Elucidating the Role of the Paraventricular Nucleus of the Thalamus in Cue-Motivated Behavior

Total Page:16

File Type:pdf, Size:1020Kb

Elucidating the Role of the Paraventricular Nucleus of the Thalamus in Cue-Motivated Behavior Elucidating the Role of the Paraventricular Nucleus of the Thalamus in Cue-Motivated Behavior by Joshua Lewis Haight A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Neuroscience) in the University of Michigan 2016 Doctoral Committee: Assistant Professor Shelly B. Flagel, Co-Chair Professor Stanley J. Watson, Jr, Co-Chair Professor Kent C. Berridge Professor Terry E. Robinson Research Associate Professor Robert C. Thompson © Joshua L Haight 2016 DEDICATION This dissertation is dedicated to my wife, Emily, and my parents, Mark and Julie, for never letting me give up. ii ACKNOWLEDGEMENTS It would be impossible for me to acknowledge everyone who has had a significant impact on me, and my development as a person and scientist, these last five years. Nonetheless, I will try my best. First off, I have to acknowledge the entire Flagel lab, starting with my mentor, Dr. Shelly Flagel. When I joined Dr. Flagel’s lab in the Spring semester of 2012, I was a little worried about being ‘the first graduate student’. It turns out it was the best decision I could have made for my graduate school career. I would not be where I am today without her never-ending support, in science and in life. She encouraged me to explore my own ideas, and think critically yet positively about my work. Dr. Flagel’s contagious enthusiasm about science inspires me to this day, and will continue to inspire others for years to come. I know that, aside from a mentor, I have made a life-long friend. To all the wonderful people I have gotten to work with in the Flagel Lab: thank you for making this journey such a wonderful one! Your companionship, as colleagues and as friends, has influenced me in such positive ways throughout the years. Our lab managers Rebeca Kelly, Katie Long, Julia Boese and Marin Klumpner, have all helped in various ways on the projects contained in this thesis, and dealt with my tendency to order necessary items at the last minute with patience. The post-docs that I have gotten to work with, Aram Parsegian, Nacho Covelo- Rivera, and Paolo Campus, have patiently answered all my questions and provided advice on my projects and career path. My fellow Flagel Lab graduate students, Brittany Kuhn and Sofia Lopez, have shared (and commiserated at times) all the ups and downs with me. And most importantly, this thesis would not exist without the tireless commitment of two undergraduates: Kurt Fraser and Zack Fuller, who worked by my side on many nights and weekends to make this work possible. My dissertation committee also deserves special recognition. Drs. Kent Berridge, Terry Robinson, Robert Thompson, and Stanley Watson: thank you for your invaluable guidance and input on my thesis throughout the years, and for your patience with all the hiccups and iii complications along the way. While Dr. Huda Akil was not an official member of my committee, she, along with Dr. Watson, took a special interest in my work. As Co-Directors of the Molecular and Behavioral Neuroscience Institute, they opened up countless lab resources to me, and gave me the opportunity to present my work at their joint lab meetings, allowing me to grow as a scientist. Dr. Watson and Dr. Robinson also read many drafts of manuscripts that have since been published, and their feedback on the work in progress was invaluable. Last, when I was in one of many panicked states during my qualification exams, Dr. Thompson loaned me a book with a title akin to “Genetics for Dummies”. Without that book, I might never have passed those exams. The Neuroscience Graduate Program deserves recognition as well. Thank you for admitting me to the Ph.D. program in the first place, and allowing me to pursue this career. It is certainly a privilege. Special thanks to our Director, Edward Stuenkel, and Assistant Director, Audrey Seasholtz, for upholding the integrity of higher education in Neuroscience. And to my cohort: while we may have drifted apart as the years went by, the friendships we built during those first two grueling years will stay with me forever. Last, but certainly not least, I must acknowledge my family, for sticking with me over the last five years. To my parents, Julie and Mark: I would never have made it to graduate school in the first place, let alone completed my degree, without your endless love and encouragement. To my wife, Emily: you have seen me at my best, and also at my worst. Your strength and love have picked me up when times were rough, and inspired me to be the best husband and father that I could be. And to my son, Henry: even though you are young, and will not remember this time in Michigan, you have made everything worth it. iv TABLE OF CONTENTS DEDICATION ii ACKNOWLEDGEMENTS iii LIST OF FIGURES viii ABSTRACT xi CHAPTER 1. Introduction 1 A role for the paraventricular nucleus of the thalamus in reward processing and cue-motivated behaviors 2 Interactions between the paraventricular nucleus of the thalamus and the ventral striatum, with a focus on dopamine transmission 4 Exploiting individual variation in Pavlovian conditioned responses to parse the incentive from the predictive properties of reward-paired cues 7 The neurobiology underlying differences in Pavlovian conditioned approach behavior 10 A potential role for the paraventricular nucleus of the thalamus in mediating sign- vs. goal-tracking behaviors 13 Conclusions and hypothesis 14 References 17 Figures 29 2. Lesions of the paraventricular nucleus of the thalamus differentially affect sign- and goal-Tracking conditioned responses 33 Introduction 33 v Materials and methods 34 Results 40 Discussion 45 References 51 Figures 56 Appendix A 62 Appendix B 66 3. A food predictive cue engages sub-cortical efferents and afferents of the paraventricular nucleus of the thalamus if it is attributed with incentive salience 71 Introduction 71 Materials and methods 74 Results 81 Discussion 90 References 95 Figures 102 4. Investigating the Role of Orexin Receptor 2 in the paraventricular nucleus of the thalamus in cue-motivated behavior 114 Introduction 114 Materials and methods 118 Results 126 Discussion 131 References 136 Figures 144 vi 5. General Discussion 157 The role of the PVT in the propensity to attribute incentive salience to reward cues: Updating the model 157 The role of specific PVT afferents in sign- and goal-tracking behavior 160 The role of specific PVT efferents in sign- and goal-tracking behavior 169 Special note on anterior vs. posterior aspects of the paraventricular nucleus of the thalamus 173 Concluding remarks and future directions 175 References 178 Figure 186 vii LIST OF FIGURES Chapter 1 1.1. Dopamine D3 receptor mRNA expression in the PVT 29 1.2. Cartoon representation of sign-tracking and goal-tracking behaviors 30 1.3. ‘Functional connectivity’ in sign-trackers and goal-trackers 31 1.4. Schematic illustrating afferents and efferents of interest in the PVT 32 Chapter 2 2.1. Experimental Timelines 56 2.2. Histological analysis of lesion sites for Experiment 1 57 2.3. Effects of PVT lesion on the acquisition of (left) goal- and (right) sign-tracking conditioned responses 58 2.4. Histological analysis of lesion sites for Experiment 2 59 2.5. GTs learn to sign-track across sessions following PVT lesions 60 2.6. PVT lesions increase the tendency to sign-track in GTs 61 S2.1. Effects of PVT lesion on the acquisition of “off target” behaviors in bHR and bLR animals 66 S2.2. Activity during the inter-trial interval for bLR rats 67 S2.3. The acquisition of sign- and goal-tracking conditioned responses across 7 PCA training sessions 68 S2.4. The extent of PVT lesion underlies change in response bias score 69 S2.5. PVT lesions do not affect locomotor response to a novel environment 70 viii Chapter 3 3.1. Acquisition of the sign- and goal-tracking conditioned response following 5 Pavlovian conditioning sessions (afferent experiment) 102 3.2. Representative images of fluorogold (FG) injections into the PVT and immunohistochemical labeling 103 3.3. c-Fos expression in the medial prefrontal cortex following cue presentation 104 3.4. c-Fos expression in the central and medial amygdala following cue presentation 105 3.5. c-Fos expression in the hypothalamus following cue presentation 106 3.6. c-Fos expression in the ventral subiculum following cue presentation 108 3.7. Acquisition of the sign- and goal-tracking conditioned response following 5 Pavlovian conditioning sessions (efferent experiment) 109 3.8. Representative images of fluorogold (FG) injections into the NAc and immunohistochemical labeling 110 3.9. c-Fos expression in the PVT following cue presentation 111 3.10. Schematic demonstrating the efferent and afferent circuits of the PVT engaged by cue presentation in STs vs. GTs 113 Chapter 4 4.1. Timeline for Experiments 1, 2 and 3 144 4.2. Acquisition of goal-tracking behavior across 7 sessions of Pavlovian conditioned approach training 145 4.3 Cannula placement verification 147 4.4. Antagonism of OX-2 receptors in the PVT does not alter Pavlovian conditioned approach behavior in goal-trackers 148 4.5. Acquisition of sign-tracking behavior across 5 sessions of Pavlovian conditioned approach training 150 4.6. Antagonism of OX-2 receptors in the PVT attenuates Pavlovian conditioned approach behavior in sign-trackers 152 ix 4.7. Antagonism of OX-2 receptors in the PVT attenuates the escalation of sign-tracking behavior 154 4.8. Antagonism of OX-2 receptors in the PVT may alter the conditioned reinforcing properties of the lever-CS 155 4.9. Antagonism of OX-2 receptors in the PVT does not alter feeding behavior 156 Chapter 5 5.1.
Recommended publications
  • Regional Cerebral Glucose Utilization During Morphine Withdrawal in the Rat (Cerebral Metabolism/Limbic System/Drug Dependence) G
    Proc. Natl Acad. Sci. USA Vol. 79, pp. 3360-3364, May 1982 Neurobiology Regional cerebral glucose utilization during morphine withdrawal in the rat (cerebral metabolism/limbic system/drug dependence) G. F. WOOTEN, P. DISTEFANO, AND R. C. COLLINS Departments of Neurology and Pharmacology, Division of Clinical Neuropharmacology, Washington University School of Medicine, St. Louis, Missouri 63110 Communicated by Oliver H. Lowry, February 26, 1982 ABSTRACT Regional cerebral glucose utilization was studied precipitated morphine withdrawal in the rat. A preliminary re- by 2-deoxy['4C]glucose autoradiography in morphine-dependent port of this work has appeared as an abstract (17). rats and during naloxone-induced morphine withdrawal. In mor- phine-dependent rats, glucose utilization was increased compared MATERIALS AND METHODS with naive controls uniformly (23-54%) in hippocampus, dentate gyrus, and subiculum and reduced in frontal cortex, striatum, an- Preparation of Animals. Male Sprague-Dawley rats weigh- terior ventral thalamus, and medial habenular nucleus. On pre- ing 275-325 g were used. On experimental day 1, a single pellet cipitation ofmorphine withdrawal by subcutaneous administration containing 75 mg of morphine as free base was implanted sub- of naloxone at 0.5 mg/kg to morphine-dependent rats, glucose cutaneously under light ether anesthesia. On day 4, two pellets, utilization was increased in the central nucleus ofamygdala (51%), each containing 75 mg of morphine as free base, were im- lateral mammillary nucleus (40%), lateral habenular nucleus planted. On day 7, after being deprived of food for 12 hr, the (39%), medial mammillary nucleus (35%), and medial septal nu- rats were lightly anesthetized with 2% halothane, the pellets cleus (35%) (all, P < 0.01).
    [Show full text]
  • A Three-Dimensional Thalamocortical Dataset for Characterizing Brain Heterogeneity: X-Ray Microct Images (Tif)
    www.nature.com/scientificdata OPEN A three-dimensional DATA DescrIPTOR thalamocortical dataset for characterizing brain heterogeneity Judy A. Prasad 1, Aishwarya H. Balwani 2, Erik C. Johnson3, Joseph D. Miano4, Vandana Sampathkumar1, Vincent De Andrade5, Kamel Fezzaa 5, Ming Du5, Rafael Vescovi 5, Chris Jacobsen 5,6, Konrad P. Kording 7, Doga Gürsoy5, William Gray Roncal3, Narayanan Kasthuri1 & Eva L. Dyer2,8 ✉ Neural microarchitecture is heterogeneous, varying both across and within brain regions. The consistent identifcation of regions of interest is one of the most critical aspects in examining neurocircuitry, as these structures serve as the vital landmarks with which to map brain pathways. Access to continuous, three-dimensional volumes that span multiple brain areas not only provides richer context for identifying such landmarks, but also enables a deeper probing of the microstructures within. Here, we describe a three-dimensional X-ray microtomography imaging dataset of a well-known and validated thalamocortical sample, encompassing a range of cortical and subcortical structures from the mouse brain . In doing so, we provide the feld with access to a micron-scale anatomical imaging dataset ideal for studying heterogeneity of neural structure. Background & Summary Whether focusing on a large swath of cortex or a single subcortical nucleus, consistent and reliable visualization of brain microarchitecture is critical for the creation of reference points which demarcate the brain’s landscape1. Tis is true not only for the identifcation of landmarks (or regions of interest), but also the study of local circuits therein. Tus, detailed views into the brain’s microarchitecture can be used to study disease, experimentally target circuits, and to advance the feld’s understanding and integration of each of these overarching neural systems.
    [Show full text]
  • The Hypothalamus and Periaqueductal Gray Are the Sources of Dopamine Fibers in the Paraventricular Nucleus of the Thalamus in Th
    ORIGINAL RESEARCH ARTICLE published: 20 November 2014 NEUROANATOMY doi: 10.3389/fnana.2014.00136 The hypothalamus and periaqueductal gray are the sources of dopamine fibers in the paraventricular nucleus of the thalamus in the rat Sa Li 1,2, Yuxiu Shi 1* and Gilbert J. Kirouac 2,3 1 PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University, Shenyang, China 2 Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, MB, Canada 3 Department of Psychiatry, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada Edited by: The paraventricular nucleus of the thalamus (PVT) sends a very dense projection to the Kathleen S. Rockland, Boston nucleus accumbens. This area of the striatum plays a key role in motivation and recent University School Medicine, USA experimental evidence indicates that the PVT may have a similar function. It is well known Reviewed by: Ariel Y. Deutch, Vanderbilt that a dopaminergic projection from the ventral tegmental area (VTA) to the nucleus University Medical Center, USA accumbens is a key regulator of motivation and reward-related behavior. Dopamine (DA) Carmen Cavada, Universidad fibers have also been localized in the PVT but the source of these fibers in the rat Autonoma de Madrid, Spain has not been unequivocally identified. The present study was done to re-examine this *Correspondence: question. Small iontophoretic injections of cholera toxin B (CTb) were made in the PVT Yuxiu Shi, PTSD Laboratory, Department of Histology and to retrogradely label tyrosine hydroxylase (TH) neurons. Neurons that were double-labeled Embryology, Institute of Pathology for TH/CTb were found scattered in DA cell groups of the hypothalamus (ventrorostral and Pathophysiology, China Medical A10, A11, A13, A15 DA cell groups) and the midbrain (dorsocaudal A10 embedded in the University, Basic Medical Sciences periaqueductal gray).
    [Show full text]
  • Hypothesis-Driven Structural Connectivity Analysis Supports Network Over Hierarchical Model of Brain Architecture
    Hypothesis-driven structural connectivity analysis supports network over hierarchical model of brain architecture Richard H. Thompson and Larry W. Swanson1 Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 Contributed by Larry W. Swanson, June 30, 2010 (sent for review May 14, 2010) The brain is usually described as hierarchically organized, although (9) and a massive input from the SUBv (10). Only two major an alternative network model has been proposed. To help distin- brainstem inputs were identified: the dorsal raphé (DR), the guish between these two fundamentally different structure-function presumptive source of ACBdmt serotonin (11), and the inter- hypotheses, we developed an experimental circuit-tracing strategy fascicular nucleus (IF), the presumptive source of ACBdmt do- that can be applied to any starting point in the nervous system and pamine (12) that is medial to the expected ventral tegmental area then systematically expanded, and applied it to a previously obscure (VTA) itself (13). Thus, the ACBdmt receives direct inputs from dorsomedial corner of the nucleus accumbens identified functionally three massively interconnected cerebral regions implicated in as a “hedonic hot spot.” A highly topographically organized set of stress and depression, as well as restricted brainstem sites pro- connections involving expected and unexpected gray matter regions viding dopaminergic and serotonergic terminals. was identified that prominently features regions associated with Only one ACBdmt axonal output was labeled with PHAL (Fig. appetite, stress, and clinical depression. These connections are 1A; the filled purple area is a representative injection site): a arranged as a longitudinal series of circuits (closed loops). Thus, the descending pathway through the medial forebrain bundle with two results do not support a rigidly hierarchical model of nervous system clear terminal fields.
    [Show full text]
  • Direct Visualization and Characterization of The
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.25.008318; this version posted March 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Direct visualization and characterization of the 2 human zona incerta and surrounding structures 3 Running Title: Jonathan C. Lau1,2,3,4,*, Yiming Xiao2,3, Roy A.M. Haast2,3, Greydon Gilmore1,4, Direct visualization Kamil Uludag7,8,9, Keith W. MacDougall1, Ravi S. Menon2,3,6, of the zona incerta 1 1,2,3,4,6,& 1,2,3,4,5,6,& Andrew G. Parrent , Terry M. Peters , Ali R. Khan Keywords: brain; atlas; human; neuroanatomy; zona incerta; 7T; deep brain stimulation; T1; quantitative MRI 4 5 1Department of Clinical Neurological Sciences, Division of Neurosurgery, Western University, London, Ontario, Canada 6 2Imaging Research Laboratories, Robarts Research Institute Canada, Western University, London, Ontario, Canada 7 3Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada 8 4School of Biomedical Engineering, Western University, London, Ontario, Canada 9 5Brain and Mind Institute, Western University, London, Ontario, Canada 10 6Department of Medical Biophysics, Western University, London, Ontario, Canada 11 7IBS Center for Neuroscience Imaging Research, Sungkyunkwan University, Seobu-ro, 2066, Jangan-gu, Suwon, South Korea 12 8Department of Biomedical Engineering, N Center, Sungkyunkwan University, Seobu-ro, 2066, Jangan-gu, Suwon, South Korea 13 9Techna Institute and Koerner Scientist in MR Imaging, University Health Network, 100 College St, Toronto, ON, Canada 14 *Corresponding author 15 &Joint senior authors 16 17 Abstract: The zona incerta (ZI) is a small gray matter region of the deep brain first identified in the 19th 18 century, yet direct in vivo visualization and characterization has remained elusive.
    [Show full text]
  • Demarcating the Anatomical Structure of the Claustrum: Piecing Together a New Functional Puddle
    bioRxiv preprint doi: https://doi.org/10.1101/179879; this version posted August 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Demarcating the anatomical structure of the claustrum: piecing together a new functional puddle Christopher M Dillingham1, Bethany E Frost1, Maciej M Jankowski2, Marie AC Lambert3 and Shane M O’Mara1 1Institute of Neuroscience, Trinity College Dublin, College Green, Dublin 2, Ireland 2Hebrew University of Jerusalem, Department of Neurobiology, Jerusalem, Israel 3Université de Poitiers, Faculté des Sciences Fondamentales et Appliquées, Poitiers, France Journal: Brain Structure and Function Corresponding Author Professor Shane O’Mara Room 3.43, Institute of Neuroscience Lloyd Building Trinity College Dublin College Green Dublin 2 Ireland Tel: +353 (01) 896 8447 Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/179879; this version posted August 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Background: A major obstacle in the understanding of the functional anatomy of the claustrum has been, and continues to be, the contradiction surrounding its anatomical boundary and, in particular, its rostral (i.e. anterior to striatum), extent. In a recent review we highlighted gene expression-based evidence from the mouse brain which lends weight to the idea that the anatomical boundary of the claustrum does in fact extend rostral to the anterior apex of the striatum.
    [Show full text]
  • The Basal Ganglia and Thalamus of the Long-Tailed Macaque in Stereotaxic Coordinates
    Brain Struct Funct (2012) 217:613–666 DOI 10.1007/s00429-011-0370-5 ORIGINAL ARTICLE The basal ganglia and thalamus of the long-tailed macaque in stereotaxic coordinates. A template atlas based on coronal, sagittal and horizontal brain sections Jose´ L. Lanciego • Alfonso Va´zquez Received: 20 September 2011 / Accepted: 2 December 2011 / Published online: 18 December 2011 Ó The Author(s) 2011. This article is published with open access at Springerlink.com Abstract A stereotaxic brain atlas of the basal ganglia and Keywords Stereotaxy Á Parkinson’s disease Á thalamus of Macaca fascicularis presented here is designed Ventriculography Á Cerebral cartography with a surgical perspective. In this regard, all coordinates have been referenced to a line linking the anterior and pos- Abbreviations terior commissures (ac–pc line) and considering the center 3n Oculomotor nerve fibers of the ac at the midline as the origin of the bicommissural 3V Third ventricle space. The atlas comprises of 43 different plates (19 coronal 4 Trochlear nucleus levels, 10 sagittal levels and 14 horizontal levels). In addition 4n Trochlear nerve to ‘classical’ cyto- and chemoarchitectural techniques such 5n Trigeminal nerve as the Nissl method and the acetylcholinesterase stain, ABA Accessory basal amygdaloid nucleus several immunohistochemical stains have been performed in ac Anterior commissure adjacent sections, including the detection of tyrosine Acb Nucleus accumbens hydroxylase, enkephalin, neurofilaments, parvalbumin and AD Anterodorsal nucleus calbindin. In comparison to other existing stereotaxic atlases al Ansa lenticularis for M. fasicularis, this atlas has two main advantages: firstly, alv Alveus brain cartography is based on a wide variety of cyto- and AM Anteromedian nucleus chemoarchitectural stains carried out on adjacent sections, Amg Amygdaloid complex therefore enabling accurate segmentation.
    [Show full text]
  • A Time-Dependent Role of Midline Thalamic Nuclei in the Retrieval of Fear Memory
    Neuropharmacology 62 (2012) 457e463 Contents lists available at SciVerse ScienceDirect Neuropharmacology journal homepage: www.elsevier.com/locate/neuropharm A time-dependent role of midline thalamic nuclei in the retrieval of fear memory Nancy Padilla-Coreano1, Fabricio H. Do-Monte1, Gregory J. Quirk* Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan 00936, Puerto Rico article info abstract Article history: Increasing evidence indicates that the medial prefrontal cortex (mPFC) and the amygdala mediate Received 6 June 2011 expression and extinction of conditioned fear, but few studies have examined the inputs to these Received in revised form structures. The dorsal part of the midline thalamus (dMT) contains structures such as the mediodorsal 21 August 2011 nucleus, paraventricular nucleus, and paratenial nucleus that project prominently to mPFC, as well as to Accepted 22 August 2011 basal (BA) and central (Ce) nuclei of the amygdala. Using temporary inactivation with GABA agonist muscimol, we found that dMT was necessary for retrieving auditory fear memory that was 24 h old, but Keywords: not 2e8 h old. However, pre-training infusions did not impair fear acquisition or extinction. To determine Thalamus Central amygdala the possible targets of dMT that might modulate fear retrieval, we combined dMT inactivation with Fos Fos immunohistochemistry. Rats with inactivation-induced impairment in fear retrieval showed increased Prefrontal cortex Fos in the lateral division of Ce (CeL), and decreased Fos in the medial division of Ce. No differences in Fos Extinction expression were observed in the mPFC or BA. We suggest that the projections from the paraventricular nucleus to CeL are involved in retrieval of well consolidated fear memories.
    [Show full text]
  • Outcomes from Stereotactic Surgery for Essential Tremor
    Movement disorders J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2018-318240 on 18 October 2018. Downloaded from REVIEW Outcomes from stereotactic surgery for essential tremor Robert Francis Dallapiazza,1 Darrin J Lee,1 Philippe De Vloo,1 Anton Fomenko,1 Clement Hamani,1 Mojgan Hodaie,1 Suneil K Kalia,1 Alfonso Fasano,2,3,4 Andres M Lozano1 ► Additional material is ABSTRact can profoundly impact the quality of life in patients published online only. To view There are several different surgical procedures that with severe symptoms.5 6 Patients report difficulty please visit the journal online with everyday tasks such as eating, drinking, hand- (http:// dx. doi. org/ 10. 1136/ are used to treat essential tremor (ET), including deep jnnp- 2018- 318240). brain stimulation (DBS) and thalamotomy procedures writing and dressing. Many patients also experi- with radiofrequency (RF), radiosurgery (RS) and most ence social embarrassment regarding their tremor. 1Division of Neurosurgery, recently, focused ultrasound (FUS). Choosing a surgical Some will refrain from dining in public, and others University of Toronto, Toronto, treatment requires a careful presentation and discussion will retire from employment early due to disabling Ontario, Canada 2Edmond J. Safra Program in of the benefits and drawbacks of each.W e conducted a symptoms. Parkinson’s Disease, Morton literature review to compare the attributes and make an Medical therapy is the first-line treatment for and Gloria Shulman Movement appraisal of these various procedures. DBS was the most ET (particularly beta-blockers and primidone).7 Disorders Clinic, Toronto commonly reported treatment for ET. One-year tremor However, medications alone are often insufficient Western Hospital, Toronto, reductions ranged from 53% to 63% with unilateral to control severe symptoms and can have undesir- Ontario, Canada 8 3Division of Neurology, Vim DBS.
    [Show full text]
  • Projections of the Paraventricular and Paratenial Nuclei of the Dorsal Midline Thalamus in the Rat
    THE JOURNAL OF COMPARATIVE NEUROLOGY 508:212–237 (2008) Projections of the Paraventricular and Paratenial Nuclei of the Dorsal Midline Thalamus in the Rat ROBERT P. VERTES* AND WALTER B. HOOVER Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431 ABSTRACT The paraventricular (PV) and paratenial (PT) nuclei are prominent cell groups of the midline thalamus. To our knowledge, only a single early report has examined PV projections and no previous study has comprehensively analyzed PT projections. By using the antero- grade anatomical tracer, Phaseolus vulgaris leucoagglutinin, and the retrograde tracer, FluoroGold, we examined the efferent projections of PV and PT. We showed that the output of PV is virtually directed to a discrete set of limbic forebrain structures, including ‘limbic’ regions of the cortex. These include the infralimbic, prelimbic, dorsal agranular insular, and entorhinal cortices, the ventral subiculum of the hippocampus, dorsal tenia tecta, claustrum, lateral septum, dorsal striatum, nucleus accumbens (core and shell), olfactory tubercle, bed nucleus of stria terminalis (BST), medial, central, cortical, and basal nuclei of amygdala, and the suprachiasmatic, arcuate, and dorsomedial nuclei of the hypothalamus. The posterior PV distributes more heavily than the anterior PV to the dorsal striatum and to the central and basal nuclei of amygdala. PT projections significantly overlap with those of PV, with some important differences. PT distributes less heavily than PV to BST and to the amygdala, but much more densely to the medial prefrontal and entorhinal cortices and to the ventral subiculum of hippocampus. As described herein, PV/PT receive a vast array of afferents from the brainstem, hypothalamus, and limbic forebrain, related to arousal and attentive states of the animal, and would appear to channel that information to structures of the limbic forebrain in the selection of appropriate responses to changing environmental conditions.
    [Show full text]
  • Thalamic Interaction Between the Input and the Output Systems of the Basal Ganglia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Dadun, University of Navarra Journal of Chemical Neuroanatomy 16 (1999) 187–200 Review Thalamic interaction between the input and the output systems of the basal ganglia Elisa Mengual a, Silvano de las Heras b, Elena Erro a, Jose´ Luis Lanciego a, Jose´ Manuel Gime´nez-Amaya a,* a Departamento de Anatomı´a, Facultad de Medicina, Uni6ersidad de Na6arra, C/ Irunlarrea, 1, 31008 Pamplona, Spain b Departamento de Morfologı´a, Facultad de Medicina, Uni6ersidad Auto´noma de Madrid, 28029 Madrid, Spain Received 6 April 1998; received in revised form 22 October 1998; accepted 14 February 1999 Abstract The striatal return through the thalamus is largely neglected in current studies dealing with basal ganglia function, and its role within this circuitry remains obscure. In this contribution the thalamus is regarded as an important place of interaction between the input and the output organization of the basal ganglia. In support of this idea, a brief overview is provided of some of the most recent findings concerning the thalamus in relation to the basal ganglia circuitry. In particular, we have focused on the thalamostriatal projections themselves, on the output of the basal ganglia to the thalamus and also on the overlapping territories between the thalamic projection of the output nuclei and the thalamostriatal neurons. These data support the existence of several thalamic feedback circuits within the basal ganglia neural system. Finally, some considerations are provided upon the functional significance of these thalamic feedback circuits in the overall organization of the basal ganglia.
    [Show full text]
  • Differential Projections of the Infralimbic and Prelimbic Cortex in the Rat
    SYNAPSE 51:32–58 (2004) Differential Projections of the Infralimbic and Prelimbic Cortex in the Rat ROBERT P. VERTES* Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431 KEY WORDS agranular insular cortex; claustrum; nucleus accumbens; nucleus re- uniens; prelimbic circuit; visceromotor activity; working memory ABSTRACT The medial prefrontal cortex has been associated with diverse functions including attentional processes, visceromotor activity, decision-making, goal-directed behavior, and working memory. The present report compares and contrasts projections from the infralimbic (IL) and prelimbic (PL) cortices in the rat by using the anterograde anatomical tracer, Phaseolus vulgaris-leucoagglutinin. With the exception of common projections to parts of the orbitomedial prefrontal cortex, olfactory forebrain, and mid- line thalamus, PL and IL distribute very differently throughout the brain. Main projec- tion sites of IL are: 1) the lateral septum, bed nucleus of stria terminalis, medial and lateral preoptic nuclei, substantia innominata, and endopiriform nuclei of the basal forebrain; 2) the medial, basomedial, central, and cortical nuclei of amygdala; 3) the dorsomedial, lateral, perifornical, posterior, and supramammillary nuclei of hypothala- mus; and 4) the parabrachial and solitary nuclei of the brainstem. By contrast, PL projects at best sparingly to each of these structures. Main projection sites of PL are: the agranular insular cortex, claustrum, nucleus accumbens, olfactory tubercle,
    [Show full text]