Further Evidence for Diversity in Late Silurian Land Vegetation

Total Page:16

File Type:pdf, Size:1020Kb

Further Evidence for Diversity in Late Silurian Land Vegetation Journal of the Geological Society, London, Vol. 147, 1990, pp. 725-728, 7 figs. Printed in Northern Ireland Further evidence for diversity in late Silurian land vegetation U. FANNING',D. EDWARDS' & J. B. RICHARDSON* l Department of Geology, University of Wales College of Cardiff, Cardiff CFl3YE, UK 'Department of Palaeontology, British Museum (Natural History), London SW75BD, UK Abtraet: Small coalified plant fragments from basal Pridoli (Silurian) strata at Perton near Hereford, England comprise isotomously branching smooth axes terminating in vertically elongate sporangia. The latter, whichoccasionally bifurcate, arecharacterized by prominent, distally concentrated, spinous emergences and contain trilete, retusoid, smooth-walled isospores. The plants are placed in a new genus and species, Caia langii. Comparisons are made with a number of Silurian and Lower Devonianplants with elongate sporangia and particularly with Horneophyton. A hypothesisis developed that spines on sporangia had a nutritive function. The spores are discussed in terms of other records of late Silurian-Early Devonian in situ spores. It is not without irony that the very strata in Wales and the Systematic palaeobotany Welsh Borderland that Roderick Murchison insisted were devoid of plants have yielded the most extensive record to Incertae sedis date of early land vegetation. The exposure in the Downton Genus CAIA gen. nov. Group of Perton Lane near Hereford was not visited by Murchison, but is now well known to palaeobotanists as the Type species. Caia langii sp. nov. type locality of the genus Cooksonia Lang (1937), the oldest known land plant of pteridophyte aspect. In the abundant Derivation of name. From caia, Latin for cudgel, referring but fragmentary plant and animal fossils that crowd certain to the shapeof the sporangia. bedding planes, the onlyhigher plant taxa originally recorded were Cooksonia pertoni and Hostinella sp. (Lang Diagnosis. Plant in which distal region comprises smooth 1937). This contrasts markedly with the diverse rhyniophyt- isotomously branchingaxes with terminalsometimes oid assemblage described more recently from approximately bifurcating sporangia.Sporangia consistently longer thm coeval strataat Freshwater East, Dyfed (Edwards 1979). wide, with parallel sides and obtuse tips. Homosporous; However, new collections from Perton Lane have yielded a spores trilete, laevigate and retusoid. number of plants of rhyniophyteaspect, including subspecies of C. pertoni (Fanning et al. 1988), a new genus Remarks. Sporangia in Rhynia, Aglaophyton, Sporogonites with spiny discoidal sporangia(Fanning et al. 1990), new and Salopella are fusiform and unbranched. The genus Caia species of Salopella Edwards & Richardson,and further may be closer to simply branching forms of Horneophyton, plants with differentkinds of vertically elongate terminal but fossils assigned to the new genus lack any anatomical sporangia, one of which is described here as a new genus. data diagnostic of the latter. Steganotheca has an abruptly truncated sporangium with an apical thickening. Locality data and material Caia langii sp. nov. The fossils occur near the base of the Rushall Beds, just Figures 1-7 above the local equivalent of the Ludlow BoneBed Derivation of name. After W. H. Lang. (Squirrel1 & Tucker 1960). Ostracodes and spores indicative of a Pridoli age are present at this level (Kaljo & Klaaman Diagnosis. As for genus. Unbranched sporangia 2-3 times 1982; Richardson et al. 1981), the spores belonging to the longer than wide, 1.38-3.13 mm long (f = 2.07, n = 10) and lower part of the tripapillatus-spicci;la spore assemblage 0.58-1.25 mm wide (f = 0.82, n = 10) with parallel sides and zone of Richardson & McGregor (1986). obtuse apices. Sporangia bear less than 10 conical Wehave recently described elsewhere thenature of emergences with rounded apices anddecurrent bases, fossil plant preservation and the techniques employed, when 0.18-0.30mm high (f = 0.24, n = lO),0.13-0.25 mm in reporting on a new genus from the samehorizon (Fanning et diameter at base (2 = 0.18, n = 10) and 0.05-0.12 mm wide al. 1990). The present description is based on 24 coalified when parallel-sided (f = 0.08, n = 8); emergences mostly compressions. However, in those sporangia with well- concentrated on distal one-third of sporangium. Branched preserved emergences the coalified material is granular and sporangia of overall height 0.75-2.75 mm (f = 1.72, n = 4) readily fragments, whereas when emergences are apparently and 0.63-2.25 wide beforebranching (f = 1.50, n = 4). notpresent or arerepresented by traces of coal tightly Lobe length abovedichotomy 0.30-1.13 mm (f = 0.95, adhering to the sediment, the body of the sporangium often n = 4) and lobe width 0.28-0.75 mm (f = 0.52, n = 4). Axes remains intact, and can be lifted away easily, revealing an 0.18-0.75 mm wide (f = 0.34, n = 14) when parallel-sided. orange stained matrix beneath. Isospores 23-32 pm in diameter (f = 26 pm, n = 20) with 725 Downloaded from http://pubs.geoscienceworld.org/jgs/article-pdf/147/4/725/4890529/gsjgs.147.4.0725.pdf by guest on 24 September 2021 726 U. FANNING ET AL. sporangiumfound measured 1.38 mm high and0.75mm wide, the largest 3.13 mm high and 1.25 mm wide. In thefour bifurcatingspecimens, the two sporangial lobes are parallel-sided, and their lengths are less than that of the unbranched sporangia. They have similar apices (Figs 3 & 4). Theirsubtending axes tapermarkedly before becoming parallel-sided, and thus it is difficult to determine the position of sporangium-axisthe junction on morphological criteria.However, the coalified material of the sporangium is usually thicker than that of the axis. Seventeen sporangia, including branched examples, are characterized by emergences,the majority of which are incomplete (Figs 1, 2 & 3).They vary in the 3 number present,but extrapolation from a number of specimens indicates that there were probably few in the living plant. The maximum seen on anyone specimen is seven. The emergencesare mostclearly evident when preserved in profile on the sides of the sporangium. When complete such anemergence has a slightly asymmetrical, proximally attenuated, basal portion that tapers into a parallel-sided region of approximately equal length. The apex is bluntly rounded.The emergences were probably circular in cross-section. Thedecurrent basesand a few intact specimens indicatethat theemergences were directed distally,except in one casewhere the long axisis perpendicular theto sporangium surface. Incomplete examplesare variable in shape ranging fromtriangular bases to sharply truncated outgrowths. Traces of emergences can sometimes be detected on the Fig. 1. Elongated, unbranched, terminal sporangiumof Cain lungii, surface coalifiedof compressions and as coal-filled with parallel sides, obtuse tip and distal concentrationof well depressions on the underlying matrix when the sporangium preserved sporangial emergences,NMW 89.38G.1; scale bar= 0.5 mm. Fig. 2. Isolated sporangium of C. lungii with sporangial emergences seen in profile and, where granular coalified material removed, penetrating the matrix (represented by coal-filled depressions), NMW 89.386.2; scale bar= 0.5 mm. circular-irregular ambs. Trilete with narrow, low, even lips, c. 0.5 pm wide,confluent with narrowa curvatural ‘ridge’/fold of the same width.Exine laevigate, less than 1pm thick, usually crumpledand showing taper-pointed folds. Hofofype. NMW 89.38G.l.,Department of Geology, National Museum of Wales, Cardiff, Fig. 1. Type horizon. RushallBeds, Downton Castle Sandstone Formation, Downton Group, Pridoli Series. Type locality. Perton Lane Quarry, Perton Village, Stoke Edith, near Hereford (SO 5971 4035). Description. Of the 24 fertile specimens collected, 20 have elongateand unbranched sporangia with more or less parallel sides and obtuse tips (Figs 1 & 2). In 12 examples the subtending axis increased gradually in width below the sporangium so that the junction is difficult to recognize and height measurements are equivocal. They are more precise Fig. 3. Specimen of C. lungii in which the body of the bifurcating where the junction is marked by a constriction or there is an sporangium was removed intact and destroyedfor in situ spores; abrupt change in the thickness of coalified material. In two faintly preserved sporangial, emergences are seen in profile and cases, thesubtending axis is parallel-sided and slightly penetrating the matrix beneath,NMW 89.38G.3; scale bar= narrowerthan thesporangium. Six specimensare 0.5 mm. Fig. 4. Bifurcating sporangiumof C. lungii lacking represented by isolatedsporangia (Fig. 2). The smallest sporangial emergences,NMW 89.38G.4; scale bar is0.5 mm. Downloaded from http://pubs.geoscienceworld.org/jgs/article-pdf/147/4/725/4890529/gsjgs.147.4.0725.pdf by guest on 24 September 2021 LA TE SILURIAN LATE LAND VEGETATION 727 5 Pi. 5. Reconstruction of the terminal part of C. lungii; scale bar is 0.5 mm. Pi. 6. Scanning electron micrographof in situ, trilete,laevigate, retusoid spore of C. langii NMW 89.386.5; scale bar is 7.5 pm. Fig. 7’. Scanning electron micrograph of in situ, folded spore of C. Lungii, with granular surface, NMW 89.386.6; scale bar is 8.5 pm. is removed (Fig. 2). In unbranched sporangia, emergences Lang (1920) originally described the sporangia of this are usually concentrated in the distal third of the species as bifulcate or cylindrical structures with broad flat sporangium with rare examples towards the base. Limited apical ends, and considered such organization unique among evidence suggests that they are inserted in a spiral. A typical bryophytes and vascular plants. Should such three- arrangement is shown in the reconstruction (Fig. 5). dimensionally preservedpreservedplantsbe as Seven specimens (including a branching one) appear to compressions they would certainly be comparable in gross lack any emergences (Fig. 4). These are of the preservation morphology to the new plant described here, if not in size. type where the sporangium lifts off intact and emergences Further similarities include the lack of distinction between are very poorly preserved or missing.
Recommended publications
  • Embryophytic Sporophytes in the Rhynie and Windyfield Cherts
    Transactions of the Royal Society of Edinburgh: Earth Sciences http://journals.cambridge.org/TRE Additional services for Transactions of the Royal Society of Edinburgh: Earth Sciences: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Embryophytic sporophytes in the Rhynie and Windyeld cherts Dianne Edwards Transactions of the Royal Society of Edinburgh: Earth Sciences / Volume 94 / Issue 04 / December 2003, pp 397 - 410 DOI: 10.1017/S0263593300000778, Published online: 26 July 2007 Link to this article: http://journals.cambridge.org/abstract_S0263593300000778 How to cite this article: Dianne Edwards (2003). Embryophytic sporophytes in the Rhynie and Windyeld cherts. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94, pp 397-410 doi:10.1017/S0263593300000778 Request Permissions : Click here Downloaded from http://journals.cambridge.org/TRE, IP address: 131.251.254.13 on 25 Feb 2014 Transactions of the Royal Society of Edinburgh: Earth Sciences, 94, 397–410, 2004 (for 2003) Embryophytic sporophytes in the Rhynie and Windyfield cherts Dianne Edwards ABSTRACT: Brief descriptions and comments on relationships are given for the seven embryo- phytic sporophytes in the cherts at Rhynie, Aberdeenshire, Scotland. They are Rhynia gwynne- vaughanii Kidston & Lang, Aglaophyton major D. S. Edwards, Horneophyton lignieri Barghoorn & Darrah, Asteroxylon mackiei Kidston & Lang, Nothia aphylla Lyon ex Høeg, Trichopherophyton teuchansii Lyon & Edwards and Ventarura lyonii Powell, Edwards & Trewin. The superb preserva- tion of the silica permineralisations produced in the hot spring environment provides remarkable insights into the anatomy of early land plants which are not available from compression fossils and other modes of permineralisation.
    [Show full text]
  • Chapter 23: the Early Tracheophytes
    Chapter 23 The Early Tracheophytes THE LYCOPHYTES Lycopodium Has a Homosporous Life Cycle Selaginella Has a Heterosporous Life Cycle Heterospory Allows for Greater Parental Investment Isoetes May Be the Only Living Member of the Lepidodendrid Group THE MONILOPHYTES Whisk Ferns Ophioglossalean Ferns Horsetails Marattialean Ferns True Ferns True Fern Sporophytes Typically Have Underground Stems Sexual Reproduction Usually Is Homosporous Fern Have a Variety of Alternative Means of Reproduction Ferns Have Ecological and Economic Importance SUMMARY PLANTS, PEOPLE, AND THE ENVIRONMENT: Sporophyte Prominence and Survival on Land PLANTS, PEOPLE, AND THE ENVIRONMENT: Coal, Smog, and Forest Decline THE OCCUPATION OF THE LAND PLANTS, PEOPLE, AND THE The First Tracheophytes Were ENVIRONMENT: Diversity Among the Ferns Rhyniophytes Tracheophytes Became Increasingly Better PLANTS, PEOPLE, AND THE Adapted to the Terrestrial Environment ENVIRONMENT: Fern Spores Relationships among Early Tracheophytes 1 KEY CONCEPTS 1. Tracheophytes, also called vascular plants, possess lignified water-conducting tissue (xylem). Approximately 14,000 species of tracheophytes reproduce by releasing spores and do not make seeds. These are sometimes called seedless vascular plants. Tracheophytes differ from bryophytes in possessing branched sporophytes that are dominant in the life cycle. These sporophytes are more tolerant of life on dry land than those of bryophytes because water movement is controlled by strongly lignified vascular tissue, stomata, and an extensive cuticle. The gametophytes, however still require a seasonally wet habitat, and water outside the plant is essential for the movement of sperm from antheridia to archegonia. 2. The rhyniophytes were the first tracheophytes. They consisted of dichotomously branching axes, lacking roots and leaves. They are all extinct.
    [Show full text]
  • The Classification of Early Land Plants-Revisited*
    The classification of early land plants-revisited* Harlan P. Banks Banks HP 1992. The c1assificalion of early land plams-revisiled. Palaeohotanist 41 36·50 Three suprageneric calegories applied 10 early land plams-Rhyniophylina, Zoslerophyllophytina, Trimerophytina-proposed by Banks in 1968 are reviewed and found 10 have slill some usefulness. Addilions 10 each are noted, some delelions are made, and some early planls lhal display fealures of more lhan one calegory are Sel aside as Aberram Genera. Key-words-Early land-plams, Rhyniophytina, Zoslerophyllophytina, Trimerophytina, Evolulion. of Plant Biology, Cornell University, Ithaca, New York-5908, U.S.A. 14853. Harlan P Banks, Section ~ ~ ~ <ltm ~ ~-~unR ~ qro ~ ~ ~ f~ 4~1~"llc"'111 ~-'J~f.f3il,!"~, 'i\'1f~()~~<1I'f'I~tl'1l ~ ~1~il~lqo;l~tl'1l, 1968 if ~ -mr lfim;j; <fr'f ~<nftm~~Fmr~%1 ~~ifmm~~-.mtl ~if-.t~m~fuit ciit'!'f.<nftmciit~%1 ~ ~ ~ -.m t ,P1T ~ ~~ lfiu ~ ~ -.t 3!ftrq; ~ ;j; <mol ~ <Rir t ;j; w -.m tl FIRST, may I express my gratitude to the Sahni, to survey briefly the fate of that Palaeobotanical Sociery for the honour it has done reclassification. Several caveats are necessary. I recall me in awarding its International Medal for 1988-89. discussing an intractable problem with the late great May I offer the Sociery sincere thanks for their James M. Schopf. His advice could help many consideration. aspiring young workers-"Survey what you have and Secondly, may I join in celebrating the work and write up that which you understand. The rest will the influence of Professor Birbal Sahni. The one time gradually fall into line." That is precisely what I did I met him was at a meeting where he was displaying in 1968.
    [Show full text]
  • Acaulosporoid Glomeromycotan Spores with a Germination Shield from the 400-Million-Year-Old Rhynie Chert
    KU ScholarWorks | http://kuscholarworks.ku.edu Please share your stories about how Open Access to this article benefits you. Acaulosporoid glomeromycotan spores with a germination shield from the 400-million- year-old Rhynie chert by Nora Dotzler, Christopher Walker, Michael Krings, Hagen Hass, Hans Kerp, Thomas N. Taylor, Reinhard Agerer 2009 This is the published version of the article, made available with the permission of the publisher. The original published version can be found at the link below. Dotzler, N., Walker, C., Krings, M., Hass, H., Kerp, H., Taylor, T., Agerer, R. 2009. Acaulosporoid glomeromycotan spores with a ger- mination shield from the 400-million-year-old Rhynie chert. Mycol Progress 8:9-18. Published version: http://dx.doi.org/10.1007/s11557-008-0573-1 Terms of Use: http://www2.ku.edu/~scholar/docs/license.shtml This work has been made available by the University of Kansas Libraries’ Office of Scholarly Communication and Copyright. Mycol Progress (2009) 8:9–18 DOI 10.1007/s11557-008-0573-1 ORIGINAL ARTICLE Acaulosporoid glomeromycotan spores with a germination shield from the 400-million-year-old Rhynie chert Nora Dotzler & Christopher Walker & Michael Krings & Hagen Hass & Hans Kerp & Thomas N. Taylor & Reinhard Agerer Received: 4 June 2008 /Revised: 16 September 2008 /Accepted: 30 September 2008 / Published online: 15 October 2008 # German Mycological Society and Springer-Verlag 2008 Abstract Scutellosporites devonicus from the Early Devo- single or double lobes to tongue-shaped structures usually nian Rhynie chert is the only fossil glomeromycotan spore with infolded margins that are distally fringed or palmate. taxon known to produce a germination shield.
    [Show full text]
  • The Impacts of Land Plant Evolution on Earth's Climate and Oxygenation State – an Interdisciplinary Review
    The impacts of land plant evolution on Earth's climate and oxygenation state – An interdisciplinary review Dahl, Tais W.; Arens, Susanne K.M. Published in: Chemical Geology DOI: 10.1016/j.chemgeo.2020.119665 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC-ND Citation for published version (APA): Dahl, T. W., & Arens, S. K. M. (2020). The impacts of land plant evolution on Earth's climate and oxygenation state – An interdisciplinary review. Chemical Geology, 547, [119665]. https://doi.org/10.1016/j.chemgeo.2020.119665 Download date: 10. Sep. 2020 Chemical Geology 547 (2020) 119665 Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo Invited research article The impacts of land plant evolution on Earth's climate and oxygenation state T – An interdisciplinary review ⁎ Tais W. Dahl , Susanne K.M. Arens GLOBE Institute, University of Copenhagen, 1350 Copenhagen K, Denmark ARTICLE INFO ABSTRACT Keywords: The Paleozoic emergence of terrestrial plants has been linked to a stepwise increase in Earth's O2 levels and a Early land plants cooling of Earth's climate by drawdown of atmospheric CO2. Vegetation affects the Earth's2 O and CO2 levels in Terrestrialization multiple ways, including preferential organic carbon preservation by decay-resistant biopolymers (e.g. lignin) Climate and changing the continental weathering regime that governs oceanic nutrient supply and marine biological Oxygenation production. Over shorter time scales (≤1 Myr), land plant evolution is hypothesized to have occasionally en- Soils hanced P weathering and fertilized the oceans, expanding marine anoxia and causing marine extinctions.
    [Show full text]
  • CPY Document
    CHAPTER 1 Plant diversity has evolved and is evolving on the earth today according to the processes of natural selection. All basic "body plans" of vascular plants were in existence by the Early Carboniferous, approximately 340 million years ago, and each major radiation occupied a particular habitat type, for example, wetland versus terra firma, pristine versus disturbed environments. Today the great spe- cies diversity we see on theplanetis dominated by just a few of these hasicplant types. This chapter sets the stage to understanding the origin and radiation of plant diversity on the earth before the significant influence of humans. The im- plication is that plants may become more diverse in the number of species level over time, but less diverse in overall form. The history of life tells us that plants that are dominant and diverse today will certainly be inconspicuous or even ex--' tinct in the distant future. EVOLUTION OF LAND PLANT DIVERSITY MAJOR INNOVATIONS AND LINEAGES THROUGH TIME William A. DiMichele and Richard M. Bateman PLANT DIVERSITY VIEWED through the lens of deep time takes on a con- siderably different aspect than when examined in the present. Although the fossil record captures only fragments of the terrestrial world of the past 450 million years, it does indicate clearly that the world of today is simply a passing phase, the latest permutation in a string of spasmodic changes in the ecological organization of the terrestrial biosphere. The pace of change in species diversity and that of ecosystem structure and composition have followed broadly parallel paths, unquestionably related but not always changing in unison.
    [Show full text]
  • Eastern Anti Atlas Phanerozoic Granular Iron Formations (Ifs): Nomenclature and Classification, Case of Ordovician Basin of Tafilalt
    Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2016, 3(12): 30-38 Research Article ISSN: 2394 - 658X Eastern Anti Atlas Phanerozoic Granular Iron Formations (IFs): Nomenclature and Classification, Case of Ordovician Basin of Tafilalt Saoud N1, Charroud M1, Dahire M2, Hinaj S1 and Mounir S1 1Laboratory of Georesources and Environment, Faculty of Sciences and Technologies, Sidi Mohammed Ben Abdellah University, Fez-Morocco 2 Laboratory of Geodynamics and Natural Resources, Faculty of Science Dhar el Mehrez, Sidi Mohammed Ben Abdellah University, Fez-Morocco [email protected] _____________________________________________________________________________________________ ABSTRACT In Morocco, the variety of ferruginous resources (dated Archean, Paleozoic and Mesozoic) shows a specific char- acter illustrating the relationship between the geographic position and the geodynamic setting which allows depo- sition of several iron mineralized structures. The sedimentary iron is well manifested in the Paleozoic terranes, and assigns great relation with the Hercynean geodynamic regime, which marks the Gondwanean environment during this time. The results of these processes manifest as the establishment of exploitable iron Formations depos- it situated in the Tafilalt Ordovician basin of the eastern Anti Atlas of Morocco. Key words: Hercynean, Gondwanean, exploitable iron deposits, Tafilalt Ifs, Ordovician, Anti Atlas, Morocco _____________________________________________________________________________________ INTRODUCTION Iron Formations (IFs) originates from sedimentary deposition processing, and they are characterized by a high grade iron tenor which manifest as tiny or laminated chemical facies and contains more than 15% sedimentary iron. The ore is formed by iron oxides and hydroxides such as hematite (Fe2O3) and magnetite (Fe3O4) both consti- tute the major part of the mineralized rock.
    [Show full text]
  • An Alternative Model for the Earliest Evolution of Vascular Plants
    1 1 An alternative model for the earliest evolution of vascular plants 2 3 BORJA CASCALES-MINANA, PHILIPPE STEEMANS, THOMAS SERVAIS, KEVIN LEPOT 4 AND PHILIPPE GERRIENNE 5 6 Land plants comprise the bryophytes and the polysporangiophytes. All extant polysporangiophytes are 7 vascular plants (tracheophytes), but to date, some basalmost polysporangiophytes (also called 8 protracheophytes) are considered non-vascular. Protracheophytes include the Horneophytopsida and 9 Aglaophyton/Teruelia. They are most generally considered phylogenetically intermediate between 10 bryophytes and vascular plants, and are therefore essential to elucidate the origins of current vascular 11 floras. Here, we propose an alternative evolutionary framework for the earliest tracheophytes. The 12 supporting evidence comes from the study of the Rhynie chert historical slides from the Natural History 13 Museum of Lille (France). From this, we emphasize that Horneophyton has a particular type of tracheid 14 characterized by narrow, irregular, annular and/or, possibly spiral wall thickenings of putative secondary 15 origin, and hence that it cannot be considered non-vascular anymore. Accordingly, our phylogenetic 16 analysis resolves Horneophyton and allies (i.e., Horneophytopsida) within tracheophytes, but as sister 17 to eutracheophytes (i.e., extant vascular plants). Together, horneophytes and eutracheophytes form a 18 new clade called herein supereutracheophytes. The thin, irregular, annular to helical thickenings of 19 Horneophyton clearly point to a sequential acquisition of the characters of water-conducting cells. 20 Because of their simple conducting cells and morphology, the horneophytophytes may be seen as the 21 precursors of all extant vascular plant biodiversity. 22 23 Keywords: Rhynie chert, Horneophyton, Tracheophyte, Lower Devonian, Cladistics.
    [Show full text]
  • Devonian As a Time of Major Innovation in Plants and Their Communities
    1 Back to the Beginnings: The Silurian-­ 2 Devonian as a Time of Major Innovation 15 3 in Plants and Their Communities 4 Patricia G. Gensel, Ian Glasspool, Robert A. Gastaldo, 5 Milan Libertin, and Jiří Kvaček 6 Abstract Silurian, with the Early Silurian Cooksonia barrandei 31 7 Massive changes in terrestrial paleoecology occurred dur- from central Europe representing the earliest vascular 32 8 ing the Devonian. This period saw the evolution of both plant known, to date. This plant had minute bifurcating 33 9 seed plants (e.g., Elkinsia and Moresnetia), fully lami- aerial axes terminating in expanded sporangia. Dispersed 34 10 nate∗ leaves and wood. Wood evolved independently in microfossils (spores and phytodebris) in continental and 35AU2 11 different plant groups during the Middle Devonian (arbo- coastal marine sediments provide the earliest evidence for 36 12 rescent lycopsids, cladoxylopsids, and progymnosperms) land plants, which are first reported from the Early 37 13 resulting in the evolution of the tree habit at this time Ordovician. 38 14 (Givetian, Gilboa forest, USA) and of various growth and 15 architectural configurations. By the end of the Devonian, 16 30-m-tall trees were distributed worldwide. Prior to the 17 appearance of a tree canopy habit, other early plant groups 15.1 Introduction 39 18 (trimerophytes) that colonized the planet’s landscapes 19 were of smaller stature attaining heights of a few meters Patricia G. Gensel and Milan Libertin 40 20 with a dense, three-dimensional array of thin lateral 21 branches functioning as “leaves”. Laminate leaves, as we We are now approaching the end of our journey to vegetated 41 AU3 22 now know them today, appeared, independently, at differ- landscapes that certainly are unfamiliar even to paleontolo- 42 23 ent times in the Devonian.
    [Show full text]
  • USGS Open-File Report 03-107, V. 1.3, Database Record Pages
    DepositID 1 Cont AF NameDeposit Mehirize OtherNames Includes Country Code ALGR Algeria StateProvince Lat.Deg 33 Long.Deg 0 Dec.Lat 33.8472222 Lat.Min 50 Long.Min -20 Dec.Long -.341666667 Lat.Sec 50 Long.Sec -30 OreMmt CuGrade% CoGrade% AgGradeppm CuMmt Subtype Redbed Cu Age Cretaceous, Lower Aptian Ma 115 Unit HostRocks Green argillite, sandstone HangingwallBeds FootwallRocks Conglomerate Mineralogy Chalcocite, malachite TraceMinerals Comments Reference Caia, J. 1976, Paleogeographical and sedimentological controls of copper, lead, and zinc mineralization in the Lower Cretaceous sandstones of Africa: Economic Geology, V. 71, p. 409-422 DepositID 2 Cont AF NameDeposit Tansrift OtherNames Tamarift Includes Country Code MRCO Morocco StateProvince Lat.Deg 33 Long.Deg -4 Dec.Lat 33 Lat.Min 0 Long.Min -15 Dec.Long -4.25 Lat.Sec 0 Long.Sec 0 OreMmt 1 CuGrade%1.3 CoGrade% AgGradeppm CuMmt .013 Subtype Redbed Cu Age Cretaceous Ma 120 Unit HostRocks Red sandstone HangingwallBeds FootwallRocks Mineralogy TraceMinerals Comments Reference Caia, J. 1976, Paleogeographical and sedimentological controls of copper, lead, and zinc mineralization in the Lower Cretaceous sandstones of Africa: Economic Geology, V. 71, p. 409-422. Habashi F. and Bassyouni, F.A., 1982, Mineral resources of the Arab countries: Quebec, Chemecon Publishing Ltd.,Laval Univ., 2nd Edition.112 p. Kirkham, R.V, Carriere, J.J., Laramee, R.M., and Garson, D.F., 1994, Global distribution of sediment-hosted stratiform copper deposits and occurrences: Geological Survey of Canada Open File 2915b, 256 p. DepositID 3 Cont AF NameDeposit Tiloula OtherNames Includes Country Code ALGR Algeria StateProvince Lat.Deg 32 Long.Deg 0 Dec.Lat 32.85 Lat.Min 51 Long.Min -27 Dec.Long -.45 Lat.Sec 0 Long.Sec 0 OreMmt CuGrade% CoGrade% AgGradeppm CuMmt Subtype Redbed Cu Age Cretaceous, L.Aptian Ma 115 Unit HostRocks Green argillite, sandstone HangingwallBeds FootwallRocks Conglomerate Mineralogy Chalcocite, malachite TraceMinerals Comments Reference Caia, J.
    [Show full text]
  • 81 Vascular Plant Diversity
    f 80 CHAPTER 4 EVOLUTION AND DIVERSITY OF VASCULAR PLANTS UNIT II EVOLUTION AND DIVERSITY OF PLANTS 81 LYCOPODIOPHYTA Gleicheniales Polypodiales LYCOPODIOPSIDA Dipteridaceae (2/Il) Aspleniaceae (1—10/700+) Lycopodiaceae (5/300) Gleicheniaceae (6/125) Blechnaceae (9/200) ISOETOPSIDA Matoniaceae (2/4) Davalliaceae (4—5/65) Isoetaceae (1/200) Schizaeales Dennstaedtiaceae (11/170) Selaginellaceae (1/700) Anemiaceae (1/100+) Dryopteridaceae (40—45/1700) EUPHYLLOPHYTA Lygodiaceae (1/25) Lindsaeaceae (8/200) MONILOPHYTA Schizaeaceae (2/30) Lomariopsidaceae (4/70) EQifiSETOPSIDA Salviniales Oleandraceae (1/40) Equisetaceae (1/15) Marsileaceae (3/75) Onocleaceae (4/5) PSILOTOPSIDA Salviniaceae (2/16) Polypodiaceae (56/1200) Ophioglossaceae (4/55—80) Cyatheales Pteridaceae (50/950) Psilotaceae (2/17) Cibotiaceae (1/11) Saccolomataceae (1/12) MARATTIOPSIDA Culcitaceae (1/2) Tectariaceae (3—15/230) Marattiaceae (6/80) Cyatheaceae (4/600+) Thelypteridaceae (5—30/950) POLYPODIOPSIDA Dicksoniaceae (3/30) Woodsiaceae (15/700) Osmundales Loxomataceae (2/2) central vascular cylinder Osmundaceae (3/20) Metaxyaceae (1/2) SPERMATOPHYTA (See Chapter 5) Hymenophyllales Plagiogyriaceae (1/15) FIGURE 4.9 Anatomy of the root, an apomorphy of the vascular plants. A. Root whole mount. B. Root longitudinal-section. C. Whole Hymenophyllaceae (9/600) Thyrsopteridaceae (1/1) root cross-section. D. Close-up of central vascular cylinder, showing tissues. TABLE 4.1 Taxonomic groups of Tracheophyta, vascular plants (minus those of Spermatophyta, seed plants). Classes, orders, and family names after Smith et al. (2006). Higher groups (traditionally treated as phyla) after Cantino et al. (2007). Families in bold are described in found today in the Selaginellaceae of the lycophytes and all the pericycle or endodermis. Lateral roots penetrate the tis detail.
    [Show full text]
  • A Factor Analysis Approach to Modelling the Early Diversification of Terrestrial Vegetation E
    A factor analysis approach to modelling the early diversification of terrestrial vegetation E. Capel, C. J. Cleal, P. Gerrienne, T. Servais, B. Cascales-Miñana To cite this version: E. Capel, C. J. Cleal, P. Gerrienne, T. Servais, B. Cascales-Miñana. A factor analysis approach to modelling the early diversification of terrestrial vegetation. Palaeogeography, Palaeoclimatology, Palaeoecology, Elsevier, 2021, 566, pp.110170. 10.1016/j.palaeo.2020.110170. hal-03331136 HAL Id: hal-03331136 https://hal.archives-ouvertes.fr/hal-03331136 Submitted on 1 Sep 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A factor analysis approach to modelling the early diversification of terrestrial vegetation E. Capel1, C.J. Cleal2, P. Gerrienne3†, T. Servais4, B. Cascales-Miñana4* 1 Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France (eliott.capel@univ- lille.fr) 2 Department of Natural Sciences, National Museum Wales, Cardiff CF10 3NP, UK ([email protected]) 3 EDDy lab/Palaeobotany and Palaeopalynology, Univ. Liege, 4000 Liege, Belgium 4 CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France ([email protected], [email protected]) *Corresponding author †Deceased 1 Abstract Data from a new comprehensive macrofossil-based compilation of early plant genera are analyzed via a Q-mode factor analysis.
    [Show full text]