The Impacts of Land Plant Evolution on Earth's Climate and Oxygenation State – an Interdisciplinary Review

Total Page:16

File Type:pdf, Size:1020Kb

The Impacts of Land Plant Evolution on Earth's Climate and Oxygenation State – an Interdisciplinary Review The impacts of land plant evolution on Earth's climate and oxygenation state – An interdisciplinary review Dahl, Tais W.; Arens, Susanne K.M. Published in: Chemical Geology DOI: 10.1016/j.chemgeo.2020.119665 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC-ND Citation for published version (APA): Dahl, T. W., & Arens, S. K. M. (2020). The impacts of land plant evolution on Earth's climate and oxygenation state – An interdisciplinary review. Chemical Geology, 547, [119665]. https://doi.org/10.1016/j.chemgeo.2020.119665 Download date: 09. okt.. 2021 Chemical Geology 547 (2020) 119665 Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo Invited research article The impacts of land plant evolution on Earth's climate and oxygenation state T – An interdisciplinary review ⁎ Tais W. Dahl , Susanne K.M. Arens GLOBE Institute, University of Copenhagen, 1350 Copenhagen K, Denmark ARTICLE INFO ABSTRACT Keywords: The Paleozoic emergence of terrestrial plants has been linked to a stepwise increase in Earth's O2 levels and a Early land plants cooling of Earth's climate by drawdown of atmospheric CO2. Vegetation affects the Earth's2 O and CO2 levels in Terrestrialization multiple ways, including preferential organic carbon preservation by decay-resistant biopolymers (e.g. lignin) Climate and changing the continental weathering regime that governs oceanic nutrient supply and marine biological Oxygenation production. Over shorter time scales (≤1 Myr), land plant evolution is hypothesized to have occasionally en- Soils hanced P weathering and fertilized the oceans, expanding marine anoxia and causing marine extinctions. Earth history Oceanic anoxia would eventually become limited by oceanic O2 uptake as oxygen accumulates in the atmo- sphere and surface oceans when excess organic carbon is buried in marine sediments. Here, we review hy- potheses and evidence for how the evolving terrestrial ecosystems impacted atmospheric and oceanic O2 and CO2 from the Ordovician and into the Carboniferous (485–298.9 Ma). Five major ecological stages in the ter- restrial realm occurred during the prolonged time interval when land was colonized by plants, animals and fungi, marked by the evolution of 1) non-vascular plants, 2) vascular plants with lignified tissue, 3) plants with shallow roots, 4) arborescent and perennial vegetation with deep and complex root systems, and 5) seed plants. The prediction that land vegetation profoundly impacted the Earth system is justified, although it is still debated how the individual transitions affected the Earth's2 O and CO2 levels. The geological record preserves multiple lines of indirect evidence for environmental transitions that can help us to reconstruct and quantify global controls on Earth's oxygenation and climate state. 1. Introduction ‘Devonian cooling hypothesis’, posits that early afforestation enhanced atmospheric CO2 removal via enhanced silicate weathering, which led In this review we look at terrestrial plants as a geobiological agent Earth to transit from a hot greenhouse climate into a glaciated icehouse and their possible imprints on Earth's climate and oxygenation state (Berner, 1993). This hypothesis is commonly accepted (e.g., Algeo and during their emergence on the continents. Land plants affect our planet Scheckler, 1998; Morris et al., 2015), although recent studies challenge in a multitude of ways in particular through the hydrological cycle, the temporal correlation between the Late Devonian spread of vascular Earth's surface energy budget, and the global biogeochemical cycles. plants with deep roots (~380–360 million years ago, Ma) and the main Vegetation changes the water cycling, rainfall, runoff, and soil prop- phase of the Late Paleozoic Ice Age (335–260 Ma) (Goddéris et al., erties, harvesting nutrients for biological production that, in turn, 2017; Montañez and Poulsen, 2013). drives carbon sequestration and storage in terrestrial deposits and A more recent hypothesis states that the Late Ordovician climatic marine sediments. At the crux of this is how plants modify the physical cooling also resulted from colonization by non-vascular, rootless plants and chemical weathering processes of the land surface with lasting (Lenton et al., 2012). Both the Ordovician and Devonian transition have impacts on the global element cycles. The modifications by land plants also been linked to rises of atmospheric oxygen (Berner, 2006; Edwards are carried out in networks of interactions with the terrestrial fauna and et al., 2017; Lenton et al., 2016). In addition, the evolution of early fungi that co-evolved with the emergence of plants. lignified plants with shallow roots in the Late Silurian to Early Devo- The mid-Paleozoic colonization of land offers a unique opportunity nian (427.4–393.3 Ma) also changed the terrestrial ecosystems and soil to study how the terrestrial biosphere affected the Earth's climate and properties, as might the emergence of seed plants in drier upland en- oxygenation state in the past. A noteworthy hypothesis, known as the vironments. Each one of these events could have affected atmospheric ⁎ Corresponding author. E-mail address: [email protected] (T.W. Dahl). https://doi.org/10.1016/j.chemgeo.2020.119665 Received 27 December 2019; Received in revised form 2 May 2020; Accepted 9 May 2020 Available online 13 May 2020 0009-2541/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). T.W. Dahl and S.K.M. Arens Chemical Geology 547 (2020) 119665 CO2 and O2 levels on Earth, but the governing processes are poorly Paleozoic (Nelsen et al., 2019). However, algae-fungal symbioses have understood. emerged multiple times in Earth history and the fungal tree of life is still Although the interplay between the evolving terrestrial ecosystems less well constrained than the plant tree of life (Gargas et al., 1995; and atmospheric composition continued long after the mid-Paleozoic Hibbett et al., 2007; Lutzoni et al., 2018). The fossil record of lichens is (Ordovician–Devonian) and plant evolution modulated climate both sparse with putative representatives in the Ediacaran and Early Devo- during the Late Paleozoic Ice Age and during the Cretaceous rise of nian (Taylor et al., 1995; Yuan, 2005). Today, lichens account for 7% of flowering plants (angiosperms) (Boyce and Lee, 2017; Montañez and Earth's net terrestrial productivity (Elbert et al., 2012). The absence of Poulsen, 2013), we focus this review on the environmental impact of lichens and non-vascular plants in the early terrestrial ecosystems the early history of land plants. We highlight five major ecological would likely have resulted in drier, shallower and less stable soil eco- transitions that distinguish the terrestrial ecosystem at different times systems with lower productivity. (Le Hir et al., 2011), including 1) the invasion of rootless plants, 2) the Fossil soils (paleosols) are preserved throughout the geologic record invasion of vascular plants with lignified tissue, 3) the invasion of (Driese and Mora, 2001; Mángano and Buatois, 2016; Retallack, 2003; vascular plants with shallow roots, 4) the invasion of tall, perennial Sheldon and Tabor, 2009). Soils are altered surficial rock or sediment, trees with deep root systems, and 5) the invasion of seed plants in drier composed of mixtures of organic matter, minerals, fluids, and organ- upland environments. isms that develop through chemical weathering and deposition of litter This review aims to provide an all-round perspective on how the (Amundson, 2014). The earliest soils experienced limited hydrolytic early terrestrial biota has transformed Earth's climate and oxygenation alteration and contained little humic material and bio-essential ele- state. In Section 2 we review the history of early land plants and ancient ments (e.g. N, P), which would have posed a serious challenge to plant soils (paleosols). In Section 3, the obstacles and biological innovations colonization. In addition, Precambrian paleosols differ from Silurian during terrestrialization are summarized. In Section 4, we discuss the and younger paleosols by the lack of animal burrows (Driese and Mora, various effects of terrestrial vegetation on Earth's global biogeochem- 2001). ical cycles with specific focus on consequences to atmospheric2 O and CO2 levels. Section 5 deals with hypotheses for long-term climate and 2.2. Colonization by non-vascular, rootless land plants (~515–470 Ma) O2 regulation on Earth and how the evolving flora may have played into this. Section 6 summarizes key lines of evidence for mid-Paleozoic en- Early land plants reproduced solely by spores (cryptogamic). Seed vironmental transitions and discuss links between evolving terrestrial plants (spermatophytes) evolved later, and flowering plants (angios- ecosystems and Earth's climate and oxygenation state. In Section 7, we perms) much later in the Cretaceous (Fig. 1). The origin of land plants conclude with an outlook for future research. (embryophytes) is estimated to have occurred in the middle Cam- brian–Early Ordovician, 515.2–473.5 Ma, based on phylogenomic data 2. History of early land plants and terrestrial ecosystems encompassing the diversity of embryophytes and utilizing a Bayesian relaxed molecular clock analysis (Morris et al., 2018). The timeline for terrestrialization by land plants builds
Recommended publications
  • Diversity Patterns of the Vascular Plant Group Zosterophyllopsida in Relation to Devonian Paleogeography Borja Cascales-Miñana, Brigitte Meyer-Berthaud
    Diversity patterns of the vascular plant group Zosterophyllopsida in relation to Devonian paleogeography Borja Cascales-Miñana, Brigitte Meyer-Berthaud To cite this version: Borja Cascales-Miñana, Brigitte Meyer-Berthaud. Diversity patterns of the vascular plant group Zosterophyllopsida in relation to Devonian paleogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, Elsevier, 2015, 423, pp.53-61. 10.1016/j.palaeo.2015.01.024. hal-01140840 HAL Id: hal-01140840 https://hal-sde.archives-ouvertes.fr/hal-01140840 Submitted on 26 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Palaeogeography, Palaeoclimatology, Palaeoecology 423 (2015) 53–61 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Diversity patterns of the vascular plant group Zosterophyllopsida in relation to Devonian paleogeography Borja Cascales-Miñana a,b,⁎, Brigitte Meyer-Berthaud a a CNRS, Université de Montpellier, UMR Botanique et bioinformatique de l'architecture des plantes et des végétations (AMAP), F-34398 Montpellier Cedex 5, France b PPP, Département de Géologie, Université de Liège, Allée du 6 Août, B18 Sart Tilman, B-4000 Liège, Belgium article info abstract Article history: The Zosterophyllopsida originated in the Silurian and became prominent vascular components of Early Devonian Received 11 April 2014 floras worldwide.
    [Show full text]
  • Fossils and Plant Phylogeny1
    American Journal of Botany 91(10): 1683±1699. 2004. FOSSILS AND PLANT PHYLOGENY1 PETER R. CRANE,2,5 PATRICK HERENDEEN,3 AND ELSE MARIE FRIIS4 2Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK; 3Department of Biological Sciences, The George Washington University, Washington DC 20052 USA; 4Department of Palaeobotany, Swedish Museum of Natural History, Box 50007, S-104 05 Stockholm, Sweden Developing a detailed estimate of plant phylogeny is the key ®rst step toward a more sophisticated and particularized understanding of plant evolution. At many levels in the hierarchy of plant life, it will be impossible to develop an adequate understanding of plant phylogeny without taking into account the additional diversity provided by fossil plants. This is especially the case for relatively deep divergences among extant lineages that have a long evolutionary history and in which much of the relevant diversity has been lost by extinction. In such circumstances, attempts to integrate data and interpretations from extant and fossil plants stand the best chance of success. For this to be possible, what will be required is meticulous and thorough descriptions of fossil material, thoughtful and rigorous analysis of characters, and careful comparison of extant and fossil taxa, as a basis for determining their systematic relationships. Key words: angiosperms; fossils; paleobotany; phylogeny; spermatophytes; tracheophytes. Most biological processes, such as reproduction or growth distic context, neither fossils nor their stratigraphic position and development, can only be studied directly or manipulated have any special role in inferring phylogeny, and although experimentally using living organisms. Nevertheless, much of more complex models have been developed (see Fisher, 1994; what we have inferred about the large-scale processes of plant Huelsenbeck, 1994), these have not been widely adopted.
    [Show full text]
  • Plant Evolution an Introduction to the History of Life
    Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular.
    [Show full text]
  • Construct a Plant Evolution Timeline
    Constructing a Timeline of Plant Evolution Use this photo as a guide to creating an interactive timeline. Refer to Geologic Time Scale charts. A good resource is http://www.ucmp.berkeley.edu/help/timeform.php Use the “Plant Timeline Cards” found at the end of this document. Attach pictures with Velcro to allow for manipulation by students, and to “build” the timeline in increments. Teachers will need to find and print photos for “seed ferns” or omit that step in the timeline. Cut and paste the text below under each picture. Cyanobacteria: Also known as blue- Mosses: These have the first identifiable green algae, these are bacteria transport systems for water (xylem), and (prokaryotes – no nucleus) that can reproduce via spores, which encase sex photosynthesize. cells to prevent desiccation. They still need to live near water. First eukaryotes (cell nucleus): Scientist think that eukaryotes evolved via Hornworts: These developed the cuticle symbiosis, with one bacteria engulfing (waxy coating to prevent water loss) and another, but not digesting it. stomata (openings in the cuticle to allow Chloroplasts were originally for gas exchange.) All land plants except cyanobacteria engulfed by another liverworts have these two features. bacterium. Development of a true vascular system Anabaena: These water organisms allowed for better transport of water evolved from being unicellular to more and provided structural support for the complex, multicellular organisms. Their plant to grow taller. specialized cells help with nitrogen fixation. Club mosses: These were the first plants to have true leaves with veins. They also Stoneworts: Scientists think that developed roots as an anchoring system colonization of land occurred only once, to allow plant to grow taller.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • The Big Bloom—How Flowering Plants Changed the World
    The Big Bloom—How Flowering Plants Changed the World Written by Michael Klesius Republished from the pages of National Geographic magazine -- July 2002 In the summer of 1973 sunflowers appeared in my father's vegetable garden. They seemed to sprout overnight in a few rows he had lent that year to new neighbors from California. Only six years old at the time, I was at first put off by these garish plants. Such strange and vibrant flowers seemed out of place among the respectable beans, peppers, spinach, and other vegetables we had always grown. Gradually, however, the brilliance of the sunflowers won me over. Their fiery halos relieved the green monotone that by late summer ruled the garden. I marveled at birds that clung upside down to the shaggy, gold disks, wings fluttering, looting the seeds. Sunflowers defined flowers for me that summer and changed my view of the world. Flowers have a way of doing that. They began changing the way the world looked almost as soon as they appeared on Earth about 130 million years ago, during the Cretaceous period. That's relatively recent in geologic time: If all Earth's history were compressed into an hour, flowering plants would exist for only the last 90 seconds. But once they took firm root about 100 million years ago, they swiftly diversified in an explosion of varieties that established most of the flowering plant families of the modern world. Today flowering plant species outnumber by twenty to one those of ferns and cone-bearing trees, or conifers, which had thrived for 200 million years before the first bloom appeared.
    [Show full text]
  • Earliest Record of Megaphylls and Leafy Structures, and Their Initial Diversification
    Review Geology August 2013 Vol.58 No.23: 27842793 doi: 10.1007/s11434-013-5799-x Earliest record of megaphylls and leafy structures, and their initial diversification HAO ShouGang* & XUE JinZhuang Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China Received January 14, 2013; accepted February 26, 2013; published online April 10, 2013 Evolutionary changes in the structure of leaves have had far-reaching effects on the anatomy and physiology of vascular plants, resulting in morphological diversity and species expansion. People have long been interested in the question of the nature of the morphology of early leaves and how they were attained. At least five lineages of euphyllophytes can be recognized among the Early Devonian fossil plants (Pragian age, ca. 410 Ma ago) of South China. Their different leaf precursors or “branch-leaf com- plexes” are believed to foreshadow true megaphylls with different venation patterns and configurations, indicating that multiple origins of megaphylls had occurred by the Early Devonian, much earlier than has previously been recognized. In addition to megaphylls in euphyllophytes, the laminate leaf-like appendages (sporophylls or bracts) occurred independently in several dis- tantly related Early Devonian plant lineages, probably as a response to ecological factors such as high atmospheric CO2 concen- trations. This is a typical example of convergent evolution in early plants. Early Devonian, euphyllophyte, megaphyll, leaf-like appendage, branch-leaf complex Citation: Hao S G, Xue J Z. Earliest record of megaphylls and leafy structures, and their initial diversification. Chin Sci Bull, 2013, 58: 27842793, doi: 10.1007/s11434- 013-5799-x The origin and evolution of leaves in vascular plants was phology and evolutionary diversification of early leaves of one of the most important evolutionary events affecting the basal euphyllophytes remain enigmatic.
    [Show full text]
  • Embryophytic Sporophytes in the Rhynie and Windyfield Cherts
    Transactions of the Royal Society of Edinburgh: Earth Sciences http://journals.cambridge.org/TRE Additional services for Transactions of the Royal Society of Edinburgh: Earth Sciences: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Embryophytic sporophytes in the Rhynie and Windyeld cherts Dianne Edwards Transactions of the Royal Society of Edinburgh: Earth Sciences / Volume 94 / Issue 04 / December 2003, pp 397 - 410 DOI: 10.1017/S0263593300000778, Published online: 26 July 2007 Link to this article: http://journals.cambridge.org/abstract_S0263593300000778 How to cite this article: Dianne Edwards (2003). Embryophytic sporophytes in the Rhynie and Windyeld cherts. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94, pp 397-410 doi:10.1017/S0263593300000778 Request Permissions : Click here Downloaded from http://journals.cambridge.org/TRE, IP address: 131.251.254.13 on 25 Feb 2014 Transactions of the Royal Society of Edinburgh: Earth Sciences, 94, 397–410, 2004 (for 2003) Embryophytic sporophytes in the Rhynie and Windyfield cherts Dianne Edwards ABSTRACT: Brief descriptions and comments on relationships are given for the seven embryo- phytic sporophytes in the cherts at Rhynie, Aberdeenshire, Scotland. They are Rhynia gwynne- vaughanii Kidston & Lang, Aglaophyton major D. S. Edwards, Horneophyton lignieri Barghoorn & Darrah, Asteroxylon mackiei Kidston & Lang, Nothia aphylla Lyon ex Høeg, Trichopherophyton teuchansii Lyon & Edwards and Ventarura lyonii Powell, Edwards & Trewin. The superb preserva- tion of the silica permineralisations produced in the hot spring environment provides remarkable insights into the anatomy of early land plants which are not available from compression fossils and other modes of permineralisation.
    [Show full text]
  • Additional Observations on Zosterophyllum Yunnanicum Hsü from the Lower Devonian of Yunnan, China
    This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/77818/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Edwards, Dianne, Yang, Nan, Hueber, Francis M. and Li, Cheng-Sen 2015. Additional observations on Zosterophyllum yunnanicum Hsü from the Lower Devonian of Yunnan, China. Review of Palaeobotany and Palynology 221 , pp. 220-229. 10.1016/j.revpalbo.2015.03.007 file Publishers page: http://dx.doi.org/10.1016/j.revpalbo.2015.03.007 <http://dx.doi.org/10.1016/j.revpalbo.2015.03.007> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders. @’ Additional observations on Zosterophyllum yunnanicum Hsü from the Lower Devonian of Yunnan, China Dianne Edwardsa, Nan Yangb, Francis M. Hueberc, Cheng-Sen Lib a*School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK b Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China cNational Museum of Natural History, Smithsonian Institution, Washington D.C. 20560-0121, USA * Corresponding author, Tel.: +44 29208742564, Fax.: +44 2920874326 E-mail address: [email protected] ABSTRACT Investigation of unfigured specimens in the original collection of Zosterophyllum yunnanicum Hsü 1966 from the Lower Devonian (upper Pragian to basal Emsian) Xujiachong Formation, Qujing District, Yunnan, China has provided further data on both sporangial and stem anatomy.
    [Show full text]
  • Chapter 23: the Early Tracheophytes
    Chapter 23 The Early Tracheophytes THE LYCOPHYTES Lycopodium Has a Homosporous Life Cycle Selaginella Has a Heterosporous Life Cycle Heterospory Allows for Greater Parental Investment Isoetes May Be the Only Living Member of the Lepidodendrid Group THE MONILOPHYTES Whisk Ferns Ophioglossalean Ferns Horsetails Marattialean Ferns True Ferns True Fern Sporophytes Typically Have Underground Stems Sexual Reproduction Usually Is Homosporous Fern Have a Variety of Alternative Means of Reproduction Ferns Have Ecological and Economic Importance SUMMARY PLANTS, PEOPLE, AND THE ENVIRONMENT: Sporophyte Prominence and Survival on Land PLANTS, PEOPLE, AND THE ENVIRONMENT: Coal, Smog, and Forest Decline THE OCCUPATION OF THE LAND PLANTS, PEOPLE, AND THE The First Tracheophytes Were ENVIRONMENT: Diversity Among the Ferns Rhyniophytes Tracheophytes Became Increasingly Better PLANTS, PEOPLE, AND THE Adapted to the Terrestrial Environment ENVIRONMENT: Fern Spores Relationships among Early Tracheophytes 1 KEY CONCEPTS 1. Tracheophytes, also called vascular plants, possess lignified water-conducting tissue (xylem). Approximately 14,000 species of tracheophytes reproduce by releasing spores and do not make seeds. These are sometimes called seedless vascular plants. Tracheophytes differ from bryophytes in possessing branched sporophytes that are dominant in the life cycle. These sporophytes are more tolerant of life on dry land than those of bryophytes because water movement is controlled by strongly lignified vascular tissue, stomata, and an extensive cuticle. The gametophytes, however still require a seasonally wet habitat, and water outside the plant is essential for the movement of sperm from antheridia to archegonia. 2. The rhyniophytes were the first tracheophytes. They consisted of dichotomously branching axes, lacking roots and leaves. They are all extinct.
    [Show full text]
  • Belowground Rhizomes in Paleosols: the Hidden Half of an Early Devonian Vascular Plant
    Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant Jinzhuang Xuea,b,1, Zhenzhen Denga, Pu Huanga, Kangjun Huanga, Michael J. Bentonc, Ying Cuid, Deming Wanga, Jianbo Liua, Bing Shena, James F. Basingere, and Shougang Haoa aThe Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People’s Republic of China; bKey Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China; cSchool of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom; dDepartment of Earth Sciences, Dartmouth College, Hanover, NH 03755; and eDepartment of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada Edited by Donald E. Canfield, Institute of Biology and Nordic Center for Earth Evolution, University of Southern Denmark, Odense M., Denmark, and approved June 28, 2016 (received for review March 28, 2016) The colonization of terrestrial environments by rooted vascular because of a poor fossil record, it remains quite unclear how the plants had far-reaching impacts on the Earth system. However, “hidden half” ecosystem (24), with buried structures growing in soils, the belowground structures of early vascular plants are rarely functioned during the early stage of vascular plant radiation. Such a documented, and thus the plant−soil interactions in early terres- knowledge gap hinders a deep understanding of the ecology of early trial ecosystems are poorly understood. Here we report the earli- plants and their roles in terrestrial environments. est rooted paleosols (fossil soils) in Asia from Early Devonian In this article, we report well-preserved plant traces from the deposits of Yunnan, China.
    [Show full text]
  • Evolution of Land Plants P
    Chapter 4. The evolutionary classification of land plants The evolutionary classification of land plants Land plants evolved from a group of green algae, possibly as early as 500–600 million years ago. Their closest living relatives in the algal realm are a group of freshwater algae known as stoneworts or Charophyta. According to the fossil record, the charophytes' growth form has changed little since the divergence of lineages, so we know that early land plants evolved from a branched, filamentous alga dwelling in shallow fresh water, perhaps at the edge of seasonally-desiccating pools. The biggest challenge that early land plants had to face ca. 500 million years ago was surviving in dry, non-submerged environments. Algae extract nutrients and light from the water that surrounds them. Those few algae that anchor themselves to the bottom of the waterbody do so to prevent being carried away by currents, but do not extract resources from the underlying substrate. Nutrients such as nitrogen and phosphorus, together with CO2 and sunlight, are all taken by the algae from the surrounding waters. Land plants, in contrast, must extract nutrients from the ground and capture CO2 and sunlight from the atmosphere. The first terrestrial plants were very similar to modern mosses and liverworts, in a group called Bryophytes (from Greek bryos=moss, and phyton=plants; hence “moss-like plants”). They possessed little root-like hairs called rhizoids, which collected nutrients from the ground. Like their algal ancestors, they could not withstand prolonged desiccation and restricted their life cycle to shaded, damp habitats, or, in some cases, evolved the ability to completely dry-out, putting their metabolism on hold and reviving when more water arrived, as in the modern “resurrection plants” (Selaginella).
    [Show full text]