Form Number : Paper Code : 1001CM370715002

Hindi CLASSROOM CONTACT PROGRAMME (Academic Session : 2015 - 2016) NEET-II BOOSTER COURSE TARGET : PRE-MEDICAL - 2016

Test Type : PART TEST # 02 Test Pattern : NEET TEST DATE : 04 - 06 - 2016 Important Instructions /  Do not open this Test Booklet until you are asked to do so  1. A seat marked with Reg. No. will be allotted to each student. The student should ensure that he/she occupies the correct seat only. If any student is found to have occupied the seat of another student, both the students shall be removed from the examination and shall have to accept any other penalty imposed upon them.   2. Duration of Test is 3 Hours and Questions Paper Contains 180 Questions. The Max. Marks are 720. 3180720 3. Student can not use log tables and calculators or any other material in the examination hall.  4. Student must abide by the instructions issued during the examination, by the invigilators or the centre incharge.  5. Before attempting the question paper ensure that it contains all the pages and that no question is missing.  6. Each correct answer carries 4 marks, while 1 mark will be deducted for every wrong answer. Guessing of answer is harmful. 1 7. A candidate has to write his / her answers in the OMR sheet by darkening the appropriate bubble with the help of Blue / Black Ball Point Pen only as the correct answer(s) of the question attempted. OMR  8. Use of Pencil is strictly prohibited. 

Note : In case of any Correction in the test paper, please mail to [email protected] within 2 days along with Paper code and Your Form No.  Correction  Paper code Form No.  [email protected] mail Your Target is to secure Good Rank in NEET-II 2016 Corporate Office :  CAREER INSTITUTE, “SANKALP”, CP-6, Indra Vihar, Kota (Rajasthan)-324005 +91-744-5156100 [email protected] www.allen.ac.in Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 HAVE CONTROL  HAVE PATIENCE  HAVE CONFIDENCE  100% SUCCESS BEWARE OF NEGATIVE MARKING 1. A capacitor of capacity 'C' is connected to a cell 1. 'C' 'V'  of 'V' volt. Now a dielectric slab of dielectric r  constant r is inserted in it keeping cell connected then :-  (1) Capacitance will be decreased (1)  (2) Potential difference between the plates will (2)  be decresed (3) (3) Charge stored will be decreased  (4) Charge stored will be increased (4)  2. Find time constant for given circuit :- 2.  R R

R R E R E R C C

3 2 3 2 (1) RC (2) 3 RC (3) RC (4) 2 RC (1) RC (2) 3 RC (3) RC (4) 2 RC 2 3 2 3 3. Find net capacitance between A & B :- 3. A B 

C C C C C C

A B A B C C (1) 3C (2) C (3) 2C (4) C/3 (1) 3C (2) C (3) 2C (4) C/3 235 4. An alpha particle is projected towards a stationary 4. KE  92 U  235 92 U nucleus with KE kinetic energy find  distance of closest approach.  2 2 Ke2 92Ke2 Ke 92Ke (1) (2) (1) (2) (KE) (KE) (KE) (KE)

2 2 Ke Ke KE KE (3) (4) 2 (3) (4) 2 92(KE) 92(KE) Ke Ke  5. Electric field at a point (x, y, z) is represented by 5. (x, y, z) is represented by E 2xiˆ  y2 ˆ j if  E 2xiˆ  y2 ˆ j if potential at (0,0,0) is 2 volt find potential at (0,0,0) is 2 volt find potential at potential at (1, 1, 1) :- (1, 1, 1) :- 4 2 4 2 (1) (2) (1) (2) 3 3 3 3 10 1 10 1 (3) (4) (3) (4) 3 3 3 3

1001CM370715002 H-1/31 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 6. A soap bubble is charged its size :- 6.  (1) will decrease  (1) (2) will remain same  (2)  (3) Will increase (3)  (4) before increase after decrease (4)  7. In given diagram. Find distance of neutral point 7. e  from particle of charge e is :-  30 cm 30 cm e 4e e 4e (1) 20 cm (2) 10 cm (1) 20 cm (2) 10 cm (3) 15 cm (4) 7.5 cm (3) 15 cm (4) 7.5 cm 8. Two tiny electric dipoles of dipole moment P & 1 8. P1  P are placed 'r' distance coaxially find magnitude 2 P2 'r'  of electrostatic force between them.  KP P 6KP P 1 2 1 2 KP1 P 2 6KP1 P 2 (1) 4 (2) 4 (1) (2) r r r4 r 4 6KP P KP P 1 2 1 2 6KP1 P 2 KP1 P 2 (3) 3 (4) 3 (3) (4) r r r3 r3 9. For a cell terminal potential difference is 2.2 V when 9. 2.2 V  circuit is open and reduces to 1.8 V when cell is 5 connected to a resistance of R = 5 then determine   internal resistance of cell is :– 1.8 V  10 9 10 9 (1)  (2)  (1)  (2)  9 10 9 10

11 5 11 5 (3)  (4)  (3)  (4)  9 9 9 9 10. Find potential of J with : respect to G – 10. J G  (1) 40 V 60V (1) 40 V 60V 64 64

(2) 60 V J (2) 60 V J (3) 20 V 32 (3) 20 V 32 0V G 0V G (4) 30 V (4) 30 V 11. Two batteries, one of emf 18 volts and internal 11. 18 volts resistance 2 and the other of emf 12 volt and 2  internal resistance 1, are connected as shown. 12 volt 1  V  The voltmeter V will record a reading of :–  V V

2 18V 2 18V

1 12V 1 12V

(1) 18 volt (2) 30 volt (1) 18 volt (2) 30 volt (3) 14 volt (4) 15 volt (3) 14 volt (4) 15 volt

H-2/31 1001CM370715002 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 12. In the circuit shown, the current through the 4 12. P M  resistor is 1 amp when the points P and M are 4 1 amp  connected to a d.c. voltage source. The potential difference between the points M and N is :- M N 

4 4

  P M P M

0.5 N  0.5 N 

0.5 0.5

(1) 0.5 volt (2) 3.2 volt (1) 0.5 volt (2) 3.2 volt (3) 1.5 volt (4)1.0 volt (3) 1.5 volt (4)1.0 volt 13. A wire of resistance 12 ohms per meter is bent to 13. 12  form a complete circle of radius 10 cm. The 10 cm  resistance between its two diametrically opposite  points, A and B as shown in the figure, is : 

A B A B

(1) 6 (2) 0.6 (1) 6 (2) 0.6 (3) 3 (4) 6 (3) 3 (4) 6 14. A galvanometer having a coil resistance of 14. 60 1amp 60 shows full scale deflection when a current 5 amp  of 1.0 amp passes through it. It can be converted into an ammeter to read currents upto 5.0 amp  by :- (1) 15  (1) putting in parallel a resistance of 15  (2) 240  (2) putting in parallel a resistance of 240  (3) 15 (3) putting in series a resistance of 15  (4) putting in series a resistance of 240  (4) 240  15. The power dissipated in the circuit shown in the 15. 30  figure is 30 Watts. The value of R is : R 

R R

5 5

10V 10V

(1) 10  (2) 30  (1) 10  (2) 30  (3) 20  (4) 15  (3) 20  (4) 15 

1001CM370715002 H-3/31 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 16. Equivalent resistance between A and B is :- 16. A B  4 4

4 4 4 4 4 4 4 4 4 4 A B A B

4 4 (1) 4  (2) 8  (3) 2  (4) 1  (1) 4  (2) 8  (3) 2  (4) 1  17. The resistance of the series combination of two 17.  identical resistance is S. When they are joined in S  parallel, the total resistance is P. If S = nP, then P S = nP n  the minimum possible value of n is :-  :- (1) 4 (2) 3 (3) 2 (4) 1 (1) 4 (2) 3 (3) 2 (4) 1 18. Find potential difference across 24  :- 18. 24  :- 48 48

48 48

24 24 3 5 3 5 6 6 2A 2A

4 4

2 2

(1) 48 volt (2) 2 volt (3) 4 volt (4) 1 volt (1) 48 volt (2) 2 volt (3) 4 volt (4) 1 volt 19. In the circuit shown in figure, the power which 19. 6 6 W is dissipated as heat in the 6 resistor is 6W. What R  ? is the value of resistance R in the circuit? R R 6 6

8 8

12V 12V (1) 6  (2) 10  (3) 13  (4) 24  (1) 6  (2) 10  (3) 13  (4) 24  20. In the meter bridge shown, the length AB for 20.  which the deflection in galvanometer is zero will AB  be :- 15 10 15 10 G G  100 –  100 – AC AC B B

V V (1) 20 cm (2) 30 cm (1) 20 cm (2) 30 cm (3) 50 cm (4) 60 cm (3) 50 cm (4) 60 cm

H-4/31 1001CM370715002 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 21. The reading of voltmeter in the circuit shown 21.  is :- 6V 6V

40  60  40  60 

40  40 

V V (1) 2.25 V (2) 3.25 V (1) 2.25 V (2) 3.25 V (3) 4.25 V (4) 6.25 V (3) 4.25 V (4) 6.25 V 22. Potential difference across the terminals of the 22.  battery shown in figure is (r = ) (r = internal resistance of battery) (1) 8 V (1) 8 V 10V r=1 10V r=1 (2) 10 V (2) 10 V (3) 6 V (3) 6 V   (4) Zero (4)  23. If the length of a wire is increased by 10% by 23. 10%  stretching it, the percentage increase in its  resistance is :- (1) 10 % (2) 20 % (3) 21 % (4) 44 % (1) 10 % (2) 20 % (3) 21 % (4) 44 % 24. V – V = 6V 24. In the following circuit if VA – VB = 6V then the  A B  value of resistance R (in ohm) is :- R ()  10 7V 10 7V

BA BA

R R 4V 4V (1) 5  (2) 10  (3) 15  (4) 20  (1) 5  (2) 10  (3) 15  (4) 20      25. Projection of vector A on B is :- 25.  A  B  :-       (1) A.B (2) A.Bˆ (1) A.B (2) A.Bˆ     (3) BA (4) B.Aˆ ˆ (3) BA (4) B.Aˆ ˆ 26. Three blocks A, B and C of masses 4 kg, 2 kg and 26. A, B C  1 kg respectively, are in contact on a frictionless  surface, as shown. If a force of 14 N is applied 4kg, 2kg on the 4 kg block, then the contact force between 1 kg 4 kg (A) 14 N  A and B is : A B :

(1) 6 N (2) 8 N (3) 18 N (4) 2 N (1) 6 N (2) 8 N (3) 18 N (4) 2 N

1001CM370715002 H-5/31 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016

27. The force 'F' acting on a particle of mass 'm' is 27. 'm' 'F'  indicated by the force-time graph shown below. t = 0 t = 8 s  The change in momentum of the particle over the  :- time interval from zero to 8 s is :-

6 6 3 3

) 0 ) 0 N N ( 8642 ( 8642

F –3 F –3

t (s) t (s)

(1) 24 Ns (2) 20 Ns (1) 24 Ns (2) 20 Ns

(3) 12 Ns (4) 6 Ns (3) 12 Ns (4) 6 Ns

28. The upper half of an inclinded plane of inclination 28.   is perfectly smooth while lower half is rough.  A block starting from rest at the top of the plane   will again come to rest at the bottom, if the  coefficient of friction between the block and lower  half of the plane is given by:- :-

1 1 (1) µ = tan  (2) µ = (1) µ = tan  (2) µ = tan  tan 

2 2 (3) µ = (4) µ = 2 tan  (3) µ = (4) µ = 2 tan  tan  tan  29. In an experiment four quantities a, b, c and d are 29. a, b, c  d () measured with percentage error 1%, 2%, 3% and 1%, 2%, 3%  4%  4% respectively. Quantity P is calculated as P  a3 b 2 follows P = 3 2 cd a b P = P (%) :-  cd    % error in the measurement of P is :- (1) 4% (2) 14% (1) 4% (2) 14% (3) 10% (4) 7% (3) 10% (4) 7% 30. The horizontal range and the maximum height of 30.  a projectile are equal. The angle of projection of :- the projectile is :- (1)  = tan–1(2) –1 (1)  = tan (2) (2)  = 45° (2)  = 45°

–1 1  1  (3)  = tan   (3)  = tan–1   4 4  (4)  = tan–1(4) (4)  = tan–1(4)

H-6/31 1001CM370715002 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 31. A conveyor belt is moving at a constant speed of 31. 2 m/s () 2 m/s. A box is gently dropped on it. The  coefficient of friction between them is µ = 0.5.  µ = 0.5  The distance that the box will move relative to belt before coming to rest on it, taking g = 10 ms–2  g 10 ms–2, :- is :-    (1) 0.4 m (2) 1.2 m (1) 0.4 m (2) 1.2 m (3) 0.6 m (4) Zero (3) 0.6 m (4) Zero

32. Displacement of a particle is represented 32. y = a + bt + ct2 – dt4  By y = a + bt + ct2 – dt4 then initial velocity and  :- acceleration are :- (1) b, – 4d (2) –b , 2c (1) b, – 4d (2) –b , 2c (3) b, 2c (4) 2c, – 4d (3) b, 2c (4) 2c, – 4d

33. Three forces acting on a body are shown in the 33.  figure. To have the resultant force only along the y- y-direction, the magnitude of the minimum  additional force needed is :-

3 3 (1) N (2) 3 N (1) N (2) 3 N 4 4

(3) 0.5 N (4) 1.5 N (3) 0.5 N (4) 1.5 N

34. A car moves from X to Y with a uniform speed 34. X  Y vu  vu and returns to Y with a uniform speed vd. The Y X vd  average speed for this round trip is :-  2v v v v 2v v v v vu v d d u d u vu v d d u d u (1) (2) (3) vu v d (4) (1) (2) (3) vu v d (4) 2 vd v u vd v u 2 vd v u vd v u 35. The force F is given in terms of time t and 35.  t   x       displacement x by the equation F = AcosBx +  F = AcosBx + CsinDt  D/B    CsinDt. The dimensional formulae of D/B is :-  :- (1) M0L0T0 (2) M0L0T–1 (1) M0L0T0 (2) M0L0T–1 (3) M0L–1T0 (4) M0L1T–1 (3) M0L–1T0 (4) M0L1T–1

1001CM370715002 H-7/31 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 36. The velocity v of a particle is given by the 36. v = 6t2 – 6t3,  equation v = 6t2 – 6t3, where v is in m/sec and v m/sec t :- t is time in seconds then :- (1) at t = 0, velocity is maximum (1) t = 0 

2 2 (2) at t = , velocity is minimum (2) t =  3 3 (3) minimum velocity is zero (3)  (4) minimum velocity is –2 m/sec (4) –2 m/sec  37. A gramophone record is revolving with an angular 37.   velocity . A coin is placed at a distance r from r  the centre of the record. The static coefficient of µ  friction is µ. The coin will revolve with the record :- if :- 

g g 2 r  2 (1) r  (2) r  g  (1) 2 (2) r  g  2 

2 2 g  g (3) r < (4) r  (3) r < (4) r  2 g 2 g    38. Find angle between A 3iˆ  ˆ j  4kˆ and 38.  A 3iˆ  ˆ j  4kˆ Z- Z-axis :- 

22  10  1 22  1 10  (1) tan1   (2) tan1   (1) tan   (2) tan   4  4  4  4 

4 10  1 4  1 10  1   1 sin (3) sin   (4) sin   (3) sin   (4)   4  26  4  26  39. The coefficient of friction between two surfaces 39. µ = 0.8  is µ = 0.8. The tension in the string shown in the  :- figure is :- 1 kg 1 kg 30° 30° (1) 0  (2) 6  (1) 0 N (2) 6 N (3) 4 (4) 8 (3) 4 N (4) 8 N   40. The ceiling of a tunnel is of 5 m high. What is 40.  5  the maximum horizontal distance that a ball 20 / thrown with a speed of 20 m/s, can go without (g = 10 / 2) hitting the ceiling of the tunnel ? (Take g = 10 m/s2)    (1) 30 m (2) 40 m (1) 30  (2) 40 

(3) 30 2 m (4) 20 3 m (3) 30 2  (4) 20 3 

H-8/31 1001CM370715002 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 41. A boy playing on the roof of a 10 m high building 41. 10  throws a ball with a speed of 10 m/s at an angle 10 30°  30° with the horizontal. How far from the  throwing point will the ball be at the height of 10 (g = 10 2) 10 m from the ground ? (g = 10 m/s2)    (1) 5.20 m (2) 4.33 m (1) 5.20  (2) 4.33 

(3) 2.60 m (4) 8.66 m (3) 2.60  (4) 8.66  42. For the given figure find value of m for which 42.  m  8 8 blocks have acceleration of g :- g :- 13  13 

8 8 100g a = g 100g a = g  = 0 13  = 0 13

m = ? m = ? 30° 30°

50g 50g

(1) 0.2 kg (2) 0.4 kg (3) 0.5 kg (4) 1 kg (1) 0.2 kg (2) 0.4 kg (3) 0.5 kg (4) 1 kg 43. For the given figure find acceleration of 40 kg 43.  40 kg block :- :- 40 kg 40 kg  = 0.1  = 0.1

10 kg 10 kg

(1) 0 (2) 2 m/s2 (1) 0 (2) 2 m/s2 2 2 (3) 1.2 m/s (4) 2.4 m/s (3) 1.2 m/s2 (4) 2.4 m/s2 44. A man of mass 80 kg stands on a weighing scale 44.  80 kg  in a lift then find the reading on scale if lift is moving  10 m/s  :- upward with constant velocity of 10 m/s :-  (1) 80 kg (2) 160 kg (1) 80 kg (2) 160 kg (3) 40 kg (4) zero (3) 40 kg (4) zero 45. A parachutist after bailing out falls 50 m without 45. 50m  friction. When parachute opens, it decelerates at 2 m/s2  2 2 m/s . He reaches the ground with a speed of 3 m/s  3 m/s. At what approximate height, did he bail out? (g = 10m/s2) (g = 10m/s2) (1) 300 m (2) 150 m (1) 300 m (2) 150 m (3) 100 m (4) 200 m (3) 100 m (4) 200 m

1001CM370715002 H-9/31 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 46. Which of the following has minimum number of 46.  atoms :-  :- (1) 12 g He (1) 12  He (2) 1.8 g water (2) 1.8  (3) 22 g CO2 (3) 22  CO2 (4) 2.45 g sulphuric acid (4) 2.45  47. What will be the equivalent weight of metal if 47.  81.25 vapour density of chloride salt of trivalent metal :- is 81.25:- (1) 18.66 (2) 56 (1) 18.66 (2) 56 (3) 162.5 (4) 28 (3) 162.5 (4) 28

48. What will be the amount of MgCl2 when 17g HCl 48. 17  HCl MgO  is reacted with excess of MgO in following  MgCl2  reaction MgO + 2HCl  MgCl2 + H2O MgO + 2HCl  MgCl2 + H2O (1) 19.33 g (2) 22.12 g (1) 19.33 g (2) 22.12 g (3) 44.24 g (4) 22.75 g (3) 44.24 g (4) 22.75 g 49. H° combustion of C H (g) is –2650 kJ mol–1 the –1 4 10 49. C4H10(g) H° = –2650 kJ mol  amount of heat evolve at constant pressure that can 5.8 kg C4H10  be obtained by burning 5.8 kg of C4H10 is approx :- :- (1) 2.65 × 103 kJ (1) 2.65 × 103 kJ (2) 265 × 105 kJ (2) 265 × 105 kJ (3) 2.65 × 105 kJ (3) 2.65 × 105 kJ (4) 2.65 × 104 kJ (4) 2.65 × 104 kJ 50. Based on Hess's law calculations, what is the 50.     S–O      0 SO –270 kJ –1 average S–O bond energy in SO3 if Hf of   3       –1 SO3 is –270 kJmol . Bond energy of O=O is   O=O     S(s)   130 kJmol–1 and heat of sublimation for S(s)   130  100 kJ –1  ? is 100 kJ mol–1 ? –1 –1 (1) 188.5 kJmol–1 (2) 120 kJmol–1 (1) 188.5 kJ  (2) 120 kJ  (3) 12 kJmol–1 (4) 100 kJmol–1 (3) 12 kJ –1 (4) 100 kJ –1 51. For which of the following reactions H is 51.  H  E  approximately equal to E ? ? (1) 2H O (g)  2H O(g) + O (g) 2 2 2 2 (1) 2H2O2(g)  2H2O(g) + O2(g) (2) 2H (g) + O (g)  2H O(g) 2 2 2 (2) 2H2(g) + O2(g)  2H2O(g) (3) 2NH (g)  N (g) + 3H (g) 3 2 2 (3) 2NH3(g)  N2(g) + 3H2(g) (4) 2NO(g)  N (g) + O (g) 2 2 (4) 2NO(g)  N2(g) + O2(g) 52. Given that the bond energy of hydrogen-hydrogen 52.  H–H, H–O  O=O    bond is 436 kJ/mol, that of hydrogen-oxygen bond 436 kJ/mol, 464 kJ/mol, 496 kJ/mol is 464 kJ/mol, and those in oxygen molecules  2H2 + O2  2H2O  496 kJ/mol, what is the approximate heat of  reaction for 2H2 + O2  2H2O ? (1) –488 kJ/mol (2) –440 kJ/mol (1) –488 kJ/mol (2) –440 kJ/mol (3) 440 kJ/mol (4) 488 kJ/mol (3) 440 kJ/mol (4) 488 kJ/mol H-10/31 1001CM370715002 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 53. The entropy during melting of Ice to water ? 53.  (1) zero (2) decreases (1)  (2)  (3) Increases (4) remain same (3)  (4)  54. SO 20  60 54. 20  of SO2 diffuses through a porous partition in 2    60 seconds. Volume of O diffuse under similar 2  30  conditions in 30 seconds will be : O2  (1) 12.14  (2) 14.14  (1) 12.14  (2) 14.14  (3) 18.14  (4) 28.14  (3) 18.14  (4) 28.14  55. If there is 2 nodal surfaces in third excited state. 55. H  2  Find the orbital angular momentum:  1 1 (1) 3  (2) 2  (3) 4  (4) (1) 3  (2) 2  (3) 4  (4) 2 2 56. Find the % difference (approximate) in deBorglie 56.  wavelength if the temperature of gas become  double :-  (1) 30% (2) 40% (3) 50% (4) 100% (1) 30% (2) 40% (3) 50% (4) 100% 57. Which of the following is not permissible 57.  arrangement of electrons in an atom :  1 1 (1) n = 3 ;  = 2 ; m = –2 ; s =  (1) n = 3 ;  = 2 ; m = –2 ; s =  2 2

1 1 (2) n = 4 ;  = 0 ; m = 0 ; s =  (2) n = 4 ;  = 0 ; m = 0 ; s =  2 2

1 1 (3) n = 5 ;  = 3 ; m = 0 ; s =  (3) n = 5 ;  = 3 ; m = 0 ; s =  2 2

1 1 (4) n = 3 ;  = 2 ; m = –3 ; s =  (4) n = 3 ;  = 2 ; m = –3 ; s =  2 2 58. 750 waves of a energy radiation passes in one 58. 750 1  minute from a point then what will be wavelength :- of radiation :- (1) 4 × 105 m (2) 2.4 × 107 m (1) 4 × 105 m (2) 2.4 × 107 m –8 9 (3) 4.16 × 10–8 m (4) 2.4 × 109 m (3) 4.16 × 10 m (4) 2.4 × 10 m 59. In an aqueous solution SCN–1, Br–1, I–1 and Cl– are 59. SCN–1, Br–1, I–1  Cl–  present. Which will get precipitated first, when AgNO3  AgNO3 is mixed with each of them? Given that :-  –10 –10 Ksp of AgCl = 1.2 × 10 , Ksp of AgCl = 1.2 × 10 , –16 –16 Ksp of AgI = 1.7 × 10 Ksp of AgI = 1.7 × 10 –7 K of AgSCN = 7.1 × 10–7, Ksp of AgSCN = 7.1 × 10 , sp –13 K of AgBr = 3.5×10–13 Ksp of AgBr = 3.5×10 sp – – – – (1) I (2) Cl (1) I (2) Cl – – – – (3) Br (4) SCN (3) Br (4) SCN

1001CM370715002 H-11/31 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 60. The dissociation constants of monobasic acids A, 60. A, B, C  D  –4 –5 –6 B, C and D are 6 × 10 , 5 × 10 , 3·6 × 10 and 6 × 10–4, 5 × 10–5, 3·6 × 10–6  7 × 10–10 –10 7 × 10 respectively. The pH values of their 0·1 pH  0·1 molar aqueous solutions are in the order :-  :- (1) A < B < C < D (1) A < B < C < D (2) A > B > C > D (2) A > B > C > D (3) A = B = C = D (3) A = B = C = D (4) A > B < C > D (4) A > B < C > D 61. For the reaction : 61. : CO(g) + H O(g) CO (g) + H (g) CO(g) + H2O(g) CO2(g) + H2(g), at a given 2 2 2  temperature, the equilibrium amount of CO (g) 2 CO2(g) :- can be increased by :- (1)  (1) Adding a suitable catalyst (2) (2) Adding an inert gas  (3) Decreasing the volume of container (3)  (4) Increasing the amount of CO(g) (4) CO(g)  62. Consider the partial decomposition of A is 62. A  2A(g)  2B(g) + C(g) 2A(g)  2B(g) + C(g) at equilibrium 700 mL gaseous mixture contains  700 mL  100 mL  C, 10 atm

100 mL of gas C at 10 atm and 300 K. What is  300 K  KP the value of KP for the reaction :-  :- (1) 40/7 (2) 1/28 (3) 10/28 (4) 28/10 (1) 40/7 (2) 1/28 (3) 10/28 (4) 28/10

63. For the chemical reaction 63. CaCO3(s)  CaO(s) + CO2(g) CaCO (s)  CaO(s) + CO (g) H° of reaction 3 2   Hº  can be determined from which one of the  ? following plots ? ) ) ) ) CO CO P P CO CO ( ( P P 10 2 10 2 ( ( g g

10 2 (1) (2) 10 2 o o g l g (1) (2) l o o l l 1/T 1/T 1/T 1/T ) ) ) ) CO CO CO CO P P P ( P ( ( ( 10 2 10 2 10 2 10 2 g (3) g (4) g g o

(3) (4) o l l o o l l 1/T 1/T 1/T 1/T

64. The pH of a buffer solution prepared by mixing 64. 50 mL 0.2 M CH3COOH  250 mL CH3COONa pH 4.8 50 mL of 0.2 M CH3COOH & 250 mL of   CH COOH pKa 4.8 CH COONa CH3COONa is 4.8. What is the concentration of 3   3 

CH3COONa? pKa of CH3COOH is 4.8.  (1) 4 M (2) 0.04 M (1) 4 M (2) 0.04 M (3) 2 M (4) 0.2 M (3) 2 M (4) 0.2 M

H-12/31 1001CM370715002 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 –10 –10 + 65. KSP of AgCl at 18°C is 1.8 × 10 . If 65. AgCl  1.8 × 10 Ag + –3 concentration of Ag is 4 × 10 mol/litre the 4 × 10–3 mol/litre  AgCl  concentration of Cl– that is required for AgCl  Cl–  precipitation :- –8 –3 (1) 4.5 × 10–8 mol/ (2) 4 × 10–3 mol/ (1) 4.5 × 10 mol/ (2) 4 × 10 mol/ –13 –7 (3) 7.2 × 10–13 mol/ (4) 4.5 × 10–7 mol/ (3) 7.2 × 10 mol/ (4) 4.5 × 10 mol/ 66.  66. N2 (g) 3H 2 (g) 2NH 3 (g); K 1 N2 (g) 3H 2 (g) 2NH 3 (g); K 1 1 3 1 3 NH (g) N (g) H (g); K NH3 (g) N 2 (g) H 2 (g); K 2 32 2 2 2 2 2 2 1 3 1 3 N (g) H (g) NH (g); K N2 (g) H 2 (g) NH 3 (g); K 3 22 2 2 3 3 2 2

2NH3 (g) N 2 (g) 3H 2 (g); K 4 2NH3 (g) N 2 (g) 3H 2 (g); K 4 x y z K = K x = K y = K z x, y z If K1 = K2 = K3 = K4 then correct values of  1 2 3 4    x, y and z are respectively :-  :- (1) 2, 1, –2 (2) –1, 2, –2 (1) 2, 1, –2 (2) –1, 2, –2 (3) –2, 2, 1 (4) –2, 2, –1 (3) –2, 2, 1 (4) –2, 2, –1 67. 5 atm SO O 67. A mixture of SO2 and O2 at 5 atm pressure reacts  2  2  30% till equilibrium. Determine the pressure of 30%  equilibrium mixture 

2SO2 (g) O 2 (g) 2SO 3 2SO2 (g) O 2 (g) 2SO 3 (1) 5 atm (2) 2.5 atm (3) 4.5 atm (4) 9 atm (1) 5 atm (2) 2.5 atm (3) 4.5 atm (4) 9 atm

68. If reaction is started with NH4COONH2(s) & 68. NH4COONH2(s)  2NH3(g) + CO2(g) equilibrium mixture has pressure of 3 atm then NH4COONH2(s)  K for NH COONH (s)  2NH (g) + CO (g) is:- P 4 2 3 2 3 atm K :- 3 3   P  (1) 4 atm (2) 27 atm (1) 4 atm3 (2) 27 atm3 4 1 4 1 (3) atm3 (4) atm3 (3) atm3 (4) atm3 27 27 27 27 1 1 69. For the reaction CO O CO K /K is:- 69. CO(g) O 2(g) CO 2(g) KP/KC :- (g)2 2(g) 2(g) P C 2 –1 –1/2 1/2 (1) RT (2) (RT)–1 (3) (RT)–1/2 (4) (RT)1/2 (1) RT (2) (RT) (3) (RT) (4) (RT) 70. 10 L 227°C CaCO 20g 70. When 20 g of CaCO3 are subjected to   3   decomposition at 227°C in a closed container of 50% 10L capacity, 50% of CaCO remained unreacted 3 KP  at equilibrium. Calculate KP for CaCO3 (s) CaO(s) CO 2 (g) CaCO (s) CaO(s) CO (g) 3 2 (1) 0.41 atm (2) 0.72 atm (1) 0.41 atm (2) 0.72 atm (3) 0.80 atm (4) 0.27 atm (3) 0.80 atm (4) 0.27 atm 71. Equal volumes of two solutions of pH = 3 and 71. pH = 3  pH=5  pH = 5 are mixed. The resultant pH is :- pH :- (1) 8.0 (2) 2.0 (3) 3.3 (4) 4.0 (1) 8.0 (2) 2.0 (3) 3.3 (4) 4.0

72. pH of an aqueous solution H2CO3 is 3.3. If 72. H2CO3 pH = 3.3  –3 –13 – –3 –13 – Ka = 10 and Ka = 10 then [HCO3 ] is :- K = 10 K = 10 [HCO ] :- 1 2 a1  a2  3  (1) 5 × 10–4 M (2) 6 × 10–5 M (1) 5 × 10–4 M (2) 6 × 10–5 M (3) 3 × 10–7 M (4) 2 × 10–3 M (3) 3 × 10–7 M (4) 2 × 10–3 M

1001CM370715002 H-13/31 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 73. pH of an aqueous solution of CH COONH is found 3 4 73. 25°C  CH3COONH4  to be 6.7 at 25°C. Concentration of CH COONH –5 3 4 pH = 6.7  Ka(CH3COOH) = 10  solution may be (K for CH COOH = 1.0 × 10–5 a 3 pKb(NH4OH) = 4.4 CH3COONH4  and pK for NH OH = 4.4) :- b 4  :- (1) 0.1 M (2) 0.25 M (1) 0.1 M (2) 0.25 M (3) 0.3 M (4) any of the above (3) 0.3 M (4)  74. Which of the following mixture will make a buffer 74.  ? solution ? (1) 0.2 mol NaOH + 0.1 mol HCN (1) 0.2 mol NaOH + 0.1 mol HCN (2) 0.1 mol HCl + 0.1 mol NH4OH (2) 0.1 mol HCl + 0.1 mol NH4OH (3) 0.4 mol CH3COOH + 0.4 mol HCOONa (3) 0.4 mol CH3COOH + 0.4 mol HCOONa (4) 0.2 mol HNO3 + 0.3 mol NH4OH (4) 0.2 mol HNO3 + 0.3 mol NH4OH –3 75. 10% 5 × 10–3 M H CO pH 75. Find pH of 5 × 10 M H2CO3 solution having  2 3   10% dissociation :- ? (1) 3 (2) 2.7 (1) 3 (2) 2.7 (3) 4.3 (4) 11.3 (3) 4.3 (4) 11.3 76. Which salt represent the highest degree of 76.  hydrolysis :- (1) NaCl (2) CH3COONH4 (1) NaCl (2) CH3COONH4 (3) NH Cl (4) CH COONa (3) NH4Cl (4) CH3COONa 4 3 77. The yield of product in the reaction, 77.  A (g) + 2B(g)  C(g) + Q kJ 2 A2(g) + 2B(g)  C(g) + Q kJ would be higher at :- (1)  (1) low temperature and high pressure (2) (2) high temperature and high pressure  (3) low temperature and low pressure (3)  (4) high temperature and low pressure (4)  78. When KOH is dissolved in water, heat is evolved. 78. KOH  If the temperature is raised, the solubility of KOH :- KOH  :- (1) increases (2) decreases (1)  (2)  (3) remains the same (4) cannot be predicted (3)  (4)  79. In the melting of ice, which one of the conditions 79.  ? will be more favourable ? (1)  (1) high temperature and high pressure (2)  (2) low temperature and low pressure (3) (3) low temperature and high pressure  (4) high temperature and low pressure (4)  80. The equilibrium constant for a reaction, 80.  A + B  C + D  298K A + B  C + D is 1 × 10–2 at 298 K and is 1 × 10–2  273 K  2  C  D  2 at 273 K. The chemical process resulting in the  :- formation of C and D is :- (1) (1) exothermic  (2) endothermic (2)  (3) unpredictable (3)  (4) there is no relationship between H and K (4) H  K  H-14/31 1001CM370715002 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 81. The degree of dissociation in a weak electrolyte 81.  :- increases :- (1)  (1) on increasing pressure (2) (2) on decreasing dilution  (3) (3) on increasing dilution  (4) on increasing concentration (4)  82. Which of the following is the weakest base ? 82.  ? (1) NaOH (2) Ca(OH) 2 (1) NaOH (2) Ca(OH)2 (3) NH4OH (4) KOH (3) NH4OH (4) KOH 83. What is the correct representation of solubility 83. Ag2CrO4 ? 2– 2– product of Ag2CrO4 ? (1) [Ag+]2 [CrO ] (2) [Ag+] [CrO ] (1) [Ag+]2 [CrO2–] (2) [Ag+] [CrO2–] 4 4 4 4 + 2– + 2 2– + 2– + 2 2– (3) [2Ag ] [CrO4 ] (4) [2Ag ] [CrO4 ] (3) [2Ag ] [CrO4 ] (4) [2Ag ] [CrO4 ] 84. The solubility products of Al(OH)3 and Zn(OH)2 84. Al(OH)3  Zn(OH)2  are 8.5 × 10–23 and 1.8 × 10–14 at room temperature.  8.5 × 10–23  1.8 × 10–14  3+ 2+ 3+ 2+ If the solution contains Al and Zn ions, the Al  Zn NH4OH  ion first precipitated by adding NH4OH is :-  :- (1) Al3+ (2) Zn2+ (1) Al3+ (2) Zn2+ (3) both (4) none of these (3)  (4)  85. On passing HCl gas in saturated solution of NaCl, 85. NaCl HCl NaCl  the solubility of NaCl :-  :- (1) increases (2) decreases (1)  (2)  (3) remains unchanged (4) NaCl decomposes (3)  (4) NaCl  86. According to Bronsted-Lowry concept an acid is 86. :- a substance which :- (1)  (1) accepts proton (2)  (2) gives an electron pair (3)  (3) gives proton + + (4) H3O  (4) combines with H3O ions 87. The ionisation constant of acetic acid is 1.8 × 10–5. 87.  1.8 × 10–5  The concentration at which it will be dissociated  2%  :- to 2%, is :- (1) 1 M (2) 0.045 M (1) 1 M (2) 0.045 M (3) 0.018 M (4) 0.45 M (3) 0.018 M (4) 0.45 M 88. The dissociation constants of two acids HA and 1 88.  HA1  HA2  HA are 3.0 × 10–4 and 1.8 × 10–5 respectively. 2 3.0 × 10–4 1.8×10–5 :- The relative strengths of the acids will be :-   (1) 1 : 4 (2) 4 : 1 (3) 1 : 16 (4) 16 : 1 (1) 1 : 4 (2) 4 : 1 (3) 1 : 16 (4) 16 : 1 89. 0.1 M acetic acid solution is titrated against 89. 0.1 M  0.1 M NaOH  0.1 M NaOH solution. What would be the 1/4  3/4 difference in pH between 1/4 and 3/4 stages of pH  ? neutralisation of acid ? (1) 2 log 3/4 (2) 2 log 1/4 (1) 2 log 3/4 (2) 2 log 1/4 (3) log 1/3 (4) 2 log 3 (3) log 1/3 (4) 2 log 3 90. An acidic buffer solution can be prepared by 90.  mixing the solution of :-  :- (1) sodium acetate and acetic acid (1)  (2) ammonium chloride and ammonium hydroxide (2)  (3) sulphuric acid and sodium hydroxide (3)  (4) sodium chloride and sodium hydroxide (4)  1001CM370715002 H-15/31 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 91. Castle's intrinsic factor is connected with inter- 91.  nal absorption of (1) (2) (1) Pyridoxine (2) Riboflavin   (3) Thiamine (4) Cobalamine (3)  (4)  92. Indentify the false statement : 92.  (1) oesophagus does not secrete any enzyme (1)  (2) gall bladder is absent in horse (2) (3) human teeth are thecodont  (3) (4) there are two pairs of salivary glands in  humans (4)  93. Fint out the correctly matched pair : 93.  (1) Pepsinogen Zymogen cells (1)  (2) HCl Goblet cells (2) HCl  (3) Mucous Oxyntic cells (3)  (4) Pancreatic juice Salivary glands (4)  94. Fluoride pollution mainly affects : 94.   (1) Brain (2) Heart (1)  (2)  (3) Teeth (4) Kidney (3)  (4)  95. In lungs there is definite exchange of ions between 95. RBC Plasma  RBC and plasma. Removal of CO2 from blood CO2  involves : (1) RBC Cl— (1) efflux of Cl— ions from RBC   — (2) influx of Cl— ions into RBC (2) Cl RBC  (3) influx of H+ ions into RBC (3) H+ RBC  (4) efflux of HCO ions from RBC  3 (4) HCO3 RBC  96. O dissociation curve is : 2 96. O2  (1) sigmoid curve (1)  (2) parabolic (2)  (3) hyperbolic (3)  (4) straight line (4)  97. Which of the following factors raise the P valve 50 97. P50  and shifts the HbO dissociation curve to right 2 HbO2 vice and vice versa : versa : a. Rise in Pco 2 a. Pco2  b. Fall in temperature b.  + c. Rise in H (=fall in pH) c. H+  (pH ) d. Fall in diphosphoglyceric acid d.  Answer codes :  : (1) a and b are correct (1) a  b  (2) b and d are correct (2) b  d  (3)a and c are correct (3)a  c  (4) a, b and c are correct (4) a, b c 

H-16/31 1001CM370715002 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 98. Heart covering is 98.  (1) Peritoneum (2) Pleural membrane (1)  (2)  (3) Pericardium (4) visceral membrane (3)  (4)   99. Choose the correct pathway of the transmission 99.  of impulses in the heart beat : (1)AV node  S A node  Bundle of His  (1)AV node  S A node  Bundle of His  Purkinje fibres Purkinje fibres (2)SA node  AV node  Bundle of His  (2)SA node  AV node  Bundle of His  Purkinje fibres Purkinje fibres (3)SA node  Bundle of His  AV node  (3)SA node  Bundle of His  AV node  purkinje fibres purkinje fibres (4)AV node  Bundle of His  SA node  (4)AV node  Bundle of His  SA node  Purkinje fibres Purkinje fibres 100. During atrial systole flow of blood into ventricles 100.  increases about :- ______ (1) 70% (2) 5% (3) 30% (4) 50% (1) 70% (2) 5% (3) 30% (4) 50% 101. Uricotelism is found in. 101.   (1) Frogs and toads (1)  (2) Mammals and birds (2)    (3) Fishes and fresh water protozoans (3)   (4) Birds, reptiles and insects (4)    102. Which is the correct pathway for passage of urine 102.  in vertebrates ? (1) Renal cortex----medulla----urinary (1)Renal cortex------medulla------urinary bladder--- bladder---urethra (2) Renal vein------urethra-----bladder-----ureter (2)Renal vein------urethra-----bladder-----ureter (3) Collecting duct------ureter------bladder------(3) Collecting duct------ureter------bladder------urethra urethra (4) Pelvis-----medulla------urinary bladder----- (4) Pelvis-----medulla------urinary bladder----- urethra urethra 103. Occurrence of excess urea in blood due to kidney 103.  failure is  (1) Urochrome (1)  (2) Uraemia (2)  (3) Uricotelism (3)  (4) Ureotelism (4)  104. Pivot joint occurs at 104. Pivot  (1)The hip and shoulder joint (1) (2)Between the atlas and the odontoid process of (2)Atlas  odontoid  axis (3) Sternoclavicular  (3) Sternoclavicular joint (4) Temporomandibular (4) Temporomandibular joint  105. Pelvic girdle of rabbit consists of :- 105.   :- (1) Ilium, ischium and pubis (1)  (2) Ilium, ischium and coracoid (2)  (3)Coracoid, scapula and clavicle (3) (4) Ilium, coracoid and scapula (4)  

1001CM370715002 H-17/31 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 106. Correctly match column-I with column-II. 106. -I -II  Column-I Column-II -I -II (A) Tetany (i) Auto immune disorder. (A) (i) (B) Osteoporosis (ii) Progressive degeneration   of skeletal muscle. (B)  (ii)  (C) Muscular (iii) Inflammation of joints.  dystrophy (C)  (iii)  (D) Arthritis (iv) Rapid spasms in muscle. (D) () (iv)  (E) Myasthenia (v) Bone mass decreased. (E)  (v)  Gravis (1) A(i), B(ii), C(iii), D(iv), E(v) (1) A(i), B(ii), C(iii), D(iv), E(v) (2) A(iv), B(v), C(i), D(iii), E(ii) (2) A(iv), B(v), C(i), D(iii), E(ii) (3) A(iv), B(v), C(ii), D(iii), E(i) (3) A(iv), B(v), C(ii), D(iii), E(i) (4) A(ii), B(iii), C(i), D(v), E(iv) (4) A(ii), B(iii), C(i), D(v), E(iv) 107. Given below is a figure showing relationship of 107.  pituitary with hypothalamus 

Hypothalamus Hypothalamus (A) (A)

[B] [B]

[C] [C]

[D] [D]

Which of the following hormones are synthesised -A  in part-A and are transported upto part-D through B- -D route-B   (1) (1) Somatostatin and Growth hormone  (2) Prolactin and oxytocin (2)  (3) GnRH and CRH (3) GnRH CRH (4) Oxytocin and vasopressin (4)  108. In the vertebrates, the hormones which control 108.  osmoregulation are:-  (1) vasopressin and thyrotropin (1)  (2) aldosterone and corticotropin (2)  (3) thyrotropin and corticotropin (3)  (4) vasopressin and aldosterone (4)  H-18/31 1001CM370715002 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 109. Select the correct option that describes the source 109.  of oxytocin and its function:- :-

Source Function   (1) Anterior pituitary Parturition and (1)   lactation (2) (2) Maintenance of   and  fertilization (3)   (3) Placenta Embryo implantation  and parturition (4) (4) Posterior pituitary Uterine contractions   and lactation 

110. A deep cleft divides the cerebrum longitudinally 110.  into two halves termed as  (1) Corpus callosum (1)  (2) Cerebral hemispheres (2)  (3) Median fissure (3)  (4) Cerebral cortex (4)  111. The following is the scheme showing the path of 111.  reflex arc. Identify the different labelling  A, B, C, D, E, F  of A, B, C, D, E, F in the reflex arc :- 

AB AB C C

FE D FE D

(1) A = stimulus, B = effector, (1) A = , B = , C = sensory nerve, D = motor nerve, C = , D = , E = receptor, F = response E = , F =  (2) A = stimulus, B = receptor, (2) A = , B = , C = sensory nerve, D = motor nerve, C = , D = , E = effector, F = response E = , F =  (3) A = stimulus, B = effector, C = motor nerve, (3) A = , B = , C = , D = sensory nerve, E = receptor, D = , E = , F = response F =  (4) A = stimulus, B = receptor, (4) A = , B = , C = motor nerve, D = sensory nerve, C = , D = , E = effector, F=response E = , F =

1001CM370715002 H-19/31 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 112. Select the correct arrangement of neural 112.  organisation according to evolution :- (1)     (1) Insect  Hydra  Man (2)   (2) Hydra  Insect  Man    (3) Man  Insect  Hydra (3)     (4) Hydra  Man  Insect (4)     113. The figure below shows three steps (A, B, C) of 113.  nerve impulse conduction respectively. Select the  (A, B, C)  option giving correct identification together with  :- what it represents :- (A) (A)

(B) (B)

(C) (C) (1) B – K+ vgc (1) B – Represent the depolarisation due to opening of K+ vgc  (2) A – (2) A – Represent the repolarisation due to closing  of pump  (3) C – Represent polarisation stage due to action (3) C –  potential  (4) A – Represent polarisation stage due to resting (4) A –  membrane potential  114. Ectopic pregnancies are referred to as : 114.  (1) Pregnancies terminated due to hormonal (1)  imbalance  (2) Pregnancies with genetic abnormality. (2)  (3) Implantation of embryo at site other than (3)  .  (4) Implantation of defective embryo in the uterus (4)  115. A childless couple can be assisted to have a child 115. GIFT  through a technique called GIFT. The full form  of this technique is : : (1) Germ cell internal fallopian transfer (1)  (2) Gamete inseminated fallopian transfer (2)  (3) Gamete intra fallopian transfer (3)  (4) Gamete internal fertilization and transfer (4) 

H-20/31 1001CM370715002 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 116. Which of the following events is not associated 116.  with ovulation in human female? ? (1) LH surge (1) LH (LH ) (2) Decrease in estradiol (2)  (3) Full development of Graafian follicle (3)  (4) Release of secondary oocyte (4)  117. Which of these is not an important component of 117.  initiation of parturition in humans ?  (1) Synthesis of prostaglandins (1)  (2) Release of oxytocin (2)  (3) Release of prolactin (3)  (4) Increase in estrogen and progesterone ratio (4)  118. Capacitation refers to changes in the :- 118.  (1) Ovum before fertilization (1)  (2) Ovum after fertilization (2)  (3) Sperm after fertilization (3)  (4) Sperm before fertilization (4)  119. Hysteresctomy is surgical removal of : 119.  (1) Prostate gland  (1) (2) Vas-deference  (2)  (3) Mammary glands (3)  (4) Uterus (4)  120. Which of the following cells during 120.  gametogenesis is dipoid?  (1) Spermatid (1)  (2) Spermatogonia (2)  (3) Secondary polar body (3)  (4) Primary polar body (4)  121. Select the correct option describing gonadotropin 121.  activity in a normal pregnant female : : (1) High level of FSH and LH stimulates the (1)  thickening of .  (2) High level of FSH and LH facilitate (2)  implantation of the embryo.  (3) High level of hCG stimulates the synthesis of (3)  estrogen and progesterone.  (4) High level of hCG stimulates the thickening (4)  of endometrium.  1001CM370715002 H-21/31 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 122. The main function of mammalian corpus luteum 122.  is to produce : : (1) estrogen only (1)  (2) progesterone (2)  (3) human chorionic gonadotropin (3)  (4) relaxin only (4)  123. What is the correct sequence of sperm formation? 123. ? (1) Spermatogonia, spermatocyte, spermatid, (1) , , ,  spermatozoa  (2) Spermatid, spermatocyte, spermatogonia, (2) , , ,  spermatozoa  (3) Spermatogonia, spermatocyte, spermatozoa, (3)  spermatid  (4) Spermatogonia, spermatozoa, spermatocyte, (4)  spermatid  124. The secretory phase in the human menstrual cycle 124.  is also called :  (1) luteal phase and lasts for about 14 days (1) 14  (2) follicular phase and lasts for about 13 days (2) 13  (3) luteal phase and lasts for about 6 days (3) 6  (4) follicular phase and lasting for about 6 days (4) 6  125. Identify the human development stage shown 125.  below as well as the related right place of its  occurrence in a normal pregnant woman, and  select the right option for the two together. 

Options :    Developmental Site of (1) stage occurrence   (1) Blastocyst Uterine wall (2) 8 -   (2) 8 - celled Starting point of   morula (3)   (3) Late morula Middle part of  Fallopian tube (4)   (4) Blastula End part of Fallopian tube 

H-22/31 1001CM370715002 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 126. The Leydig cells as found in the human body are 126.  the secretory source of :- ? (1) glucagon (2) androgens (1)  (2)  (3) progesterone (4) intestinal mucus (3)  (4)  127. Signals for parturition originate from : 127. ? (1) Placenta only (1)  (2) Fully developed foetus only (2)  (3) both placenta as well as fully developed foetus (3)  (4) Oxytocin released from maternal pituitary (4)  128. What is the figure given below showing in 128.  particular?

(1) Tubectomy (1)  (2) Vasectomy (2)  (3) Ovarian cancer (3)  (4) Uterine cancer (4)  129. What happens during fertilisation in humans after 129.  many sperms reach close to the ovum?  (1) (1) Only two sperms nearest the ovum penetrate   (2)  (2) Secretion of acrosome helps one sperm enter  cytoplasm of ovum through zona pellucida  (3) All sperms except the one nearest to the ovum (3)   lose their tails  (4) Cells of corona radiata trap all the sperm (4)  except one  130. In test tube baby :- 130.  (1) Fertilization takes place out side the body (1)  (2) Fertilization takes place inside the body (2)  (3) Development of embryo in test tube (3)  (4) (4) None of the above  1001CM370715002 H-23/31 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 131. What is true about cell during cleavage :- 131.  (1) Normal mitotic division (1)  (2) Cells do not grow in size (2)  (3) Less oxygen consumption (3)  (4) Cells grow in size (4)  132. Which of the following set most likely to present 132.  before ovulation :-  :- (1) FSH, corpus luteum, estrogen, secretory uterine layer (1) FSH,  (2) FSH, follicle, estrogen, endometrium thickens (2) FSH,  (3) LH, corpus luteum, progesteron secretory (3) LH, endometrium  (4) LH, progesterone, endometrium thickens (4) LH,  133. Main function of placenta in mammals :- 133. :- (1) Providing nutrition & Oxygen to Embryo (1)  (2) Stopping the rotation of Embryo (2)  (3) Inhibiting the growth of Embryo (3)  (4) Increasing the level of testosterone (4)  134. In mammals, fertilization takes place in :- 134. :- (1) Ovary (2) Uterus (1)  (2)  (3) Fallopian tube (4) (3)  (4)  135. Hormone is not secreted from Corpus leuteum :- 135. :- (1) Lutenizing Hormone (2) Estrogen (1)  (2)  (3) Progesteron (4) Relaxin (3)  (4)  136. How many sperms are formed by one primary 136.         spermatocyte :-  (1) 4 (2) 3 (1) 4 (2) 3 (3) 2 (4) 1 (3) 2 (4) 1 137. :- 137. Umblical cord contains :-  (1) (1) Allantioic artery and vein  (2) (2) Umblicus  (3) (3) Placenta  (4) (4) None  138. Signals from fully developed foetus and placenta 138.  ultimately lead to parturition which requires the  release of :  (1) Oxytocin from maternal pituitary (1)  (2) Oxytocin from foetal pituitary (2)  (3) Relaxin from placenta (3)  (4) Estrogen from placenta (4) 

H-24/31 1001CM370715002 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 139. Given below is a diagrammatic sketch of a portion 139.  of human male reproductive system. Select the A, B, C, D  correct set of the names of the parts labelled A, :- B, C, D:- A A B B C C D D

ABCD ABCD (1) (1) Ureter Seminal Prostate Bulboure-     vesicle thral gland  (2) Ureter Prostate Seminal Bulboure- (2)     vesicle thral gland  (3) Vas seminal Prostate Bulboure- (3)     deferens vesicle thral gland  (4) Vas seminal Bulboure- Prostate (4)     deferens vesicle thral gland  140. In humans, at the end of the first meiotic divison, 140.  the male germ cells differentiate into the:-  (1) Spermatids (1)  (2) Spermatozonia (2)  (3) Primary spermatocytes (3)  (4) Secondary spermatocytes (4)  141. In the human female, menstruation can be 141.  deferred by the administration of :-  (1) FSH only (1) FSH  (2) LH only (2) LH  (3) Combination of FSH and LH (3) FSH  LH  (4) Combination of estrogen and progesterone (4)  142. Which part of ovary in mammals acts as an 142.  endocrine gland after ovulation ?  (1) Vitelline membrane (1)  (2) Graffian follicle (2)  (3) Stroma (3)  (4) Germinal epithelium (4)  143. Sertoli cells are regulated by the pituitary hormone 143.  known as –  ? (1) FSH (2) GH (1) FSH (2) GH (3) Prolactin (4) LH (3)  (4) LH 144. At the time of implantation, the human embryo 144.  is called (1)  (2)  (1) embryo (2) blastocyst (3)  (4)  (3) zygote (4) foetus

1001CM370715002 H-25/31 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 145. The endometrium is the lining of 145.  (1) bladder (2) vagina (1)  (2)  (3) uterus (4) oviduct (3)  (4)  146. ZIFT is 146. :- (1) Transfer of zygote into the fallopian tube (1)  (2) Transfer of embryo into the uterus (2)  (3) Transfer of mixture of sperms and ova into (3) the fallopian tube  (4) Transfer of mixture of sperms and ova into  the uterus (4)  147. Failure of descend of testis in scrotal sac is called 147.      (1) Paedogenesis (2) Castration (1)  (2)  (3) Cryptoorchidism (4) Impotency (3)  (4)  148. Secretion of which gland contains fructose :- 148.  (1) Sweat gland (2) Sebaceous gland (1)  (2)  (3) Seminal vesicle (4) Prostate (3)  (4)  149. Which of the following hormone is secreted only 149.  during pregnancy :-  (1) Progesterone (2) Estrogen (1)  (2)  (3) hPL (4) All of the above (3) hPL (4)  150. takes place in :- 150.  (1) Germinal epithelium (1)  (2) Ovarian follicles (2)  (3) Medulla of ovary (3)  (4) Seminiferous tubules (4)  151. Which is not the function of epididymis? 151.  (1) decapacitation of sperms (1)  (2) store house of sperms (2)  (3) functional maturation of sperms (3)  (4) Formation of tail in sperms. (4)  152. Which layer of uterus undergoes cyclical changes 152.  during menstrual cycle ?  (1) (1)  (2) Endometrium (2)  (3) (3)  (4) All of the above (4)  153. Second polar body is released during oogenesis 153.  (1) At the time of fertilization  (2) After completion of meiosis II (1)  (2) -II (3) At the time of formation of haploid ovum.   (3)  (4) All of the above (4)  H-26/31 1001CM370715002 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 154. Which structure is not constitute the female 154.  :- acessory duct :- (1)  (2)  (1) Oviduct (2) Uterus (3) Vagina (4) (3)  (4)  155. Sperms are stored in :- 155.  :- (1) seminal vesicle (2) ejaculatory duct (1)  (2)  (3) epididymis (4) All of the above (3)  (4)  156. Observe the following diagram and answer :- 156.  :- Which part of sperm is responsible for production  of energy for facilitation of sperms motility :- 

A A

B B

C C D D

(1) A (2) B (3) C (4) D (1) A (2) B (3) C (4) D 157. The is a tiny finger, structure which lies 157.  at the upper junction of :-  :- (1) The two majora (1)  (2) The two (2)  (3) The (3)  (4) The and vagina (4)  158. How many statements are incorrect among 158.  following statements :- (a)  (a) Uterus is single (b) (b) Uterus is also known as womb  (c) (c) Mons pubis is cushion of fatty tissue.  (d) The shape of uterus is like bean. (d)  (1) 1 (2) 2 (3) 3 (4) 4 (1) 1 (2) 2 (3) 3 (4) 4 159. Mammary glands differentiated during pregnancy 159.  and start milk secretion after :-  :- (1) 7th month of pregnancy (1)  (2) 5th month of pregnancy (2)  (3) Child birth (3)  (4) Fertilization and implantation (4)  160. Secretion of bulbourethral glands help in :- 160.  :- (1) Erection of penis (1)  (2) Lubrication of penis (2)  (3) Ejeculation. (3)  (4) Functional maturation of sperms. (4)  161. The funnel shaped part of fallopian tube near 161.  ovary is known as :-  :- (1) isthmus (2) intra mural part (1)  (2)  (3) Ampulla (4) Infundibulum (3)  (4) 

1001CM370715002 H-27/31 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 162. Choose the haploid cell which appears first during 162.  spermatogenesis  (1) Spermatogonia (1)  (2) Spermatid (2)  (3) Primary spermatocyte (3)  (4) Secondary spermatocyte (4)  163. Which one is an incorrect regarding honeybees ? 163.  ? (1) Pollinators (1)  (2) Communicate through dance (2)  (3) Secrete honey from their spinnret (3)  (4) Workers are smaller than queen (4)  164. Which one is responsible for the long self life of 164.  honey ? ? (1) acidic pH (1)  pH (2) High osmolarity (2)  (3) (3) Saturation of honey  (4) (4) All of the above  165. Honey is richest source of :- 165. :- (1) Carbohydrates (2) Proteins (1)  (2)  (3) Fats (4) Moisture (3)  (4)  166. Lac is chemically an :- 166. :- (1) Organic compound (1)  (2) Inorganic compound (2)  (3) Pure matter (3)  (4) All of the above (4)  167. The best milk breed of cow in india is :- 167.  :- (1) Sahiwal (2) Ongole (1)  (2)  (3) Tharparker (4) Bhakarwal (3)  (4)  168. Stiffling and reeling are concerned with :- 168.  :- (1) Sericulture (1)  (2) Apliculture (2)  (3) Fishery (3)  (4) Moriculture (4)  169. The most popular variety of silk is :- 169. :- (1) Tasar (1)  (2) Eri (2)  (3) A product of Bombyx (3)  (4) Oak (4)  170. Highest silk producing country and Indian state 170.  are respectively :- :- (1) China; Karnataka (1) ;  (2) China; Mysore (2) ;  (3) India; Andhra pradesh (3) ;  (4) India; Karnataka (4) ;  H-28/31 1001CM370715002 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 171. Which of the following is a protozoan disease of 171.  silk worm ? ? (1) Grasserie (2) Pebrine (1)  (2)  (3) Flacherie (4) Flu (3) (4)  172. Hypophysation is a techinique :- 172.  :- (1) to induce spawning (1)  (2) to induce spermiation (2)  (3) both of the above (3)  (4) to induce BMR (4) BMR  173. Which is fertile in colony of honey bee ? 173.  ? (1) Drones but are haploid (1)  (2) Queen but are diploid (2)  (3) Workers but are diploid (3)  (4) Queen(2n) & drone(n) (4)(2n) (n) 174. Pashmina is a variety of ___ and useful to obtain 174.  ___ ___  ___ :-  :- (1) Goat; wool (1) ;  (2) Sheep; meat (2) ;  (3) Sheep; wool (3) ;  (4) Goat; meat (4) ;  175. Embryo transfer in cattles is carried out in :- 175. :- (1) 8 cell stage (1) 8  (2) 32 celled stage (2) 32  (3) 8-32 celled stage (3) 8-32  (4) 60 celled stage (4) 60  176. Which breeding method is employed to introduce 176.  superior alleles in a population ? ? (1) Outcross (1)  (2) Cross breed (2)  (3) In breeding (3)  (4) Cloning (4)  177. Silk is a type of :- 177. :- (1) Sugar (1)  (2) Protein (2)  (3) Fiber (3)  (4) Protein and Fiber (4)  178. Areolar connective tissue joins – 178.  ? (1) Fat body with muscles (1)  (2) Integument with muscles (2)  (3) (3) Bones with muscles  (4) (4) Bones with bones 

1001CM370715002 H-29/31 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 179. Maximum cartilage of larynx are the example of – 179.  (1) Calcified cartilage (1)  (2) Elastic cartilage (2)  (3) White fibro cartilage (3)  (4) Hyaline cartilage (4)  180. The cell junctions called tight, adhering and gap 180.  junctions are found in :-  ? (1) Neural tissue (1)  (2) Muscular tissue (2)  (3) Connective tissue (3)  (4) Epithelial tissue (4) 

Your moral duty is to prove that  is 

Your Target is to secure Good Rank in NEET-II 2016

H-30/31 1001CM370715002 Pre-Medical : NEET-II B0OSTER COURSE/04-06-2016 SPACE FOR ROUGH WORK / 

1001CM370715002 H-31/31