Functions of a Complex Variable II Math 562, Spring 2020

Total Page:16

File Type:pdf, Size:1020Kb

Functions of a Complex Variable II Math 562, Spring 2020 Functions of a Complex Variable II Math 562, Spring 2020 Jens Lorenz April 27, 2020 Department of Mathematics and Statistics, UNM, Albuquerque, NM 87131 Contents 1 Notations 5 2 The Schwarz Lemma and Aut(D) 6 2.1 Schwarz Lemma . .6 2.2 Biholomorphic Maps and Automorphisms . .7 2.3 The Automorphism Group of D ...................7 2.4 The Schwarz{Pick Lemma . .9 2.5 Remarks . 11 3 Linear Fractional Transformations and the Riemann Sphere 12 3.1 The Riemann Sphere . 12 3.2 Linear Fractional Transformations . 14 3.3 The Automorphisms of the Riemann Sphere . 16 3.4 A Remarkable Geometric Property of Linear Fractional Trans- formations . 17 3.4.1 Analytical Description of Circles . 18 3.4.2 Circles under Reciprocation . 18 3.4.3 Straight Lines under Reciprocation . 20 3.5 Example: The Cayley Transform in the Complex Plane . 21 3.6 The Cayley Transform of a Matrix . 22 4 The Riemann Mapping Theorem 24 4.1 Statement and Overview of Proof . 24 4.2 The Theorem of Arzela{Ascoli . 26 4.3 Montel's Theorem . 29 4.4 Auxiliary Results on Logarithms and Square Roots . 32 4.5 Construction of a Map in ..................... 33 4.6 A Bound of f 0(P ) for all Ff .................. 35 4.7 Application ofj thej Theorems2 of F Montel and Hurwitz . 36 4.8 Proof That f is Onto . 37 1 4.9 Examples of Biholomorphic Mappings . 39 5 An Introduction to Schwarz–Christoffel Formulas 41 5.1 General Power Functions . 41 5.2 An Example of a Schwarz–Christoffel Map . 42 6 Meromorphic Functions with Prescribed Poles 47 6.1 Meromorphic Functions on C .................... 47 6.2 The Mittag–Leffler Theorem . 47 6.3 An Example . 50 7 Infinite Products 52 7.1 Infinite Products of Complex Numbers . 52 7.1.1 Two Definitions of Convergence . 52 7.1.2 Examples . 53 7.2 Infinite Products of Numbers: Convergence Theory . 56 7.3 Infinite Products of Functions . 61 7.4 Example: The Product Formula for the Sine Function . 64 7.5 Euler's Constant . 65 7.6 The Gauss Formula for Γ(z) and Weierstrass' Product Formula for 1=Γ(z)............................... 66 7.6.1 A Formula for (Γ0=Γ)0 .................... 70 7.7 Entire Functions with Prescribed Zeros . 71 7.7.1 Construction of f(z); Motivation . 72 7.7.2 Weierstrass' Canonical Factors . 72 8 The Bernoulli Numbers and Applications 77 8.1 The Bernoulli Numbers . 77 8.2 The Taylor Series for z cot z in Terms of Bernoulli Numbers . 79 8.3 The Mittag–Leffler Expansion of πz cot(πz)............ 80 8.4 The Values of ζ(2m)......................... 81 8.5 Sums of Powers and Bernoulli Numbers . 81 9 The Riemann Zeta{Function 84 9.1 Definition for Re s > 1........................ 84 9.2 Simple Bounds of ζ(s) for s > 1................... 84 9.3 Meromorphic Continuation of ζ(z) to Re z > 0 .......... 85 9.4 Analytic Continuation of ζ(z) to C 1 .............. 87 9.5 Euler's Product Formula for ζ(z)..................n f g 90 P 1 9.6 The Sum p and the Prime Number Theorem . 93 9.7 Auxiliary Results about Fourier Transformation: Poisson's Sum- mation Formula . 94 9.8 A Functional Equation . 96 9.9 Growth Estimates for the ζ{Function . 98 2 10 Analytic Continuation 101 10.1 Analytic Continuation Using the Cauchy Riemann Equations . 101 10.2 Exponential Decay of Fourier Coefficients and the Strip of Ana- lyticity . 101 10.3 The Schwarz Reflection Principle . 101 10.4 Examples for Analytic Continuation . 101 10.5 Riemann Surfaces: Intuitive Approach . 101 10.6 Riemann Surfaces: Germs, Sheafs, and Fibers . 101 11 Fourier Series 102 11.1 Convergence Results: Overview . 102 11.2 The Dirichlet Kernel . 104 11.3 The Fej´erKernel . 105 11.4 Convergence of σnf in Maximum Norm . 107 11.5 Weierstrass' Approximation Theorem for Trigonometric Polyno- mials . 108 11.6 Convergence of Snf in L2 ...................... 108 11.7 The Lebesgue Constant of the Dirichlet Kernel . 110 11.7.1 The Lebesgue Constant as Norm of a Functional . 112 11.8 Divergence of the Fourier Series of a Continuous Function at a Point.................................. 112 11.9 Isomorphy of L2(0; 1) and l2 ..................... 114 11.10Convergence of Snf in Maximum Norm . 116 11.11Smoothness of f(x) and Decay of f^(k)............... 117 11.12Exponential Decay of f^(k) and Analyticity of f .......... 119 11.13Divergence of Snf(0): Explicit Construction of f ......... 121 11.14Fourier Series and the Dirichlet Problem for Laplace's Equation on the Unit Disk . 123 12 Fourier Transformation 124 12.1 Motivation: Application to PDEs . 124 12.2 The Fourier Transform of an L1 Function . 127 12.3 The Riemann{Lebesgue Lemma . 128 12.4 The Fourier Transform on the Schwartz Space ......... 130 12.5 The Fourier Inversion Formula on the SchwartzS Space: Prepara- tions . 131 12.6 The Fourier Inversion Formula on the Schwartz Space . 134 12.7 Operators . 135 12.8 Elementary Theory of Tempered Distributions . 136 12.8.1 Ordinary Functions as Tempered Distributions . 137 12.9 The Fourier Transform on 0: An Example Using Complex Vari- ables . .S . 137 12.10Decay of the Fourier Transform of f and Analyticity of f .... 138 12.11The Paley{Wiener Theorem . 138 12.12The Laplace Transform and Its Inversion . 139 3 13 Growth and Zeros of Entire Functions 140 13.1 Jensen's Formula . 140 13.2 The Order of Growth . 142 13.3 Zeros and Growth Estimates . 143 13.4 Hadamard's Factorization Theorem . 145 13.5 Entire Functions of Non{Integer Order of Growth . 148 13.6 Proof of Hadamard's Factorization Theorem . 148 14 The Prime Number Theorem 155 14.1 Functions . 155 14.2 Reduction to Asymptotics of 1(x)................. 157 14.3 Integral Representation of 1(x).................. 161 14.4 Auxiliary Results . 161 14.5 The ζ{Function has no Zero on the Line s = 1 + it ........ 163 15 Complex Variables and PDEs 166 15.1 2D Irrotational Euler Flows . 166 15.2 Laplace Equation . 171 15.2.1 Derivation of the Poisson Kernel via Complex Variables . 171 15.2.2 Derivation of the Poisson Kernel via Separation of Variables175 16 Rearrangement of Series 176 16.1 Rearrangement of Absolutely Convergent Series . 176 16.2 Interchanging Double Sums . 177 16.3 Rearrangement of a Double Series . 180 4 1 Notations R field of real numbers C field of complex numbers D(z0;R) z : z z0 < R : open disk of radius R centered at z0 ¯ f j − j g D(z0;R) z : z z0 R : closed disk of radius R centered at z0 @D(z ;R) fz : jz − z j= ≤ Rg : boundary of disk of radius R centered at z 0 f j − 0j g 0 D D = D(0; 1) = z : z < 1 : open unit disk f j j g H H = z = x + iy : y > 0 : open upper half{plane f g H(U) set of all holomorphic functions f : U C where U C is open ! ⊂ C(U) set of all continuous functions f : U C where U C is any set R x ds ! ⊂ ln(x) for real positive x: ln(x) = 1 s log(z) complex logarithm 5 2 The Schwarz Lemma and Aut(D) 2.1 Schwarz Lemma Let D = D(0; 1) denote the open unit disk. In the Schwarz Lemma one considers functions f H(D) with f(0) = 0 and f(D) D¯. The Schwarz Lemma then says that the2 estimate f(z) 1 can be sharpened.⊂ We recall the maximumj j modulus ≤ theorem, which will be used in the proof of the Schwarz Lemma. Theorem 2.1 (Maximum Modulus Theorem) Let U C denote an open, con- nected set and let g H(U). If there exists a point z⊂ U with 2 0 2 g(z) g(z ) for all z U j j ≤ j 0 j 2 then g(z) is constant in U. In other words, only constant holomorphic functions attain their maximal value. This follows from the open mapping theorem: A holomorphic function g(z) on an open, connected set U maps open subsets of U to open sets, unless g(z) is constant. Theorem 2.2 (Schwarz Lemma) Let f H(D) satisfy 2 a) f(z) 1 for all z D; b) fj (0) =j ≤ 0. 2 0 Then f(z) z for all z D and f (0) 1. In addition, if j j ≤ j j 2 j j ≤ f(z ) = z j 0 j j 0j 0 for some z0 D 0 or if f (0) = 1, then f is a rotation, i.e., 2 n f g j j f(z) = αz for some α C with α = 1. 2 j j Proof: Set f(z)=z; 0 < z < 1 g(z) = f 0(0); z =j 0 j Since f(0) = 0 we have 1 X f(z) = a zj for z < 1 j j j j=1 and obtain that g H(D). Let 0 < " < 1 and consider g in the closed disk 2 D¯(0; 1 ") D. Since f(z) 1 in D one obtains that − ⊂ j j ≤ 1 g(z) for z = 1 ": j j ≤ 1 " j j − − By the maximum modulus theorem we conclude that 6 1 g(z) for z 1 ": j j ≤ 1 " j j ≤ − − As " 0 this yields: ! g(z) 1 for z < 1 : j j ≤ j j Therefore, f(z) z for z < 1 and f 0(0) 1 : j j ≤ j j j j j j ≤ Now assume that f(z0) = z0 for some z0 D; z0 = 0; or assume that f 0(0) = 1.
Recommended publications
  • Infinite Product of a Number
    International Journal of Pure and Applied Mathematical Sciences. ISSN 0972-9828 Volume 10, Number 2 (2017), pp. 107-110 © Research India Publications http://www.ripublication.com Infinite Product of a Number Rushal Sohal Student The Lexicon International School, Wagholi, Pune, India. Abstract It seems that multiplying a positive number infinite times would give something extremely huge (infinity), but is it so? In this paper, we will show that any positive integer (>1) raised to the power infinity (i.e. infinite product of n ∞ ∞ =∏푖=1 푛=푛×푛×푛...= 푛 , 푛 > 1) is not infinity; we will use simple mathematical equations and also use some known sums to prove that the infinite product of a positive integer (>1) is not equal to infinity, ∞i.e. 푛∞ ≠ . Keywords: positive integer(퐼+); infinity*(∞); Riemann zeta function 휁(푠). 1. INTRODUCTION So, what is the infinite product of a positive integer (>1), i.e. what is 푛∞? Is it ∞ or something else? Till now, not much research has been done on this topic, and by convention we assume 푛∞ to be equal to ∞. In this paper, we will make simple equations and also use some known sums and prove that 푛∞ = 0 and that, it is not equal to ∞. We are going to approach the problem by observing patterns, assigning and re- assigning variables, and finally solving the equations. But first, we need to prove that 푛∞ ≠ ∞. 2. METHODS The methods for solving the problem are simple but a bit counter-intuitive. In this paper, we will make simple mathematical equations and firstly prove that 푛∞ ≠ ∞.
    [Show full text]
  • Regularized Integral Representations of the Reciprocal Function
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2018 doi:10.20944/preprints201812.0310.v1 Peer-reviewed version available at Fractal Fract 2019, 3, 1; doi:10.3390/fractalfract3010001 Article Regularized Integral Representations of the Reciprocal G Function Dimiter Prodanov Correspondence: Environment, Health and Safety, IMEC vzw, Kapeldreef 75, 3001 Leuven, Belgium; [email protected]; [email protected] Version December 25, 2018 submitted to Preprints 1 Abstract: This paper establishes a real integral representation of the reciprocal G function in terms 2 of a regularized hypersingular integral. The equivalence with the usual complex representation is 3 demonstrated. A regularized complex representation along the usual Hankel path is derived. 4 Keywords: gamma function; reciprocal gamma function; integral equation 5 MSC: 33B15; 65D20, 30D10 6 1. Introduction 7 Applications of the Gamma function are ubiquitous in fractional calculus and the special function 8 theory. It has numerous interesting properties summarized in [1]. It is indispensable in the theory of 9 Laplace transforms. The history of the Gamma function is surveyed in [2]. In a previous note I have 10 investigated an approach to regularize derivatives at points, where the ordinary limit diverges [5]. 11 This paper exploits the same approach for the purposes of numerical computation of singular integrals, 12 such as the Euler G integrals for negative arguments. The paper also builds on an observations in [4]. 13 The present paper proves a real singular integral representation of the reciprocal G function. The 14 algorithm is implemented in the Computer Algebra System Maxima for reference and demonstration 15 purposes.
    [Show full text]
  • Numerous Proofs of Ζ(2) = 6
    π2 Numerous Proofs of ζ(2) = 6 Brendan W. Sullivan April 15, 2013 Abstract In this talk, we will investigate how the late, great Leonhard Euler P1 2 2 originally proved the identity ζ(2) = n=1 1=n = π =6 way back in 1735. This will briefly lead us astray into the bewildering forest of com- plex analysis where we will point to some important theorems and lemmas whose proofs are, alas, too far off the beaten path. On our journey out of said forest, we will visit the temple of the Riemann zeta function and marvel at its significance in number theory and its relation to the prob- lem at hand, and we will bow to the uber-famously-unsolved Riemann hypothesis. From there, we will travel far and wide through the kingdom of analysis, whizzing through a number N of proofs of the same original fact in this talk's title, where N is not to exceed 5 but is no less than 3. Nothing beyond a familiarity with standard calculus and the notion of imaginary numbers will be presumed. Note: These were notes I typed up for myself to give this seminar talk. I only got through a portion of the material written down here in the actual presentation, so I figured I'd just share my notes and let you read through them. Many of these proofs were discovered in a survey article by Robin Chapman (linked below). I chose particular ones to work through based on the intended audience; I also added a section about justifying the sin(x) \factoring" as an infinite product (a fact upon which two of Euler's proofs depend) and one about the Riemann Zeta function and its use in number theory.
    [Show full text]
  • On Infinite Products
    :?!t--:v.- -, View metadata, citation and similar papers at core.ac.ukbrought to you by CORE provided by K-State Research Exchange ON INFINITE PRODUCTS by ROSE KORDONOWY SHAW B. S. , Dickinson State College, 1961^ A MASTER'S REPORT submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Mathematics KANSAS STATE UNIVERSITY" Manhattan, Kansas 1966 Approved by; :o7 U) '^ JScGV ii '3^ TABLE OP CONTENTS INTRODUCTION 1 BASIC DEFINITIONS 1 CONVERGENCE OF INFINITE PRODUCTS i; RELATING CONVERGENCE OF INFINITE PRODUCTS TO CONVERGENCE OF INFINITE SERIES 9 ABSOLUTE CONVERGENCE 21 THE ASSOCIATE LOGARITHMIC SERIES 2i|. UNIFORM CONVERGENCE 28 DEVELOPMENT OF TRIGONOMETRIC FUNCTIONS AS INFINITE PRODUCTS 3i| ACKNOWLEDGMENT l^^ BIBLIOGRAPHY l^]^ INTRODUCTION Many functions can be represented in many different ways. They can be represented by Fourier series, orthogonal poly- nomials, infinite series, and infinite products. Infinite products will be considered as the background for the develop- ment of expansion of functions. The infinite product repre- sentations of sin X and cos x will be considered. The theory of infinite products is very closely related to that of infinite series; so closely, in fact, that the test for convergence of such products will actually be reduced to the test for the convergence of certain infinite series. The object of this paper is to begin with the basic defini- tion of an infinite product and to take the study of infinite products to the point where a basic understanding of infinite products and how they can be handled is reached. BASIC DEFINITIONS An infinite product is of the form .
    [Show full text]
  • Infinite Product Group
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2007-07-13 Infinite Product Group Keith G. Penrod Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Mathematics Commons BYU ScholarsArchive Citation Penrod, Keith G., "Infinite Product Group" (2007). Theses and Dissertations. 976. https://scholarsarchive.byu.edu/etd/976 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. INFINITE PRODUCT GROUPS by Keith Penrod A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics Brigham Young University August 2007 Copyright c 2007 Keith Penrod All Rights Reserved BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a thesis submitted by Keith Penrod This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory. Date Gregory Conner, Chair Date James Cannon Date Eric Swenson BRIGHAM YOUNG UNIVERSITY As chair of the candidate’s graduate committee, I have read the thesis of Keith Penrod in its final form and have found that (1) its format, citations, and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library.
    [Show full text]
  • Chapter 1 Euler's Product Formula
    Chapter 1 Euler’s Product Formula 1.1 The Product Formula The whole of analytic number theory rests on one marvellous formula due to Leonhard Euler (1707-1783): −1 X n−s = Y 1 − p−s . n∈N, n>0 primes p Informally, we can understand the formula as follows. By the Funda- mental Theorem of Arithmetic, each n ≥ 1 is uniquely expressible in the form n = 2e2 3e3 5e5 ··· , where e2, e3, e5,... are non-negative integers (all but a finite number being 0). Raising this to the power −s, n−s = 2−e2s3−e3s5−e5s ··· . Adding for n = 1, 2, 3,... , X n−s = 1 + 2−s + 2−2s + ··· 1 + 3−s + 3−2s + ··· 1 + 5−s + 5−2s + ··· ··· , each term on the left arising from just one product on the right. But for each prime p, −1 1 + p−s + p−2s + ··· = 1 − p−s , and the result follows. Euler’s Product Formula equates the Dirichlet series P n−s on the left with the infinite product on the right. 1–1 1.2. INFINITE PRODUCTS 1–2 To make the formula precise, we must develop the theory of infinite prod- ucts, which we do in the next Section. To understand the implications of the formula, we must develop the the- ory of Dirichlet series, which we do in the next Chapter. 1.2 Infinite products 1.2.1 Definition Infinite products are less familiar than infinite series, but are no more com- plicated. Both are examples of limits of sequences. Definition 1.1. The infinite product Y cn n∈N is said to converge to ` 6= 0 if the partial products Y Pn = cm → ` as n → ∞.
    [Show full text]
  • Power Series, Analyticity and Elementary Functions
    MATH 566 LECTURE NOTES 2: POWER SERIES, ANALYTICITY AND ELEMENTARY FUNCTIONS TSOGTGEREL GANTUMUR 1. Uniform and normal convergences For a set Ω ⊆ C and a function f :Ω ! C, we define the uniform norm kfkΩ = sup jfj: Ω We say that a sequence ffkg of functions fk :Ω ! C converges uniformly in Ω to f, if kfk − fkΩ ! 0 as k ! 1. Recall that this is equivalent to the sequence ffkg being a Cauchy sequence, i.e., kfk − f`kΩ ! 0 as k; ` ! 1. P P Theorem 1 (Weierstrass M-test). If gn :Ω ! C and n kgnkΩ < 1, then the series n gn converges uniformly in Ω. P Proof. With fk = n≤k gn, we have for ` < k X X X kfk − f`kΩ = k gnkΩ ≤ kgnkΩ ≤ kgnkΩ; `<n≤k `<n≤k n>` which tends to 0 when ` ! 1. So ffkg is a Cauchy sequence, hence converges. P n ¯ Example 2. The geometric series n z converges uniformly in Dr (and also in Dr) as long n as r < 1. To be pedantic, with r < 1 and with functions gn : Dr ! C given by gn(z) = z , P the series n gn converges uniformly in Dr. However, the convergence is not uniform in the P n open unit disk D1, and n z does not converge if jzj ≥ 1. Convergence behaviour of frequently occurring sequences in complex analysis can be cap- tured conveniently by the notion of locally uniform convergence. Recall that U ⊆ Ω is a neighbourhood of z 2 Ω in Ω if there is an open set V ⊆ C such that z 2 V \ Ω ⊆ U.
    [Show full text]
  • The Weierstrass Factorization Theorem for Slice Regular Functions Over the Quaternions
    Ann Glob Anal Geom DOI 10.1007/s10455-011-9266-0 ORIGINAL PAPER The Weierstrass factorization theorem for slice regular functions over the quaternions Graziano Gentili · Irene Vignozzi Received: 8 November 2010 / Accepted: 5 April 2011 © Springer Science+Business Media B.V. 2011 Abstract The class of slice regular functions of a quaternionic variable has been recently introduced and is intensively studied, as a quaternionic analogue of the class of holomorphic functions. Unlike other classes of quaternionic functions, this one contains natural quatern- ionic polynomials and power series. Its study has already produced a rather rich theory having steady foundations and interesting applications. The main purpose of this article is to prove a Weierstrass factorization theorem for slice regular functions. This result holds in a formula- tion that reflects the peculiarities of the quaternionic setting and the structure of the zero set of such functions. Some preliminary material that we need to prove has its own independent interest, like the study of a quaternionic logarithm and the convergence of infinite products of quaternionic functions. Keywords Functions of a quaternionic variable · Weierstrass factorization theorem · Zeros of hyperholomorphic functions Mathematics Subject Classification (2000) 30G35 · 30C15 · 30B10 1 Introduction The well-known theory of Fueter regular functions [9,10,25] is the first and most celebrated candidate among a few others, in the search for a quaternionic analogue of the theory of holo- morphic functions of one complex variable. This well-developed theory [3,19–21] inspired also the setting of Clifford algebras (see, e.g. [2]). Recently, Gentili and Struppa proposed a different approach, which led to a new notion of holomorphicity (called slice regular- ity) for quaternion-valued functions of a quaternionic variable [15,16].
    [Show full text]
  • Gamma and Beta Functions
    Appendix A Gamma and Beta Functions A.1 A Useful Formula The following formula is valid: Z 2 √ n e−|x| dx = π . Rn This is an immediate consequence of the corresponding one-dimensional identity Z +∞ 2 √ e−x dx = π , −∞ which is usually proved from its two-dimensional version by switching to polar coordinates: Z +∞ Z +∞ 2 2 Z ∞ 2 I2 = e−x e−y dydx = 2π re−r dr = π . −∞ −∞ 0 A.2 Definitions of Γ (z) and B(z,w) For a complex number z with Rez > 0 define Z ∞ Γ (z) = tz−1e−t dt. 0 Γ (z) is called the gamma function. It follows from its definition that Γ (z) is analytic on the right half-plane Rez > 0. Two fundamental properties of the gamma function are that Γ (z + 1) = zΓ (z) and Γ (n) = (n − 1)!, where z is a complex number with positive real part and n ∈ Z+. Indeed, integration by parts yields Z ∞ tze−t ∞ 1 Z ∞ 1 Γ (z) = tz−1e−t dt = + tze−t dt = Γ (z + 1). 0 z 0 z 0 z Since Γ (1) = 1, the property Γ (n) = (n − 1)! for n ∈ Z+ follows by induction. Another important fact is that 417 418 A Gamma and Beta Functions √ 1 Γ 2 = π . This follows easily from the identity Z ∞ 1 Z ∞ 2 √ 1 − 2 −t −u Γ 2 = t e dt = 2 e du = π . 0 0 Next we define the beta function. Fix z and w complex numbers with positive real parts. We define Z 1 Z 1 B(z,w) = tz−1(1 −t)w−1 dt = tw−1(1 −t)z−1 dt.
    [Show full text]
  • Infinite Product Representations for Gamma Function and Binomial
    Innite Product Representations for Gamma Func- tion and Binomial Coecient By Edigles Guedes November 16, 2016 In the beginning was the Word, and the Word was with God, and the Word was God. - John 1:1. Abstract. In this paper, I demonstrate one new innite product for binomial coecient and news Euler's and Weierstrass's innite product for Gamma function among other things. 1. Introduction In 1729, Leonhard Euler (1707-1783) gave the innite product expansion for gamma function [1, p. 33] z 1 1 1 z 1 ¡(z) = 1 + 1 + ¡ ; (1) z j j j=1 Y which is valid in C, except for z 0; 1; 2; ::: . In 1854, Karl Weierstrass (18215f-18¡97) ¡gave tghe innte product expansion for gamma function [1, p. 34-35] 1 z ¡(z) = ze z 1 + e z/j; (2) j ¡ j=1 which is valid for all C. Y The binomial coecient may be dened by the nite product [2] n ` (`)n ` + r 1 = = ¡ ; (3) n n! r r=1 Y which is valid for ` C 0; 1; 2; ::: and n N. In [3, p. 3, form2ula (¡1.f1.1¡.2)],¡the Pgochhamm2er's symbol is dened by ¡(` + n) (`) = : (4) n ¡(`) In [4], I gave the innite product representation for the Pochhammer's symbol n 1 1 n 1 (`) = 1 + 1 + ¡ ; (5) n j j + ` 1 j=1 Y ¡ which is valid for ` C 0; 1; 2; ::: and n N. 2 ¡ f ¡ ¡ g 2 The beta function may be dened by [5] (a 1)!(b 1)! B(a; b) ¡ ¡ ; (6) (a + b 1)! when a; b are positive integers.
    [Show full text]
  • On Wallis-Type Products and Polya's Urn Schemes
    On Wallis-type products and P´olya's urn schemes Iddo Ben-Ari Diana Hay Alexander Roitershtein Abstract A famous \curious identity" of Wallis gives a representation of the constant π in terms of a simply structured infinite product of fractions. Sondow and Yi [Amer. Math. Monthly 117 (2010), 912-917] identified a general scheme for evaluating Wallis-type infinite products. The main purpose of this paper is to discuss an interpretation of the scheme by means of P´olya urn models. 1 Introduction This paper is motivated by the work of Sondow and Yi [20], where several exam- ples of Wallis-type products (see Definition 2.6 below) have been constructed. The method used in [20] yields \cyclically structured" converging infinite prod- ucts of fractions and evaluates their limit by means of the gamma function (see Section 2 below). Only in a limited range of cases is an expression of the limit in terms of powers of π and algebraic numbers known. Section 3 contains an in- structive survey of generic examples. In Section 4 we discuss a relation between the Wallis-type products and the P´olya urn scheme. Our main observation is contained in the statement of Theorem 4.4. Throughout the paper, Γ( · ) is the gamma function and N; Q; R; C are, respectively, natural, rational, real, and complex numbers. 2 Wallis-type infinite products Our starting point is a representation of the constant π discovered by Wallis [3, p. 68]: π 2 2 4 4 6 6 8 8 10 10 12 12 = ··· : (1) 2 1 3 3 5 5 7 7 9 9 11 11 13 A standard proof of the identity (1) relies on the evaluation of Wallis's integral R π=2 2n+1 0 sin t dt [2].
    [Show full text]
  • Regularized Integral Representations of the Reciprocal Gamma Function
    fractal and fractional Article Regularized Integral Representations of the Reciprocal Gamma Function Dimiter Prodanov 1,2 1 Environment, Health and Safety, IMEC, 3001 Leuven, Belgium; [email protected] or [email protected] 2 Neuroscience Research Flanders, 3001 Leuven, Belgium Received: 16 November 2018; Accepted: 8 January 2019; Published: 12 January 2019 Abstract: This paper establishes a real integral representation of the reciprocal Gamma function in terms of a regularized hypersingular integral along the real line. A regularized complex representation along the Hankel path is derived. The equivalence with the Heine’s complex representation is demonstrated. For both real and complex integrals, the regularized representation can be expressed in terms of the two-parameter Mittag-Leffler function. Reference numerical implementations in the Computer Algebra System Maxima are provided. Keywords: Gamma function; reciprocal Gamma function; Mittag-Leffler function; integral equation MSC: 33B15; 65D20; 30D10 1. Introduction Applications of the Gamma function in fractional calculus and the special function theory are ubiquitous. For example, the function is indispensable in the theory of Laplace transforms. The history of the Gamma function is surveyed in [1], in which the author further states that “of the so-called ’higher mathematical functions’, the Gamma function is undoubtedly the most fundamental”. A classical reference on the Gamma function is given by Artin [2]. The Gamma function has numerous remarkable properties that are surveyed in [3]. For example, one of its classical applications is the formula for the volume of an n-dimensional ball. The reciprocal Gamma function is a normalization constant in all of the classical fractional derivative operators: the Riemann–Liouville, Caputo, and Grünwald–Letnikov.
    [Show full text]