Gamma and Beta Functions

Total Page:16

File Type:pdf, Size:1020Kb

Gamma and Beta Functions Appendix A Gamma and Beta Functions A.1 A Useful Formula The following formula is valid: Z 2 √ n e−|x| dx = π . Rn This is an immediate consequence of the corresponding one-dimensional identity Z +∞ 2 √ e−x dx = π , −∞ which is usually proved from its two-dimensional version by switching to polar coordinates: Z +∞ Z +∞ 2 2 Z ∞ 2 I2 = e−x e−y dydx = 2π re−r dr = π . −∞ −∞ 0 A.2 Definitions of Γ (z) and B(z,w) For a complex number z with Rez > 0 define Z ∞ Γ (z) = tz−1e−t dt. 0 Γ (z) is called the gamma function. It follows from its definition that Γ (z) is analytic on the right half-plane Rez > 0. Two fundamental properties of the gamma function are that Γ (z + 1) = zΓ (z) and Γ (n) = (n − 1)!, where z is a complex number with positive real part and n ∈ Z+. Indeed, integration by parts yields Z ∞ tze−t ∞ 1 Z ∞ 1 Γ (z) = tz−1e−t dt = + tze−t dt = Γ (z + 1). 0 z 0 z 0 z Since Γ (1) = 1, the property Γ (n) = (n − 1)! for n ∈ Z+ follows by induction. Another important fact is that 417 418 A Gamma and Beta Functions √ 1 Γ 2 = π . This follows easily from the identity Z ∞ 1 Z ∞ 2 √ 1 − 2 −t −u Γ 2 = t e dt = 2 e du = π . 0 0 Next we define the beta function. Fix z and w complex numbers with positive real parts. We define Z 1 Z 1 B(z,w) = tz−1(1 −t)w−1 dt = tw−1(1 −t)z−1 dt. 0 0 We have the following relationship between the gamma and the beta functions: Γ (z)Γ (w) B(z,w) = , Γ (z + w) when z and w have positive real parts. The proof of this fact is as follows: Z 1 Γ (z + w)B(z,w) = Γ (z + w) tw−1(1 −t)z−1 dt 0 Z ∞ 1 z+w = Γ (z + w) uw−1 du t = u/(1 + u) 0 1 + u Z ∞ Z ∞ 1 z+w = uw−1 vz+w−1e−v dvdu 0 0 1 + u Z ∞ Z ∞ = uw−1sz+w−1e−s(u+1) dsdu s = v/(1 + u) 0 0 Z ∞ Z ∞ = sze−s (us)w−1e−su duds 0 0 Z ∞ = sz−1e−sΓ (w)ds 0 = Γ (z)Γ (w). A.3 Volume of the Unit Ball and Surface of the Unit Sphere n We denote by vn the volume of the unit ball in R and by ωn−1 the surface area of the unit sphere Sn−1. We have the following: n 2π 2 ωn−1 = n Γ ( 2 ) and A.4 Computation of Integrals Using Gamma Functions 419 n n ωn−1 2π 2 π 2 vn = = n = n . n nΓ ( 2 ) Γ ( 2 + 1) The easy proofs are based on the formula in Appendix A.1. We have Z Z ∞ √ n −|x|2 −r2 n−1 π = e dx = ωn−1 e r dr , Rn 0 by switching to polar coordinates. Now change variables t = r2 to obtain that Z ∞ n ω n ω 2 n−1 −t 2 −1 n−1 n π = 2 e t dt = 2 Γ 2 . 0 This proves the formula for the surface area of the unit sphere in Rn. To compute vn, write again using polar coordinates Z Z Z 1 n−1 1 vn = |B(0,1)| = 1dx = r dr dθ = ωn−1 . |x|≤1 Sn−1 0 n Here is another way to relate the volume to the surface area. Let B(0,R) be the ball in Rn of radius R > 0 centered at the origin. Then the volume of the shell B(0,R + h) \ B(0,R) divided by h tends to the surface area of B(0,R) as h → 0. In other words, the derivative of the volume of B(0,R) with respect to the radius R is n equal to the surface area of B(0,R). Since the volume of B(0,R) is vnR , it follows n−1 that the surface area of B(0,R) is nvnR . Taking R = 1, we deduce ωn−1 = nvn. A.4 Computation of Integrals Using Gamma Functions Let k1,...,kn be nonnegative even integers. The integral n n Z 2 Z +∞ 2 k + k1 kn −|x| k j −x j 1 x ···x e dx1 ···dxn = x e j dx j = Γ n 1 n ∏ j ∏ R j=1 −∞ j=1 2 expressed in polar coordinates is equal to Z Z ∞ 2 k1 kn k1+···+kn n−1 −r θ1 ···θn dθ r r e dr , Sn−1 0 where θ = (θ1,...,θn). This leads to the identity Z −1 n k + k1 kn k1 + ··· + kn + n j 1 θ ···θn dθ = 2Γ Γ . n−1 1 ∏ S 2 j=1 2 Another classical integral that can be computed using gamma functions is the following: 420 A Gamma and Beta Functions Z π/2 1 Γ ( a+1 )Γ ( b+1 ) (sinϕ)a(cosϕ)b dϕ = 2 2 , 2 a+b+2 0 Γ ( 2 ) whenever a and b are complex numbers with Rea > −1 and Reb > −1. Indeed, change variables u = (sinϕ)2; then du = 2(sinϕ)(cosϕ)dϕ, and the pre- ceding integral becomes a+1 b+1 1 Z 1 a−1 b−1 1 a + 1 b + 1 1 Γ ( )Γ ( ) u 2 (1 − u) 2 du = B , = 2 2 . 2 2 2 2 2 a+b+2 0 Γ ( 2 ) A.5 Meromorphic Extensions of B(z,w) and Γ (z) Using the identity Γ (z + 1) = zΓ (z), we can easily define a meromorphic exten- sion of the gamma function on the whole complex plane starting from its known values on the right half-plane. We give an explicit description of the meromorphic extension of Γ (z) on the whole plane. First write Z 1 Z ∞ Γ (z) = tz−1e−t dt + tz−1e−t dt 0 1 and observe that the second integral is an analytic function of z for all z ∈ C. Write the first integral as ( ) Z 1 N (−t) j N (−1) j/ j! tz−1 e−t − ∑ dt + ∑ . 0 j=0 j! j=0 z + j The last integral converges when Rez > −N − 1, since the expression inside the curly brackets is O(tN+1) as t → 0. It follows that the gamma function can be de- fined to be an analytic function on Rez > −N − 1 except at the points z = − j, (−1) j j = 0,1,...,N, at which it has simple poles with residues j! . Since N was arbi- trary, it follows that the gamma function has a meromorphic extension on the whole plane. In view of the identity Γ (z)Γ (w) B(z,w) = , Γ (z + w) the definition of B(z,w) can be extended to C × C. It follows that B(z,w) is a mero- morphic function in each argument. A.6 Asymptotics of Γ (x) as x → ∞ We now derive Stirling’s formula: A.7 Euler’s Limit Formula for the Gamma Function 421 Γ (x + 1) lim x√ = 1. x→∞ x e 2πx q 2 First change variables t = x + sx x to obtain q x x 2 Z ∞ x √ Z +∞ 1 + s x Γ (x + 1) = e−ttx dt = 2x √ √ ds. 0 e − x/2 e2s x/2 p x Setting y = 2 , we obtain y 2y +∞ s ! Γ (x + 1) Z 1 + y √ = χ (s)ds. x x es (−y,∞) e 2x −∞ √ To show that the last integral converges to π as y → ∞, we need the following: (1) The fact that y 2y 1 + s/y 2 lim → e−s , y→∞ es which follows easily by taking logarithms and applying L’Hopital’sˆ rule twice. (2) The estimate, valid for y ≥ 1, (1 + s)2 s y !2y when s ≥ 0, 1 + es y ≤ es 2 e−s when −y < s < 0, which can be easily checked using calculus. Using these facts, the Lebesgue dom- inated convergence theorem, the trivial fact that χ−y<s<∞ → 1 as y → ∞, and the identity in Appendix A.1, we obtain that y 2y +∞ s ! Γ (x + 1) Z 1 + y lim x√ = lim χ(−y,∞)(s)ds x→∞ x y→∞ es e 2x −∞ Z +∞ 2 = e−s ds √−∞ = π. A.7 Euler’s Limit Formula for the Gamma Function For n a positive integer and Rez > 0 we consider the functions 422 A Gamma and Beta Functions Z n n t z−1 Γn(z) = 1 − t dt 0 n We show that n!nz Γ (z) = n z(z + 1)···(z + n) and we obtain Euler’s limit formula for the gamma function lim Γn(z) = Γ (z). n→∞ We write Γ (z) −Γn(z) = I1(z) + I2(z) + I3(z), where Z ∞ −t z−1 I1(z) = e t dt , n Z n n −t t z−1 I2(z) = e − 1 − t dt , n/2 n Z n/2 n −t t z−1 I3(z) = e − 1 − t dt . 0 n Obviously I1(z) tends to zero as n → ∞. For I2 and I3 we have that 0 ≤ t < n, and by the Taylor expansion of the logarithm we obtain t n t log 1 − = nlog 1 − = −t − L, n n where t2 1 1 t 1 t2 L = + + + ··· . n 2 3 n 4 n2 It follows that t n 0 < e−t − 1 − = e−t − e−Le−t ≤ e−t , n and thus I2(z) tends to zero as n → ∞.
Recommended publications
  • Introduction to Analytic Number Theory the Riemann Zeta Function and Its Functional Equation (And a Review of the Gamma Function and Poisson Summation)
    Math 229: Introduction to Analytic Number Theory The Riemann zeta function and its functional equation (and a review of the Gamma function and Poisson summation) Recall Euler’s identity: ∞ ∞ X Y X Y 1 [ζ(s) :=] n−s = p−cps = . (1) 1 − p−s n=1 p prime cp=0 p prime We showed that this holds as an identity between absolutely convergent sums and products for real s > 1. Riemann’s insight was to consider (1) as an identity between functions of a complex variable s. We follow the curious but nearly universal convention of writing the real and imaginary parts of s as σ and t, so s = σ + it. We already observed that for all real n > 0 we have |n−s| = n−σ, because n−s = exp(−s log n) = n−σe−it log n and e−it log n has absolute value 1; and that both sides of (1) converge absolutely in the half-plane σ > 1, and are equal there either by analytic continuation from the real ray t = 0 or by the same proof we used for the real case. Riemann showed that the function ζ(s) extends from that half-plane to a meromorphic function on all of C (the “Riemann zeta function”), analytic except for a simple pole at s = 1. The continuation to σ > 0 is readily obtained from our formula ∞ ∞ 1 X Z n+1 X Z n+1 ζ(s) − = n−s − x−s dx = (n−s − x−s) dx, s − 1 n=1 n n=1 n since for x ∈ [n, n + 1] (n ≥ 1) and σ > 0 we have Z x −s −s −1−s −1−σ |n − x | = s y dy ≤ |s|n n so the formula for ζ(s) − (1/(s − 1)) is a sum of analytic functions converging absolutely in compact subsets of {σ + it : σ > 0} and thus gives an analytic function there.
    [Show full text]
  • Probabilistic Proofs of Some Beta-Function Identities
    1 2 Journal of Integer Sequences, Vol. 22 (2019), 3 Article 19.6.6 47 6 23 11 Probabilistic Proofs of Some Beta-Function Identities Palaniappan Vellaisamy Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai-400076 India [email protected] Aklilu Zeleke Lyman Briggs College & Department of Statistics and Probability Michigan State University East Lansing, MI 48825 USA [email protected] Abstract Using a probabilistic approach, we derive some interesting identities involving beta functions. These results generalize certain well-known combinatorial identities involv- ing binomial coefficients and gamma functions. 1 Introduction There are several interesting combinatorial identities involving binomial coefficients, gamma functions, and hypergeometric functions (see, for example, Riordan [9], Bagdasaryan [1], 1 Vellaisamy [15], and the references therein). One of these is the following famous identity that involves the convolution of the central binomial coefficients: n 2k 2n − 2k =4n. (1) k n − k k X=0 In recent years, researchers have provided several proofs of (1). A proof that uses generating functions can be found in Stanley [12]. Combinatorial proofs can also be found, for example, in Sved [13], De Angelis [3], and Miki´c[6]. A related and an interesting identity for the alternating convolution of central binomial coefficients is n n n 2k 2n − 2k 2 n , if n is even; (−1)k = 2 (2) k n − k k=0 (0, if n is odd. X Nagy [7], Spivey [11], and Miki´c[6] discussed the combinatorial proofs of the above identity. Recently, there has been considerable interest in finding simple probabilistic proofs for com- binatorial identities (see Vellaisamy and Zeleke [14] and the references therein).
    [Show full text]
  • Infinite Product of a Number
    International Journal of Pure and Applied Mathematical Sciences. ISSN 0972-9828 Volume 10, Number 2 (2017), pp. 107-110 © Research India Publications http://www.ripublication.com Infinite Product of a Number Rushal Sohal Student The Lexicon International School, Wagholi, Pune, India. Abstract It seems that multiplying a positive number infinite times would give something extremely huge (infinity), but is it so? In this paper, we will show that any positive integer (>1) raised to the power infinity (i.e. infinite product of n ∞ ∞ =∏푖=1 푛=푛×푛×푛...= 푛 , 푛 > 1) is not infinity; we will use simple mathematical equations and also use some known sums to prove that the infinite product of a positive integer (>1) is not equal to infinity, ∞i.e. 푛∞ ≠ . Keywords: positive integer(퐼+); infinity*(∞); Riemann zeta function 휁(푠). 1. INTRODUCTION So, what is the infinite product of a positive integer (>1), i.e. what is 푛∞? Is it ∞ or something else? Till now, not much research has been done on this topic, and by convention we assume 푛∞ to be equal to ∞. In this paper, we will make simple equations and also use some known sums and prove that 푛∞ = 0 and that, it is not equal to ∞. We are going to approach the problem by observing patterns, assigning and re- assigning variables, and finally solving the equations. But first, we need to prove that 푛∞ ≠ ∞. 2. METHODS The methods for solving the problem are simple but a bit counter-intuitive. In this paper, we will make simple mathematical equations and firstly prove that 푛∞ ≠ ∞.
    [Show full text]
  • Regularized Integral Representations of the Reciprocal Function
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2018 doi:10.20944/preprints201812.0310.v1 Peer-reviewed version available at Fractal Fract 2019, 3, 1; doi:10.3390/fractalfract3010001 Article Regularized Integral Representations of the Reciprocal G Function Dimiter Prodanov Correspondence: Environment, Health and Safety, IMEC vzw, Kapeldreef 75, 3001 Leuven, Belgium; [email protected]; [email protected] Version December 25, 2018 submitted to Preprints 1 Abstract: This paper establishes a real integral representation of the reciprocal G function in terms 2 of a regularized hypersingular integral. The equivalence with the usual complex representation is 3 demonstrated. A regularized complex representation along the usual Hankel path is derived. 4 Keywords: gamma function; reciprocal gamma function; integral equation 5 MSC: 33B15; 65D20, 30D10 6 1. Introduction 7 Applications of the Gamma function are ubiquitous in fractional calculus and the special function 8 theory. It has numerous interesting properties summarized in [1]. It is indispensable in the theory of 9 Laplace transforms. The history of the Gamma function is surveyed in [2]. In a previous note I have 10 investigated an approach to regularize derivatives at points, where the ordinary limit diverges [5]. 11 This paper exploits the same approach for the purposes of numerical computation of singular integrals, 12 such as the Euler G integrals for negative arguments. The paper also builds on an observations in [4]. 13 The present paper proves a real singular integral representation of the reciprocal G function. The 14 algorithm is implemented in the Computer Algebra System Maxima for reference and demonstration 15 purposes.
    [Show full text]
  • INTEGRALS of POWERS of LOGGAMMA 1. Introduction The
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 139, Number 2, February 2011, Pages 535–545 S 0002-9939(2010)10589-0 Article electronically published on August 18, 2010 INTEGRALS OF POWERS OF LOGGAMMA TEWODROS AMDEBERHAN, MARK W. COFFEY, OLIVIER ESPINOSA, CHRISTOPH KOUTSCHAN, DANTE V. MANNA, AND VICTOR H. MOLL (Communicated by Ken Ono) Abstract. Properties of the integral of powers of log Γ(x) from 0 to 1 are con- sidered. Analytic evaluations for the first two powers are presented. Empirical evidence for the cubic case is discussed. 1. Introduction The evaluation of definite integrals is a subject full of interconnections of many parts of mathematics. Since the beginning of Integral Calculus, scientists have developed a large variety of techniques to produce magnificent formulae. A partic- ularly beautiful formula due to J. L. Raabe [12] is 1 Γ(x + t) (1.1) log √ dx = t log t − t, for t ≥ 0, 0 2π which includes the special case 1 √ (1.2) L1 := log Γ(x) dx =log 2π. 0 Here Γ(x)isthegamma function defined by the integral representation ∞ (1.3) Γ(x)= ux−1e−udu, 0 for Re x>0. Raabe’s formula can be obtained from the Hurwitz zeta function ∞ 1 (1.4) ζ(s, q)= (n + q)s n=0 via the integral formula 1 t1−s (1.5) ζ(s, q + t) dq = − 0 s 1 coupled with Lerch’s formula ∂ Γ(q) (1.6) ζ(s, q) =log √ . ∂s s=0 2π An interesting extension of these formulas to the p-adic gamma function has recently appeared in [3].
    [Show full text]
  • Standard Distributions
    Appendix A Standard Distributions A.1 Standard Univariate Discrete Distributions I. Binomial Distribution B(n, p) has the probability mass function n f(x)= px (x =0, 1,...,n). x The mean is np and variance np(1 − p). II. The Negative Binomial Distribution NB(r, p) arises as the distribution of X ≡{number of failures until the r-th success} in independent trials each with probability of success p. Thus its probability mass function is r + x − 1 r x fr(x)= p (1 − p) (x =0, 1, ··· , ···). x Let Xi denote the number of failures between the (i − 1)-th and i-th successes (i =2, 3,...,r), and let X1 be the number of failures before the first success. Then X1,X2,...,Xr and r independent random variables each having the distribution NB(1,p) with probability mass function x f1(x)=p(1 − p) (x =0, 1, 2,...). Also, X = X1 + X2 + ···+ Xr. Hence ∞ ∞ x x−1 E(X)=rEX1 = r p x(1 − p) = rp(1 − p) x(1 − p) x=0 x=1 ∞ ∞ d d = rp(1 − p) − (1 − p)x = −rp(1 − p) (1 − p)x x=1 dp dp x=1 © Springer-Verlag New York 2016 343 R. Bhattacharya et al., A Course in Mathematical Statistics and Large Sample Theory, Springer Texts in Statistics, DOI 10.1007/978-1-4939-4032-5 344 A Standard Distributions ∞ d d 1 = −rp(1 − p) (1 − p)x = −rp(1 − p) dp dp 1 − (1 − p) x=0 =p r(1 − p) = . (A.1) p Also, one may calculate var(X) using (Exercise A.1) var(X)=rvar(X1).
    [Show full text]
  • Sums of Powers and the Bernoulli Numbers Laura Elizabeth S
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1996 Sums of Powers and the Bernoulli Numbers Laura Elizabeth S. Coen Eastern Illinois University This research is a product of the graduate program in Mathematics and Computer Science at Eastern Illinois University. Find out more about the program. Recommended Citation Coen, Laura Elizabeth S., "Sums of Powers and the Bernoulli Numbers" (1996). Masters Theses. 1896. https://thekeep.eiu.edu/theses/1896 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. THESIS REPRODUCTION CERTIFICATE TO: Graduate Degree Candidates (who have written formal theses) SUBJECT: Permission to Reproduce Theses The University Library is rece1v1ng a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS: Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. u Author uate I respectfully request Booth Library of Eastern Illinois University not allow my thesis
    [Show full text]
  • Extended K-Gamma and K-Beta Functions of Matrix Arguments
    mathematics Article Extended k-Gamma and k-Beta Functions of Matrix Arguments Ghazi S. Khammash 1, Praveen Agarwal 2,3,4 and Junesang Choi 5,* 1 Department of Mathematics, Al-Aqsa University, Gaza Strip 79779, Palestine; [email protected] 2 Department of Mathematics, Anand International College of Engineering, Jaipur 303012, India; [email protected] 3 Institute of Mathematics and Mathematical Modeling, Almaty 050010, Kazakhstan 4 Harish-Chandra Research Institute Chhatnag Road, Jhunsi, Prayagraj (Allahabad) 211019, India 5 Department of Mathematics, Dongguk University, Gyeongju 38066, Korea * Correspondence: [email protected] Received: 17 August 2020; Accepted: 30 September 2020; Published: 6 October 2020 Abstract: Various k-special functions such as k-gamma function, k-beta function and k-hypergeometric functions have been introduced and investigated. Recently, the k-gamma function of a matrix argument and k-beta function of matrix arguments have been presented and studied. In this paper, we aim to introduce an extended k-gamma function of a matrix argument and an extended k-beta function of matrix arguments and investigate some of their properties such as functional relations, inequality, integral formula, and integral representations. Also an application of the extended k-beta function of matrix arguments to statistics is considered. Keywords: k-gamma function; k-beta function; gamma function of a matrix argument; beta function of matrix arguments; extended gamma function of a matrix argument; extended beta function of matrix arguments; k-gamma function of a matrix argument; k-beta function of matrix arguments; extended k-gamma function of a matrix argument; extended k-beta function of matrix arguments 1.
    [Show full text]
  • TYPE BETA FUNCTIONS of SECOND KIND 135 Operators
    Adv. Oper. Theory 1 (2016), no. 1, 134–146 http://doi.org/10.22034/aot.1609.1011 ISSN: 2538-225X (electronic) http://aot-math.org (p, q)-TYPE BETA FUNCTIONS OF SECOND KIND ALI ARAL 1∗ and VIJAY GUPTA2 Communicated by A. Kaminska Abstract. In the present article, we propose the (p, q)-variant of beta func- tion of second kind and establish a relation between the generalized beta and gamma functions using some identities of the post-quantum calculus. As an ap- plication, we also propose the (p, q)-Baskakov–Durrmeyer operators, estimate moments and establish some direct results. 1. Introduction The quantum calculus (q-calculus) in the field of approximation theory was discussed widely in the last two decades. Several generalizations to the q variants were recently presented in the book [3]. Further there is possibility of extension of q-calculus to post-quantum calculus, namely the (p, q)-calculus. Actually such extension of quantum calculus can not be obtained directly by substitution of q by q/p in q-calculus. But there is a link between q-calculus and (p, q)-calculus. The q calculus may be obtained by substituting p = 1 in (p, q)-calculus. We mentioned some previous results in this direction. Recently, Gupta [8] introduced (p, q) gen- uine Bernstein–Durrmeyer operators and established some direct results. (p, q) generalization of Sz´asz–Mirakyan operators was defined in [1]. Also authors inves- tigated a Durrmeyer type modifications of the Bernstein operators in [9]. We can also mention other papers as Bernstein operators [10], Bernstein–Stancu oper- ators [11].
    [Show full text]
  • Notes on Riemann's Zeta Function
    NOTES ON RIEMANN’S ZETA FUNCTION DRAGAN MILICIˇ C´ 1. Gamma function 1.1. Definition of the Gamma function. The integral ∞ Γ(z)= tz−1e−tdt Z0 is well-defined and defines a holomorphic function in the right half-plane {z ∈ C | Re z > 0}. This function is Euler’s Gamma function. First, by integration by parts ∞ ∞ ∞ Γ(z +1)= tze−tdt = −tze−t + z tz−1e−t dt = zΓ(z) Z0 0 Z0 for any z in the right half-plane. In particular, for any positive integer n, we have Γ(n) = (n − 1)Γ(n − 1)=(n − 1)!Γ(1). On the other hand, ∞ ∞ Γ(1) = e−tdt = −e−t = 1; Z0 0 and we have the following result. 1.1.1. Lemma. Γ(n) = (n − 1)! for any n ∈ Z. Therefore, we can view the Gamma function as a extension of the factorial. 1.2. Meromorphic continuation. Now we want to show that Γ extends to a meromorphic function in C. We start with a technical lemma. Z ∞ 1.2.1. Lemma. Let cn, n ∈ +, be complex numbers such such that n=0 |cn| converges. Let P S = {−n | n ∈ Z+ and cn 6=0}. Then ∞ c f(z)= n z + n n=0 X converges absolutely for z ∈ C − S and uniformly on bounded subsets of C − S. The function f is a meromorphic function on C with simple poles at the points in S and Res(f, −n)= cn for any −n ∈ S. 1 2 D. MILICIˇ C´ Proof. Clearly, if |z| < R, we have |z + n| ≥ |n − R| for all n ≥ R.
    [Show full text]
  • Functions of a Complex Variable II Math 562, Spring 2020
    Functions of a Complex Variable II Math 562, Spring 2020 Jens Lorenz April 27, 2020 Department of Mathematics and Statistics, UNM, Albuquerque, NM 87131 Contents 1 Notations 5 2 The Schwarz Lemma and Aut(D) 6 2.1 Schwarz Lemma . .6 2.2 Biholomorphic Maps and Automorphisms . .7 2.3 The Automorphism Group of D ...................7 2.4 The Schwarz{Pick Lemma . .9 2.5 Remarks . 11 3 Linear Fractional Transformations and the Riemann Sphere 12 3.1 The Riemann Sphere . 12 3.2 Linear Fractional Transformations . 14 3.3 The Automorphisms of the Riemann Sphere . 16 3.4 A Remarkable Geometric Property of Linear Fractional Trans- formations . 17 3.4.1 Analytical Description of Circles . 18 3.4.2 Circles under Reciprocation . 18 3.4.3 Straight Lines under Reciprocation . 20 3.5 Example: The Cayley Transform in the Complex Plane . 21 3.6 The Cayley Transform of a Matrix . 22 4 The Riemann Mapping Theorem 24 4.1 Statement and Overview of Proof . 24 4.2 The Theorem of Arzela{Ascoli . 26 4.3 Montel's Theorem . 29 4.4 Auxiliary Results on Logarithms and Square Roots . 32 4.5 Construction of a Map in ..................... 33 4.6 A Bound of f 0(P ) for all Ff .................. 35 4.7 Application ofj thej Theorems2 of F Montel and Hurwitz . 36 4.8 Proof That f is Onto . 37 1 4.9 Examples of Biholomorphic Mappings . 39 5 An Introduction to Schwarz–Christoffel Formulas 41 5.1 General Power Functions . 41 5.2 An Example of a Schwarz–Christoffel Map .
    [Show full text]
  • Special Values of the Gamma Function at CM Points
    Special values of the Gamma function at CM points M. Ram Murty & Chester Weatherby The Ramanujan Journal An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan ISSN 1382-4090 Ramanujan J DOI 10.1007/s11139-013-9531-x 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media New York. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Ramanujan J DOI 10.1007/s11139-013-9531-x Special values of the Gamma function at CM points M. Ram Murty · Chester Weatherby Received: 10 November 2011 / Accepted: 15 October 2013 © Springer Science+Business Media New York 2014 Abstract Little is known about the transcendence of certain values of the Gamma function, Γ(z). In this article, we study values of Γ(z)when Q(z) is an imaginary quadratic field. We also study special values of the digamma function, ψ(z), and the polygamma functions, ψt (z).
    [Show full text]