, v.57 (3-4), p.293-302.

URS Corp., Reconnaissance Offshore Sand (ROSS) Project: http://ross.urs-tally.com/

Ward, S., and Main, C., 1998, Population at risk from natural hazards, NOAA – State of the Coast Report, http://oceanservice.noaa.gov/websites/retiredsites/sotc_pdf/PAR.PDF

Woodroffe, C.D. 2002. Coasts: Form, Processes and Evolution. Cambridge: Cambridge University Press, 617 pp.

170

BIOGRAPHICAL SKETCH

Aaron Christopher Lower was born in Winamac, Indiana, in December of 1980. He attended Mayflower Mill Elementary, Wainwright Middle School and graduated from McCutcheon High School in May of 1999. He was then accepted into the Department of Earth and Atmospheric Sciences at Purdue University, where he graduated in May of 2004. He then enrolled at Florida State University where he studied coastal geology under the guidance of Dr. Joseph Donoghue. He completed his Master’s in the summer of 2008. He is currently employed with URS Corporation in Chicago, Illinois.

171