Lectures on the Riemann Zeta–Function

Total Page:16

File Type:pdf, Size:1020Kb

Lectures on the Riemann Zeta–Function Lectures on The Riemann Zeta–Function By K. Chandrasekharan Tata Institute of Fundamental Research, Bombay 1953 Lectures on the Riemann Zeta-Function By K. Chandrasekharan Tata Institute of Fundamental Research 1953 The aim of these lectures is to provide an intorduc- tion to the theory of the Riemann Zeta-function for stu- dents who might later want to do research on the subject. The Prime Number Theorem, Hardy’s theorem on the Zeros of ζ(s), and Hamburger’s theorem are the princi- pal results proved here. The exposition is self-contained, and required a preliminary knowledge of only the ele- ments of function theory. Contents 1 The Maximum Principle 1 2 The Phragmen-Lindelof principle 9 3 Schwarz’s Lemma 17 4 Entire Functions 25 5 Entire Functions (Contd.) 35 6 The Gamma Function 45 1 Elementary Properties . 45 2 Analytic continuation of Γ(z)............... 49 3 TheProductFormula ................... 51 7 The Gamma Function: Contd 55 4 The Bohr-Mollerup-Artin Theorem . 55 5 Gauss’s Multiplication Formula . 58 6 Stirling’s Formula . 59 8 The Zeta Function of Riemann 63 1 Elementary Properties of ζ(s)............... 63 9 The Zeta Function of Riemann (Contd.) 69 2 Elementary theory of Dirichlet Series . 69 v vi Contents 10 The Zeta Function of Riemann (Contd) 75 2 (Contd). Elementary theory of Dirichlet series . 75 11 The Zeta Function of Riemann (Contd) 87 3 Analytic continuation of ζ(s). First method . 87 4 Functional Equation (First method) . 90 5 Functional Equation (Second Method) . 92 12 The Zeta Function of Riemann (Contd) 97 6 Some estimates for ζ(s).................. 97 7 Functional Equation (Third Method) . 99 13 The Zeta Function of Riemann (Contd) 105 8 The zeros of ζ(s) .....................105 14 The Zeta Function of Riemann (Contd) 113 9 Riemann-Von Magoldt Formula . 113 15 The Zeta Function of Riemann (Contd) 121 10 Hardy’sTheorem . .121 16 The Zeta Function of Riemann (Contd) 127 17 The Zeta Function of Riemann (Contd) 135 12 The Prime Number Theorem . 135 13 Prime Number Theorem and the zeros of ζ(s) ......145 14 Prime Number Theorem and the magnitude of pn . 146 Lecture 1 The Maximum Principle Theorem 1. If D is a domain bounded by a contour C for which Cauchy’s 1 theorem is valid, and f is continuous on C regular in D, then “ f M | | ≤ on C” implies “ f M in D”, and if f = M in D, then f is a constant. | |≤ | | Proof. (a) Let zo D, n a positive integer. Then ∈ n n 1 f (z) dz f (zo) = { } | | 2πi z zo C − n lc M · , ≤ 2πδ where lc = length of C, δ = distance of zo from C. As n →∞ f (z) M. | |≤ (b) If f (zo) = M, then f is a constant. For, applying Cauchy’s inte- | | d gral formula to f (z) n , we get dz { } 1 f ndz n f (z ) n 1 f (z ) = o − ′ o 2 | { } · | 2πi (z zo) C − l Mn C , ≤ 2πδ2 1 2 1. The Maximum Principle so that lc M 1 f ′(zo) 0, as n | |≤ 2πδ2 · n → →∞ Hence f ′(zo) = 0. | | 2 (c) If f (zo) = M, and f (zo) = 0, then f (zo) = 0, for | | | ′ | ′′ 2 d n n 2 2 n 1 f (z) = n(n 1) f (z) − f ′(z) + n f (z) − f ′′(z). dz2 { } − { } { } { } At zo we have 2 d n n 1 f (z) = = n f − (Z0) f ′′(z0), dz2 { } z zo so that 2! f (z) ndz nMn 1 f (z ) = − ′′ 0 { } 3 | | 2πi (z zo) C − 2!l c Mn, ≤ 2πδ3 and letting n , we see that f (zo) = 0. By a similar reasoning →∞ ′′ we prove that all derivatives of f vanish at z0 (an arbitrary point of D). Thus f is a constant. Remark. The above proof is due to Landau [12, p.105]. We shall now show that the restrictions on the nature of the boundary C postulated in the above theorem cab be dispensed with. Theorem 2. If f is regular in a domain D and is not a constant, and M = max f , then z D | | ∈ f (zo) < M, zo D. | | ∈ For the proof of this theorem we need a 1. The Maximum Principle 3 Lemma. If f is regular in z z0 r, r > 0, then | − |≤ f (z0) Mr, | |≤ 3 where Mr = max f (z) , and f (zo) = Mr only if f (z) is constant for z zo =r | | | | | − | z zo = r. | − | Proof. On using Cauchy’s integral formula, we get 1 f (z) f (zo) = dz 2πi z z0 z zo =n − | − | 2π 1 = f (z + reiθ)dθ. (1) 2π o 0 Hence f (zo) Mr. | |≤ Further, if there is a point ζ (such that) ζ zo = r, and f (ζ) < | − | | | Mr, then by continuity, there exists a neighbourhood of ζ, on the circle z zo = r, in which f (z) Mr ε, ε > 0 and we should have | − | | | ≤ − f (zo) < Mr; so that “ f (zo) = Mr” implies “ f (z) = Mr everywhere on | | | | iθ | | z zo = r”. That is f (zo + re ) = f (zo) for 0 θ 2π, or | − | | | | | ≤ ≤ iθ iϕ f (zo + re ) = f (zo)e , 0 ϕ 2π ≤ ≤ On substituting this in (1), we get 2π 1 1 = cos ϕdθ 2π 0 Since ϕ is a continuous function of θ and cos ϕ 1, we get cos ϕ 1 for ≤ · all θ, i.e. ϕ = 0, hence f (s) is a constant. Remarks. The Lemma proves the maximum principle in the case of a 4 circular domain. An alternative proof of the lemma is given below [7, Bd 1, p.117]. 4 1. The Maximum Principle iθ Aliter. If f (z0 + re ) = φ(θ) (complex valued) then 2π 1 f (z ) = φ(θ)dθ 0 2π 0 Now, if a and b are two complex numbers, a M, b M and | | ≤ | | ≤ a , b, then a + b < 2M. Hence if φ(θ) is not constant for 0 θ < 2π, | | ≤ then there exist two points θ1, θ2 such that φ(θ1) + φ(θ2) = 2Mr 2ε, say, where ε> 0 | | − On the other hand, by regularity, φ(θ1 + t) φ(θ1) < ε/2, for 0 < t <δ | − | φ(θ2 + t) φ(θ2) < ε/2, for 0 < t <δ | − | Hence φ(θ1 + t) + φ(θ2 + t) < 2Mr ε, for 0 < t < δ. | | − Therefore 2π θ1 θ1+δ θ2 θ2+δ 2π φ(θ)dθ = + + + + 0 0 θ1 θ1+δ θ2 θ2+δ θ1 θ2 2π δ = + + φ(θ)dθ + [φ(θ + t) + φ(θ + t)] dt 1 2 0 θ+δ θ+δ 0 1 2 Hence 2π φ(θ) dθ Mr(2π 2δ) + (2Mr ε)δ = 2πMr εδ | |≤ − − − 0 2π 1 φ(θ)dθ < Mr |2π | 0 1. The Maximum Principle 5 5 Proof of Theorem 2. Let zo D. Consider the set G1 of points z such ∈ that f (z) , f (zo). This set is not empty, since f is non-constant. It is a proper subset of D, since zo D, zo < G1. It is open, because f is ∈ continuous in D. Now D contains at least one boundary point of G1. For if it did not, G D would be open too, and D = (G1 G )D would be 1′ ∩ ∪ 1′ disconnected. Let z1 be the boundary point of G1 such that z1 D. Then ∈ z1 < G1, since G1 is open. Therefore f (z1) = f (zo). Since z1 BdG1 ∈ and z1 D, we can choose a point z2 G1 such that the neighbourhood ∈ ∈ of z1 defined by z z1 z2 z1 | − | ≤ | − | lies entirely in D. However, f (z2) , f (z1), since f (z2) , f (zo), and f (zo) = f (z1). Therefore f (z) is not constant on z z1 = r, (see | − | (1) on page 3) for, if it were, then f (z2) = f (z1). Hence if M′ = max f (z) , then z z1 = z2 z1 | | | − | | − | f (z1) < M′ M = max f (z) | | ≤ z D | | ∈ i.e. f (zo) < M | | Remarks. The above proof of Theorem 2 [7, Bd I, p.134] does not make use of the principle of analytic continuation which will of course provide an immediate alternative proof once the Lemma is established. Theorem 3. If f is regular in a bounded domain D, and continuous in D,¯ then f attains its maximum at some point in Bd D, unless f is a constant. Since D is bounded, D¯ is also bounded. And a continuous function on a compact set attains its maximum, and by Theorem 2 this maximum 6 cannot be attained at an interior point of D. Note that the continuity of f is used. | | Theorem 4. If f is regular in a bounded domain D, is non-constant, and if for every sequence zn ,zn D, which converges to a point ξ Bd D, { } ∈ ∈ we have lim sup f (zn) M, n | |≤ →∞ then f (z) < M for all z D. [17, p.111] | | ∈ 6 1. The Maximum Principle Proof. D is an Fσ, for define sets Cn by the property: Cn consists of all z such that z n and such that there exists an open circular neigh- | | ≤ bourhood of radius 1/n with centre z, which is properly contained in D. Then Cn Cn+1, n = 1, 2,...; and Cn is compact. ⊂ Define max f (z) mn. Z Cn | |≡ ∈ By Theorem 2, there exists a zn Bd Cn such that f (zn) = mn. The ∈ | | sequence mn is monotone increasing, by the previous results; and the { } sequence zn is bounded, so that a subsequence zn converges to a { } { p } limit ξ Bd D. Hence ∈ lim f (zn ) M | p |≤ i.e.
Recommended publications
  • The Lerch Zeta Function and Related Functions
    The Lerch Zeta Function and Related Functions Je↵ Lagarias, University of Michigan Ann Arbor, MI, USA (September 20, 2013) Conference on Stark’s Conjecture and Related Topics , (UCSD, Sept. 20-22, 2013) (UCSD Number Theory Group, organizers) 1 Credits (Joint project with W. C. Winnie Li) J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function I. Zeta Integrals, Forum Math, 24 (2012), 1–48. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function II. Analytic Continuation, Forum Math, 24 (2012), 49–84. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function III. Polylogarithms and Special Values, preprint. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function IV. Two-variable Hecke operators, in preparation. Work of J. C. Lagarias is partially supported by NSF grants DMS-0801029 and DMS-1101373. 2 Topics Covered Part I. History: Lerch Zeta and Lerch Transcendent • Part II. Basic Properties • Part III. Multi-valued Analytic Continuation • Part IV. Consequences • Part V. Lerch Transcendent • Part VI. Two variable Hecke operators • 3 Part I. Lerch Zeta Function: History The Lerch zeta function is: • e2⇡ina ⇣(s, a, c):= 1 (n + c)s nX=0 The Lerch transcendent is: • zn Φ(s, z, c)= 1 (n + c)s nX=0 Thus ⇣(s, a, c)=Φ(s, e2⇡ia,c). 4 Special Cases-1 Hurwitz zeta function (1882) • 1 ⇣(s, 0,c)=⇣(s, c):= 1 . (n + c)s nX=0 Periodic zeta function (Apostol (1951)) • e2⇡ina e2⇡ia⇣(s, a, 1) = F (a, s):= 1 . ns nX=1 5 Special Cases-2 Fractional Polylogarithm • n 1 z z Φ(s, z, 1) = Lis(z)= ns nX=1 Riemann zeta function • 1 ⇣(s, 0, 1) = ⇣(s)= 1 ns nX=1 6 History-1 Lipschitz (1857) studies general Euler integrals including • the Lerch zeta function Hurwitz (1882) studied Hurwitz zeta function.
    [Show full text]
  • Analytic Continuation of Massless Two-Loop Four-Point Functions
    CERN-TH/2002-145 hep-ph/0207020 July 2002 Analytic Continuation of Massless Two-Loop Four-Point Functions T. Gehrmanna and E. Remiddib a Theory Division, CERN, CH-1211 Geneva 23, Switzerland b Dipartimento di Fisica, Universit`a di Bologna and INFN, Sezione di Bologna, I-40126 Bologna, Italy Abstract We describe the analytic continuation of two-loop four-point functions with one off-shell external leg and internal massless propagators from the Euclidean region of space-like 1 3decaytoMinkowskian regions relevant to all 1 3and2 2 reactions with one space-like or time-like! off-shell external leg. Our results can be used! to derive two-loop! master integrals and unrenormalized matrix elements for hadronic vector-boson-plus-jet production and deep inelastic two-plus-one-jet production, from results previously obtained for three-jet production in electron{positron annihilation. 1 Introduction In recent years, considerable progress has been made towards the extension of QCD calculations of jet observables towards the next-to-next-to-leading order (NNLO) in perturbation theory. One of the main ingredients in such calculations are the two-loop virtual corrections to the multi leg matrix elements relevant to jet physics, which describe either 1 3 decay or 2 2 scattering reactions: two-loop four-point functions with massless internal propagators and→ up to one off-shell→ external leg. Using dimensional regularization [1, 2] with d = 4 dimensions as regulator for ultraviolet and infrared divergences, the large number of different integrals6 appearing in the two-loop Feynman amplitudes for 2 2 scattering or 1 3 decay processes can be reduced to a small number of master integrals.
    [Show full text]
  • A Short and Simple Proof of the Riemann's Hypothesis
    A Short and Simple Proof of the Riemann’s Hypothesis Charaf Ech-Chatbi To cite this version: Charaf Ech-Chatbi. A Short and Simple Proof of the Riemann’s Hypothesis. 2021. hal-03091429v10 HAL Id: hal-03091429 https://hal.archives-ouvertes.fr/hal-03091429v10 Preprint submitted on 5 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Short and Simple Proof of the Riemann’s Hypothesis Charaf ECH-CHATBI ∗ Sunday 21 February 2021 Abstract We present a short and simple proof of the Riemann’s Hypothesis (RH) where only undergraduate mathematics is needed. Keywords: Riemann Hypothesis; Zeta function; Prime Numbers; Millennium Problems. MSC2020 Classification: 11Mxx, 11-XX, 26-XX, 30-xx. 1 The Riemann Hypothesis 1.1 The importance of the Riemann Hypothesis The prime number theorem gives us the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the average. Formulated in Riemann’s 1859 paper[1], it asserts that all the ’non-trivial’ zeros of the zeta function are complex numbers with real part 1/2. 1.2 Riemann Zeta Function For a complex number s where ℜ(s) > 1, the Zeta function is defined as the sum of the following series: +∞ 1 ζ(s)= (1) ns n=1 X In his 1859 paper[1], Riemann went further and extended the zeta function ζ(s), by analytical continuation, to an absolutely convergent function in the half plane ℜ(s) > 0, minus a simple pole at s = 1: s +∞ {x} ζ(s)= − s dx (2) s − 1 xs+1 Z1 ∗One Raffles Quay, North Tower Level 35.
    [Show full text]
  • An Explicit Formula for Dirichlet's L-Function
    University of Tennessee at Chattanooga UTC Scholar Student Research, Creative Works, and Honors Theses Publications 5-2018 An explicit formula for Dirichlet's L-Function Shannon Michele Hyder University of Tennessee at Chattanooga, [email protected] Follow this and additional works at: https://scholar.utc.edu/honors-theses Part of the Mathematics Commons Recommended Citation Hyder, Shannon Michele, "An explicit formula for Dirichlet's L-Function" (2018). Honors Theses. This Theses is brought to you for free and open access by the Student Research, Creative Works, and Publications at UTC Scholar. It has been accepted for inclusion in Honors Theses by an authorized administrator of UTC Scholar. For more information, please contact [email protected]. An Explicit Formula for Dirichlet's L-Function Shannon M. Hyder Departmental Honors Thesis The University of Tennessee at Chattanooga Department of Mathematics Thesis Director: Dr. Andrew Ledoan Examination Date: April 9, 2018 Members of Examination Committee Dr. Andrew Ledoan Dr. Cuilan Gao Dr. Roger Nichols c 2018 Shannon M. Hyder ALL RIGHTS RESERVED i Abstract An Explicit Formula for Dirichlet's L-Function by Shannon M. Hyder The Riemann zeta function has a deep connection to the distribution of primes. In 1911 Landau proved that, for every fixed x > 1, X T xρ = − Λ(x) + O(log T ) 2π 0<γ≤T as T ! 1. Here ρ = β + iγ denotes a complex zero of the zeta function and Λ(x) is an extension of the usual von Mangoldt function, so that Λ(x) = log p if x is a positive integral power of a prime p and Λ(x) = 0 for all other real values of x.
    [Show full text]
  • Infinite Product of a Number
    International Journal of Pure and Applied Mathematical Sciences. ISSN 0972-9828 Volume 10, Number 2 (2017), pp. 107-110 © Research India Publications http://www.ripublication.com Infinite Product of a Number Rushal Sohal Student The Lexicon International School, Wagholi, Pune, India. Abstract It seems that multiplying a positive number infinite times would give something extremely huge (infinity), but is it so? In this paper, we will show that any positive integer (>1) raised to the power infinity (i.e. infinite product of n ∞ ∞ =∏푖=1 푛=푛×푛×푛...= 푛 , 푛 > 1) is not infinity; we will use simple mathematical equations and also use some known sums to prove that the infinite product of a positive integer (>1) is not equal to infinity, ∞i.e. 푛∞ ≠ . Keywords: positive integer(퐼+); infinity*(∞); Riemann zeta function 휁(푠). 1. INTRODUCTION So, what is the infinite product of a positive integer (>1), i.e. what is 푛∞? Is it ∞ or something else? Till now, not much research has been done on this topic, and by convention we assume 푛∞ to be equal to ∞. In this paper, we will make simple equations and also use some known sums and prove that 푛∞ = 0 and that, it is not equal to ∞. We are going to approach the problem by observing patterns, assigning and re- assigning variables, and finally solving the equations. But first, we need to prove that 푛∞ ≠ ∞. 2. METHODS The methods for solving the problem are simple but a bit counter-intuitive. In this paper, we will make simple mathematical equations and firstly prove that 푛∞ ≠ ∞.
    [Show full text]
  • Regularized Integral Representations of the Reciprocal Function
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2018 doi:10.20944/preprints201812.0310.v1 Peer-reviewed version available at Fractal Fract 2019, 3, 1; doi:10.3390/fractalfract3010001 Article Regularized Integral Representations of the Reciprocal G Function Dimiter Prodanov Correspondence: Environment, Health and Safety, IMEC vzw, Kapeldreef 75, 3001 Leuven, Belgium; [email protected]; [email protected] Version December 25, 2018 submitted to Preprints 1 Abstract: This paper establishes a real integral representation of the reciprocal G function in terms 2 of a regularized hypersingular integral. The equivalence with the usual complex representation is 3 demonstrated. A regularized complex representation along the usual Hankel path is derived. 4 Keywords: gamma function; reciprocal gamma function; integral equation 5 MSC: 33B15; 65D20, 30D10 6 1. Introduction 7 Applications of the Gamma function are ubiquitous in fractional calculus and the special function 8 theory. It has numerous interesting properties summarized in [1]. It is indispensable in the theory of 9 Laplace transforms. The history of the Gamma function is surveyed in [2]. In a previous note I have 10 investigated an approach to regularize derivatives at points, where the ordinary limit diverges [5]. 11 This paper exploits the same approach for the purposes of numerical computation of singular integrals, 12 such as the Euler G integrals for negative arguments. The paper also builds on an observations in [4]. 13 The present paper proves a real singular integral representation of the reciprocal G function. The 14 algorithm is implemented in the Computer Algebra System Maxima for reference and demonstration 15 purposes.
    [Show full text]
  • The Riemann and Hurwitz Zeta Functions, Apery's Constant and New
    The Riemann and Hurwitz zeta functions, Apery’s constant and new rational series representations involving ζ(2k) Cezar Lupu1 1Department of Mathematics University of Pittsburgh Pittsburgh, PA, USA Algebra, Combinatorics and Geometry Graduate Student Research Seminar, February 2, 2017, Pittsburgh, PA A quick overview of the Riemann zeta function. The Riemann zeta function is defined by 1 X 1 ζ(s) = ; Re s > 1: ns n=1 Originally, Riemann zeta function was defined for real arguments. Also, Euler found another formula which relates the Riemann zeta function with prime numbrs, namely Y 1 ζ(s) = ; 1 p 1 − ps where p runs through all primes p = 2; 3; 5;:::. A quick overview of the Riemann zeta function. Moreover, Riemann proved that the following ζ(s) satisfies the following integral representation formula: 1 Z 1 us−1 ζ(s) = u du; Re s > 1; Γ(s) 0 e − 1 Z 1 where Γ(s) = ts−1e−t dt, Re s > 0 is the Euler gamma 0 function. Also, another important fact is that one can extend ζ(s) from Re s > 1 to Re s > 0. By an easy computation one has 1 X 1 (1 − 21−s )ζ(s) = (−1)n−1 ; ns n=1 and therefore we have A quick overview of the Riemann function. 1 1 X 1 ζ(s) = (−1)n−1 ; Re s > 0; s 6= 1: 1 − 21−s ns n=1 It is well-known that ζ is analytic and it has an analytic continuation at s = 1. At s = 1 it has a simple pole with residue 1.
    [Show full text]
  • Bernstein's Analytic Continuation of Complex Powers of Polynomials
    Bernsteins analytic continuation of complex p owers c Paul Garrett garrettmathumnedu version January Analytic continuation of distributions Statement of the theorems on analytic continuation Bernsteins pro ofs Pro of of the Lemma the Bernstein p olynomial Pro of of the Prop osition estimates on zeros Garrett Bernsteins analytic continuation of complex p owers Let f b e a p olynomial in x x with real co ecients For complex s let n s f b e the function dened by s s f x f x if f x s f x if f x s Certainly for s the function f is lo cally integrable For s in this range s we can dened a distribution denoted by the same symb ol f by Z s s f x x dx f n R n R the space of compactlysupp orted smo oth realvalued where is in C c n functions on R s The ob ject is to analytically continue the distribution f as a meromorphic distributionvalued function of s This typ e of question was considered in several provo cative examples in IM Gelfand and GE Shilovs Generalized Functions volume I One should also ask ab out analytic continuation as a temp ered distribution In a lecture at the Amsterdam Congress IM Gelfand rened this question to require further that one show that the p oles lie in a nite numb er of arithmetic progressions Bernstein proved the result in under a certain regularity hyp othesis on the zeroset of the p olynomial f Published in Journal of Functional Analysis and Its Applications translated from Russian The present discussion includes some background material from complex function theory and
    [Show full text]
  • [Math.AG] 2 Jul 2015 Ic Oetime: Some and Since Time, of People
    MONODROMY AND NORMAL FORMS FABRIZIO CATANESE Abstract. We discuss the history of the monodromy theorem, starting from Weierstraß, and the concept of monodromy group. From this viewpoint we compare then the Weierstraß, the Le- gendre and other normal forms for elliptic curves, explaining their geometric meaning and distinguishing them by their stabilizer in PSL(2, Z) and their monodromy. Then we focus on the birth of the concept of the Jacobian variety, and the geometrization of the theory of Abelian functions and integrals. We end illustrating the methods of complex analysis in the simplest issue, the difference equation f(z)= g(z + 1) g(z) on C. − Contents Introduction 1 1. The monodromy theorem 3 1.1. Riemann domain and sheaves 6 1.2. Monodromy or polydromy? 6 2. Normalformsandmonodromy 8 3. Periodic functions and Abelian varieties 16 3.1. Cohomology as difference equations 21 References 23 Introduction In Jules Verne’s novel of 1874, ‘Le Tour du monde en quatre-vingts jours’ , Phileas Fogg is led to his remarkable adventure by a bet made arXiv:1507.00711v1 [math.AG] 2 Jul 2015 in his Club: is it possible to make a tour of the world in 80 days? Idle questions and bets can be very stimulating, but very difficult to answer when they deal with the history of mathematics, and one asks how certain ideas, which have been a common knowledge for long time, did indeed evolve and mature through a long period of time, and through the contributions of many people. In short, there are three idle questions which occupy my attention since some time: Date: July 3, 2015.
    [Show full text]
  • Chapter 4 the Riemann Zeta Function and L-Functions
    Chapter 4 The Riemann zeta function and L-functions 4.1 Basic facts We prove some results that will be used in the proof of the Prime Number Theorem (for arithmetic progressions). The L-function of a Dirichlet character χ modulo q is defined by 1 X L(s; χ) = χ(n)n−s: n=1 P1 −s We view ζ(s) = n=1 n as the L-function of the principal character modulo 1, (1) (1) more precisely, ζ(s) = L(s; χ0 ), where χ0 (n) = 1 for all n 2 Z. We first prove that ζ(s) has an analytic continuation to fs 2 C : Re s > 0gnf1g. We use an important summation formula, due to Euler. Lemma 4.1 (Euler's summation formula). Let a; b be integers with a < b and f :[a; b] ! C a continuously differentiable function. Then b X Z b Z b f(n) = f(x)dx + f(a) + (x − [x])f 0(x)dx: n=a a a 105 Remark. This result often occurs in the more symmetric form b Z b Z b X 1 1 0 f(n) = f(x)dx + 2 (f(a) + f(b)) + (x − [x] − 2 )f (x)dx: n=a a a Proof. Let n 2 fa; a + 1; : : : ; b − 1g. Then Z n+1 Z n+1 x − [x]f 0(x)dx = (x − n)f 0(x)dx n n h in+1 Z n+1 Z n+1 = (x − n)f(x) − f(x)dx = f(n + 1) − f(x)dx: n n n By summing over n we get b Z b X Z b (x − [x])f 0(x)dx = f(n) − f(x)dx; a n=a+1 a which implies at once Lemma 4.1.
    [Show full text]
  • 2 Values of the Riemann Zeta Function at Integers
    MATerials MATem`atics Volum 2009, treball no. 6, 26 pp. ISSN: 1887-1097 2 Publicaci´oelectr`onicade divulgaci´odel Departament de Matem`atiques MAT de la Universitat Aut`onomade Barcelona www.mat.uab.cat/matmat Values of the Riemann zeta function at integers Roman J. Dwilewicz, J´anMin´aˇc 1 Introduction The Riemann zeta function is one of the most important and fascinating functions in mathematics. It is very natural as it deals with the series of powers of natural numbers: 1 1 1 X 1 X 1 X 1 ; ; ; etc. (1) n2 n3 n4 n=1 n=1 n=1 Originally the function was defined for real argu- ments as Leonhard Euler 1 X 1 ζ(x) = for x > 1: (2) nx n=1 It connects by a continuous parameter all series from (1). In 1734 Leon- hard Euler (1707 - 1783) found something amazing; namely he determined all values ζ(2); ζ(4); ζ(6);::: { a truly remarkable discovery. He also found a beautiful relationship between prime numbers and ζ(x) whose significance for current mathematics cannot be overestimated. It was Bernhard Riemann (1826 - 1866), however, who recognized the importance of viewing ζ(s) as 2 Values of the Riemann zeta function at integers. a function of a complex variable s = x + iy rather than a real variable x. Moreover, in 1859 Riemann gave a formula for a unique (the so-called holo- morphic) extension of the function onto the entire complex plane C except s = 1. However, the formula (2) cannot be applied anymore if the real part of s, Re s = x is ≤ 1.
    [Show full text]
  • Introduction to Analytic Number Theory More About the Gamma Function We Collect Some More Facts About Γ(S)
    Math 259: Introduction to Analytic Number Theory More about the Gamma function We collect some more facts about Γ(s) as a function of a complex variable that will figure in our treatment of ζ(s) and L(s, χ). All of these, and most of the Exercises, are standard textbook fare; one basic reference is Ch. XII (pp. 235–264) of [WW 1940]. One reason for not just citing Whittaker & Watson is that some of the results concerning Euler’s integrals B and Γ have close analogues in the Gauss and Jacobi sums associated to Dirichlet characters, and we shall need these analogues before long. The product formula for Γ(s). Recall that Γ(s) has simple poles at s = 0, −1, −2,... and no zeros. We readily concoct a product that has the same behavior: let ∞ 1 Y . s g(s) := es/k 1 + , s k k=1 the product converging uniformly in compact subsets of C − {0, −1, −2,...} because ex/(1 + x) = 1 + O(x2) for small x. Then Γ/g is an entire function with neither poles nor zeros, so it can be written as exp α(s) for some entire function α. We show that α(s) = −γs, where γ = 0.57721566490 ... is Euler’s constant: N X 1 γ := lim − log N + . N→∞ k k=1 That is, we show: Lemma. The Gamma function has the product formulas ∞ N ! e−γs Y . s 1 Y k Γ(s) = e−γsg(s) = es/k 1 + = lim N s . (1) s k s N→∞ s + k k=1 k=1 Proof : For s 6= 0, −1, −2,..., the quotient g(s + 1)/g(s) is the limit as N→∞ of N N ! N s Y 1 + s s X 1 Y k + s e1/k k = exp s + 1 1 + s+1 s + 1 k k + s + 1 k=1 k k=1 k=1 N ! N X 1 = s · · exp − log N + .
    [Show full text]