An Assessment of Cyclone Mitigation and Management Policies of Bangladesh: a Focus on Early Warning Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Informed System Development Approach to Tropical Cyclone Track and Intensity Forecasting
Linköping Studies in Science and Technology Dissertations. No. 1734 An Informed System Development Approach to Tropical Cyclone Track and Intensity Forecasting by Chandan Roy Department of Computer and Information Science Linköping University SE-581 83 Linköping, Sweden Linköping 2016 Cover image: Hurricane Isabel (2003), NASA, image in public domain. Copyright © 2016 Chandan Roy ISBN: 978-91-7685-854-7 ISSN 0345-7524 Printed by LiU Tryck, Linköping 2015 URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-123198 ii Abstract Introduction: Tropical Cyclones (TCs) inflict considerable damage to life and property every year. A major problem is that residents often hesitate to follow evacuation orders when the early warning messages are perceived as inaccurate or uninformative. The root problem is that providing accurate early forecasts can be difficult, especially in countries with less economic and technical means. Aim: The aim of the thesis is to investigate how cyclone early warning systems can be technically improved. This means, first, identifying problems associated with the current cyclone early warning systems, and second, investigating if biologically based Artificial Neural Networks (ANNs) are feasible to solve some of the identified problems. Method: First, for evaluating the efficiency of cyclone early warning systems, Bangladesh was selected as study area, where a questionnaire survey and an in-depth interview were administered. Second, a review of currently operational TC track forecasting techniques was conducted to gain a better understanding of various techniques’ prediction performance, data requirements, and computational resource requirements. Third, a technique using biologically based ANNs was developed to produce TC track and intensity forecasts. -
Effect of Major Storms on Morphology and Sediments of a Coastal Lake on the Northwest Florida Barrier Coast Aaron C
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2008 Effect of Major Storms on Morphology and Sediments of a Coastal Lake on the Northwest Florida Barrier Coast Aaron C. Lower Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES EFFECT OF MAJOR STORMS ON MORPHOLOGY AND SEDIMENTS OF A COASTAL LAKE ON THE NORTHWEST FLORIDA BARRIER COAST By AARON C. LOWER A Thesis submitted to the Department of Geological Sciences in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Summer Semester, 2008 The members of the Committee approve the thesis of Aaron C. Lower defended on March 19, 2008. ___________________________ Joseph F. Donoghue Professor Directing Thesis ___________________________ Anthony J. Arnold Committee Member ___________________________ Sherwood W. Wise Committee Member ___________________________ Stephen J. Kish Committee Member Approved: ___________________________ A. Leroy Odom, Chair, Department of Geological Sciences ii ACKNOWLEDGEMENTS There are many people I would like to thank and recognize for their support throughout my studies. First, I would like to thank my advisor, Dr. Joseph Donoghue, for his continuous support and guidance during the MS program. Many thanks to the late Jim Balsillie, whose field expertise and suggestions proved invaluable to the completion of this thesis. Thanks to Jim Sparr, of the Florida Geological Survey, for his assistance with the GPR surveys. I am grateful to Matt Curren, formerly of the FSU Antarctic Research Facility, for the use of the X-ray machine, darkroom facilities and the storage of my cores. -
Sigma 1/2008
sigma No 1/2008 Natural catastrophes and man-made disasters in 2007: high losses in Europe 3 Summary 5 Overview of catastrophes in 2007 9 Increasing flood losses 16 Indices for the transfer of insurance risks 20 Tables for reporting year 2007 40 Tables on the major losses 1970–2007 42 Terms and selection criteria Published by: Swiss Reinsurance Company Economic Research & Consulting P.O. Box 8022 Zurich Switzerland Telephone +41 43 285 2551 Fax +41 43 285 4749 E-mail: [email protected] New York Office: 55 East 52nd Street 40th Floor New York, NY 10055 Telephone +1 212 317 5135 Fax +1 212 317 5455 The editorial deadline for this study was 22 January 2008. Hong Kong Office: 18 Harbour Road, Wanchai sigma is available in German (original lan- Central Plaza, 61st Floor guage), English, French, Italian, Spanish, Hong Kong, SAR Chinese and Japanese. Telephone +852 2582 5691 sigma is available on Swiss Re’s website: Fax +852 2511 6603 www.swissre.com/sigma Authors: The internet version may contain slightly Rudolf Enz updated information. Telephone +41 43 285 2239 Translations: Kurt Karl (Chapter on indices) CLS Communication Telephone +41 212 317 5564 Graphic design and production: Jens Mehlhorn (Chapter on floods) Swiss Re Logistics/Media Production Telephone +41 43 285 4304 © 2008 Susanna Schwarz Swiss Reinsurance Company Telephone +41 43 285 5406 All rights reserved. sigma co-editor: The entire content of this sigma edition is Brian Rogers subject to copyright with all rights reserved. Telephone +41 43 285 2733 The information may be used for private or internal purposes, provided that any Managing editor: copyright or other proprietary notices are Thomas Hess, Head of Economic Research not removed. -
Development Letter Draft
Issue JAN-MAR ‘21 A periodical by Research and Policy Integration for Development (RAPID) with the support from The Asia Foundation Strengthening Localisation of SDGs: Rethinking Bangladesh’s Fiscal Year Time Frame A Model Union Approach M Abu Eusuf | Page 17 Shamsul Alam | Page 1 Combatting Transfer Mispricing: Getting Ready for LDC Graduation A New Avenue for Bangladesh Customs Abdur Razzaque | Page 3 Nipun Chakma & Mohammad Fyzur Rahman | Page 20 World Rankings of Dhaka University: Do Natural Hazards Make Farmers from Coastal How to Improve? Areas More Productive? Evidence from Bangladesh Muhammed Shah Miran | Page 6 Syed Mortuza Asif Ehsan & Md Jakariya | Page 24 Economic Governance in Bangladesh: The Need for Valuing the Socio-Cultural Aspects of Potential Roles for the Planning Commission Wetland Ecosystem Services in Bangladesh Helal Ahammad | Page 8 Alvira Farheen Ria & Raisa Bashar | Page 27 Multidimensional Poverty in Bangladesh: Plugging Bangladesh into Global COVID-19 Measurement and Implications Vaccine Supply Chain Mahfuz Kabir | Page 13 Rabiul Islam Rabi & Md Shahiduzzaman Sarkar | Page 30 © All rights reserved by Research and Policy Integration for Development (RAPID) Editorial Team Editor-In-Chief Advisory Board Abdur Razzaque, PhD Atiur Rahman, PhD Chairman, RAPID and Research Director, Policy Former Governor, Bangladesh Bank, Dhaka, Bangladesh Research Institute (PRI), Dhaka, Bangladesh Ismail Hossain, PhD Managing Editor Pro Vice-Chancellor, North South University, M Abu Eusuf, PhD Dhaka, Bangladesh Professor, Department -
Understanding the Characteristics of Rapid Intensity Changes of Tropical Cyclones Over North Indian Ocean
Research Article Understanding the characteristics of rapid intensity changes of Tropical Cyclones over North Indian Ocean Raghu Nadimpalli1 · Shyama Mohanty1 · Nishant Pathak1 · Krishna K. Osuri2 · U. C. Mohanty1 · Somoshree Chatterjee1 Received: 31 August 2020 / Accepted: 21 December 2020 © The Author(s) 2021 OPEN Abstract North Indian Ocean (NIO), which comprises of Bay of Bengal (BoB) and Arabian Sea (AS) basins, is one of the highly poten- tial regions for Tropical Cyclones (TCs) in the world. Signifcant improvements have been achieved in the prediction of the movement of TCs, since the last decade. However, the prediction of sudden intensity changes becomes a challeng- ing task for the research and operational meteorologists. Hence, the present study focuses on fnding the climatological characteristics of such intensity changes over NIO regions. Rapid Intensifcation (RI) is defned as the 24-h maximum sustained surface wind speed rate equal to 30 knots (15.4 ms−1). The results suggest that the TCs formed over the NIO basin are both seasonal and basin sensitive. Since 2000, a signifcant trend is observed in RI TCs over the basin. At least one among three cyclones getting intensifed is of RI category. More number of RI cases have been identifed in the BoB basin than the AS. The post-monsoon season holds more RI and rapid decay cases, with 63% and 90% contribution. Most of the TCs are attaining RI onset in their initial stage. Further, India is receiving more landfalling RI TCs, followed by Bangladesh and Oman. The east coast of India, Tamil Nadu, and Andhra Pradesh are the most vulnerable states to these RI TCs. -
Rehabilitation, Reconstruction & Development a Post Cyclone Nargis Initiative
Rehabilitation, Reconstruction & Development A Post Cyclone Nargis Initiative 1 2 Metta Development Foundation Table of Contents Forward, Executive Director 2 A Post Cyclone Nargis Initiative - Executive Summary 6 01. Introduction – Waves of Change The Ayeyarwady Delta 10 Metta’s Presence in the Delta. The Tsunami 11 02. Cyclone Nargis –The Disaster 12 03. The Emergency Response – Metta on Site 14 04. The Global Proposal 16 The Proposal 16 Connecting Partners - Metta as Hub 17 05. Rehabilitation, Reconstruction and Development August 2008-July 2011 18 Introduction 18 A01 – Relief, Recovery and Capacity Building: Rice and Roofs 18 A02 – Food Security: Sowing and Reaping 26 A03 – Education: For Better Tomorrows 34 A04 – Health: Surviving and Thriving 40 A05 – Disaster Preparedness and Mitigation: Providing and Protecting 44 A06 – Lifeline Systems and Transportation: The Road to Safety 46 Conclusion 06. Local Partners – The Communities in the Delta: Metta Meeting Needs 50 07. International Partners – The Donor Community Meeting Metta: Metta Day 51 08. Reporting and External Evaluation 52 09. Cyclones and Earthquakes – Metta put anew to the Test 55 10. Financial Review 56 11. Beyond Nargis, Beyond the Delta 59 12. Thanks 60 List of Abbreviations and Acronyms 61 Staff Directory 62 Volunteers 65 Annex 1 - The Emergency Response – Metta on Site 68 Annex 2 – Maps 76 Annex 3 – Tables 88 Rehabilitation, Reconstruction & Development A Post Cyclone Nargis Initiative 3 Forword Dear Friends, Colleagues and Partners On the night of 2 May 2008, Cyclone Nargis struck the delta of the Ayeyarwady River, Myanmar’s most densely populated region. The cyclone was at the height of its destructive potential and battered not only the southernmost townships but also the cities of Yangon and Bago before it finally diminished while approaching the mountainous border with Thailand. -
Monsoon Cyclones. 52
STUDY ON VERTICAL STRUCTURE OF TROPICAL CYCLONES FORMED IN THE BAY OF BENGAL DURING 2007-2016 A dissertation submitted to the Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN PHYSICS Submitted by SHAIYADATUL MUSLIMA Roll No.: 0416142506F Session: April/2016 DEPARTMENT OF PHYSICS BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY (BUET), DHAKA-1000, BANGLADESH April, 2019 i CANDIDATE'S DECLARATION It is hereby declared that this thesis or any part of it has not been submitted elsewhere for the award of any degree or diploma. Signature of the Candidate ---------------------------------------------------- SHAIYADATUL MUSLIMA Roll No.: 0416142506F Session: April/2016 ii iii Dedicated To My Beloved Parents iv CONTENTS Page No. List of Table viii List of Figures ix Abbreviations xv Acknowledgement xvi Abstract xvii Chapter No. Page No. CHAPTER 1: INTRODUCTION 1 1 1.1 prelude 1.2 objectives of the research 2 CHPATER 2: LITERATURE REVIEW 2.1 previous work 4 2.2 Overview of the study 6 2.2.1 Cyclone 6 2.2.2 Detail of tropical cyclone 6 2.2.3 Cyclone season 7 2.2.4 Tropical cyclone basins 8 2.2.5 Bay of Bengal 9 2.2.6 Classifications of tropical cyclone intensity 10 2.2.7 Physical structure of tropical cyclone 11 2.2.8 Environmental parameters related to cyclone 13 2.2.8.1Wind 13 2.2.8.2 Wind shear 14 2.2.8.3 Temperature 15 2.2.8.4 Vorticity 16 2.2.8.5 Equivalent potential temperature 18 2.2.8.6 Relative humidity 18 CHAPTER -
Real-Time Track Prediction of Tropical Cyclones Over the North Indian Ocean Using the ARW Model
2476 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY VOLUME 52 Real-Time Track Prediction of Tropical Cyclones over the North Indian Ocean Using the ARW Model KRISHNA K. OSURI AND U. C. MOHANTY School of Earth, Ocean and Climate Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India A. ROUTRAY National Centre for Medium Range Weather Forecasting, Noida, India M. MOHAPATRA India Meteorological Department, New Delhi, India DEV NIYOGI Purdue University, West Lafayette, Indiana (Manuscript received 18 November 2012, in final form 9 July 2013) ABSTRACT The performance of the Advanced Research version of the Weather Research and Forecasting (ARW) model in real-time prediction of tropical cyclones (TCs) over the north Indian Ocean (NIO) at 27-km res- olution is evaluated on the basis of 100 forecasts for 17 TCs during 2007–11. The analyses are carried out with respect to 1) basins of formation, 2) straight-moving and recurving TCs, 3) TC intensity at model initialization, and 4) season of occurrence. The impact of high resolution (18 and 9 km) on TC prediction is also studied. Model results at 27-km resolution indicate that the mean track forecast errors (skill with reference to per- sistence track) over the NIO were found to vary from 113 to 375 km (7%–51%) for a 12–72-h forecast. The model showed a right/eastward and slow bias in TC movement. The model is more skillful in track prediction when initialized at the intensity stage of severe cyclone or greater than at the intensity stage of cyclone or lower. The model is more efficient in predicting landfall location than landfall time. -
Hazard Profile of Myanmar: an Introduction 1.1
Table of Contents Table of Contents ............................................................................................................ I List of Figures ................................................................................................................ III List of Tables ................................................................................................................. IV Acronyms and Abbreviations ......................................................................................... V 1. Hazard Profile of Myanmar: An Introduction 1.1. Background ...................................................................................................................... 1 1.2. Myanmar Overview ......................................................................................................... 2 1.3. Development of Hazard Profile of Myanmar : Process ................................................... 2 1.4. Objectives and scope ....................................................................................................... 3 1.5. Structure of ‘Hazard Profile of Myanmar’ Report ........................................................... 3 1.6. Limitations ....................................................................................................................... 4 2. Cyclones 2.1. Causes and Characteristics of Cyclones in the Bay of Bengal .......................................... 5 2.2. Frequency and Impact .................................................................................................... -
Bangladesh Tropical Cyclone Event
Oasis Platform for Climate and Catastrophe Risk Assessment – Asia Bangladesh Tropical Cyclone Historical Event Set: Data Description Documentation Hamish Steptoe, Met Office Contents Introduction 2 Ensemble Configuration 3 Domain 4 Data Categories 4 Data Inventory 5 File Naming 6 Variables 6 Time Methods 7 Data Metadata 7 Dimensions 9 Variables 10 Global Attributes 11 Oasis LMF Files 11 ktools conversion 12 References 12 Introduction This document describes the data that forms the historical catalogue of Bangladesh tropical cyclones, part of the Oasis Platform for Climate and Catastrophe Risk Assessment – Asia, a project funded by the International Climate Initiative (IKI), supported by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, based on a decision of the German Bundestag The catalogue contains the following tropical cyclones: Name Landfall Date IBTrACS ID (DD/MM/YYYY HH:MMZ) BOB01 30/04/1991 00:00Z 1991113N10091 BOB07 25/11/1995 09:00Z 1995323N05097 TC01B 19/05/1997 15:00Z 1997133N03092 Page 2 of 13 Akash 14/05/2007 18:00Z 2007133N15091 Sidr 15/11/2007 18:00Z 2007314N10093 Rashmi 26/10/2008 21:00Z 2008298N16085 Aila 25/05/2009 06:00Z 2009143N17089 Viyaru 16/05/2013 09:00Z 2013130N04093 Roanu 21/05/2016 12:00Z 2016138N10081 Mora 30/05/2017 03:00Z 2017147N14087 Fani 04/05/2019 06:00Z 2019117N05088 Bulbul 09/11/2019 18:00Z 2019312N16088 Ensemble Configuration Each tropical cyclone comprises of a nine-member, 3-hourly time-lagged ensemble. Each ensemble member covers a period of 48 hours, once the initial 24-hour model spin is removed (see Figure 1 for a visual representation), at resolutions of 4.4km and 1.5km based on the Met Office Unified Model dynamically downscaling ECMWF ERA5 data. -
Myanmar: Cyclone Mala
MYANMAR: CYCLONE MDRMM00101 Update no. 01 MALA 6 September 2006 The Federation’s mission is to improve the lives of vulnerable people by mobilizing the power of humanity. It is the world’s largest humanitarian organization and its millions of volunteers are active in over 185 countries. In Brief Period covered by this update: 5 May 2006 to 30 July 2006 History of this Disaster Relief Emergency Fund (DREF)-funded operation: • CHF 50,000 allocated from the Federations DREF on 5 May 2006 to respond to the needs of this operation, or to replenish disaster preparedness stocks distributed to the affected population. • This operation is expected to be implemented for three months, and will be completed by30 July 2006; • The procurement exercises for this disaster and for annual relief materials have delayed several planned activities, and the end of operation is now required to be extended to 31 October 2006. • a DREF Bulletin Final Report (narrative and financial) will be made available three months after the end of the proposed extended operation, i.e. by 31 January 2007. For further information specifically related to this operation please contact: • Myanmar Red Cross Society: Dr. Hla Mynt (president); email [email protected]; Phone: +95.1.383.681; Fax: +95.1.383.675 • Federation delegation in Myanmar: Bridget Gardner (head of delegation);e-mail: [email protected]; Phone: +95.138.3686; Fax: +95.138.3682 • Federation regional delegation in Bangkok: Bekele Geleta (head of regional delegation);email: [email protected]; Phone: -
Vertical Transport of Ozone and CO During Super Cyclones in the Bay of Bengal As Detected by Tropospheric Emission Spectrometer
Environ Sci Pollut Res (2011) 18:301–315 DOI 10.1007/s11356-010-0374-3 RESEARCH ARTICLE Vertical transport of ozone and CO during super cyclones in the Bay of Bengal as detected by Tropospheric Emission Spectrometer S. Fadnavis & G. Beig & P. Buchunde & Sachin D. Ghude & T. N. Krishnamurti Received: 22 February 2010 /Accepted: 5 July 2010 /Published online: 21 July 2010 # Springer-Verlag 2010 Abstract Vertical profiles of carbon monoxide (CO) and to the advancement in satellite measurements and model ozone retrieved from Tropospheric Emission Spectrometer simulations. The upper troposphere is a region important have been analyzed during two super cyclone systems Mala for chemistry and dynamics because of its distance from the and Sidr. Super cyclones Mala and Sidr traversed the Bay source region near Earth’s surface and its proximity to the of Bengal (BOB) region on April 24–29, 2006 and tropopause (Mahlman 1997). This is the region where November 12–16, 2007 respectively. The CO and ozone radiative forcing, long-range pollution transport, and the plume is observed as a strong enhancement of these transport of air into/from the stratosphere play important pollutants in the upper troposphere over the BOB, role. The three-dimensional models indicate that the indicating deep convective transport. Longitude–height dominant mechanism for exchanging air between Northern cross-section of these pollutants shows vertical transport and Southern hemispheres mostly operate in the tropical to the upper troposphere. CO mixing ratio ~90 ppb is upper troposphere (Tans et al. 1990). The mechanisms for observed near the 146-mb level during the cyclone Mala lifting trace gases out of the Planetary Boundary Layer and near 316 mb during the cyclone Sidr.