Valeria M. Csizmadia - Budai

Total Page:16

File Type:pdf, Size:1020Kb

Valeria M. Csizmadia - Budai PHENOLIC CONSTITUENTS of WESTERN HEMLOCK WOOD (Tsuga Heterophylla (Raf.) Sarg.) by VALERIA M. CSIZMADIA - BUDAI Dipl. Chem. Eng. Polytechnical University of Budapest, 1956 A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of CHEMISTRY We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA December 1961 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of C\-«^^J^*r-^^ The University of British Columbia, Vancouver 8, Canada. Date 2-l> ^^-^^o-^r—y^ ^ nk'iL, (ii) . ABSTRACT The phenolic extractives from western hemlock wood (Tsuga heterophylla (Raf.) Sar.) have been examined The total extractive content of the wood amounted to 1.5$ of the dry weight. A leucoanthocyanidin and two lignans, conidendrin and hydroxymatairesinol, were isolated from the phenolic fraction by precipitation of a methanol solution into peroxide-free ether followed by separation on silicic acid-calcium sulphate chromatobars. The pigment produced by acid treatment of the isolated leucoantho• cyanidin was shown by spectral studies and alkaline degradation to be a mixture of cyanidin and an unidentified anthocyanidin. The two anthocyanidins had identical R^ values in different solvents and similar ultra-violet spectra in ethanol-hydrochloric acid solution but the shift of the absorption maxima caused by addition of aluminium chloride was negligible in the case of the unknown compound and amounted to 30 mji for cyanidin. Similar separations of the absorption maxima after complexing with aluminium ion were observed with the 3-methyl and 3-isopropyl ethers of the two anthocyanidins. The alkaline degradation products from the leucoanthocyanidin contained protocatechuic acid but no phloroglucinol. Degradation products of phloroglucinol, however, were present in the reaction mixture. These results suggested that the leuco• anthocyanidin occurred in the wood in dimeric form and that alkaline degradation of this structure produced a symmetrical hexahydroxyhenzophenone derivative which split up directly into fragments identical to those obtained from phloro• glucinol under the same conditions. New information on the structure of hydroxymatairesinol was obtained by comparison of the infrared spectra of the fully acetylated hydroxymatairesinol with that of the reduced compound and by neutral potassium permanganate oxidation of trimethylhydroxymatairesinol. The results obtained were in good (iii) agreement with only one of the two structures previously proposed for hydroxymatairesinol by other workers. The NMR spectra of hydroxymatairesinol and structurally related com• pounds were compared, but the interpretation of the spectrum of hydroxy• matairesinol proved to be difficult because broad, incompletely resolved lines were obtained due to the complexity and asymmetry of the molecule. (iv) ACKNOWLEDGEMENTS I would like to express my sincere thanks and appreciation to Dr. L. D. Hayward for his help and encouragement during the course of the research and the preparation of this thesis. I wish to thank the following for gifts of chemicals: Professor T. R. Seshadri, University of Delhi; Dr. J. A. F. Gardner and Mr. G. Barton, Forest Products Laboratory, Vancouver, B. C; Dr. H. L. Hergert, Rayonier Corporation Shelton, Washington; •"•Dr/'Rj. .iD. Bennett, Du Pont Company of Canada, Montreal; Dr. J. L. Keays, .Powell River Company, B. C; Dr. K. G. Booth, Crown-Zellerbach Corporation, Camas, Washington; Dr. A. S. Gregory, Weyerhauser Timber Company, Longview, Washington; Dr. E. L. Lovell, Alaska Pine and Cellulose Company, Vancouver, B.C. I wish also to express my thanks to Dr. D. McGreer, of this Department for his help in the analysis of NMR spectra, to Mr. B. I. Nist, Department of Chemistry, University of Washington, Seattle, for taking the NMR measurements, and to Drs.O. Goldschmid and H. L. Hergert for the opportunity to read the---- manuscript of their paper on hemlock lignin precursors in advance of publication. (v) TABLE OF CONTENTS TITLE PAGE (i) ABSTRACT (ii) ACKNOWLEDGEMENTS (iv) TABLE OF CONTENTS (v) LIST OF FIGURES (vii) LIST OF TABLE (ix) GENERAL INTRODUCTION 1 The Chemical Constitution of Wood '2 HISTORICAL INTRODUCTION 6 Leucoanthocyan(id)ins 7 Lignans 17 I. The Chemistry of Conidendrin 21 II. The Chemistry of Matairesinol 23 III. The Stereochemistry of Conidendrin and Matairesinol .. 27 IV. The Chemistry of Hydroxymatairesinol 29 V. The Lignan-Lignin Interrelationship in Biosynthesis .. 32 RESULTS AND DISCUSSION 36 I. Isolation of Phenolic Constituents form Western Hemlock Wood 37 II. Hemlock Leucoanthocyanidin 38 III. Hemlock Lignans 5^ A. Separation of Lignans 5k B. Structural Analysis of Hydroxymatairesinol (HMR).- 63 SUGGESTIONS FOR, FURTHER WORK 72 I. Leucoanthocyanidins 73 II. Lignans 73 EXPERIMENTAL 79 I. Materials 80 A. Solvents 80 B. Reagents 80 C. Reference Compounds 8l (vi) II. Analyses 8k A. Melting Points 8k B. Methoxyl Determination 8k C. Specific Rotation 8k D. Colour Tests 8k III. Spectra 86 A. Ultraviolet Spectra 86 B. Infrared Spectra 86 C. Nuclear Magnetic Resonance Spectra 86 IV. Chromatography 87 V. Extraction of Western Hemlock Wood 92 A. Collection and Preparation of Wood Samples 92 B. Extraction of Fats, Waxes, and Related Compounds. 93 C. Extraction of Phenolic Constituents 95 VI. Separation of Lignans on Cylindrical Chromatobars .. 99 VII. Reaction and Derivatives .' 105 A. Western Hemlock Leucoanthocyanidin 105 (i) Attempted Isolation of Anthocyanidin... 105 (ii) Alkaline Degradation of Hemlock Leucoanthocyanidin 105 B. Lignans 106 (i) Tri-0-acetyl-hydroxymatairesinol 106 (ii) Tri-O-benzoyl-hydroxymatairesinol 106 (iii) Reduction of Hydroxymatairesinol 106 (iv) Acetylation of Reduced HydroxymataireT sinol 106 (v) Conversion of Hydroxymatairesinol to ' Conidendrin 107 (vi) Dimethylhydroxymatairesinol 107 (vii) Trimethylhydroxymatairesinol 107 (viii) Potassium Permanganate Oxidation of Trimethylhydroxymatairesinol and Related Compounds 107 APPENDICES Ill I. Calculation of the Proton Nuclear Resonance Shielding Values (T) Ill II. Infrared Spectra Ilk REFERENCES 120 (vii) LIST OF FIGURES 1. The Range of Oxidation Level in the C-^ Group of Flavonoids .. 5 2. Synthesis of Dimethyl Aromatized LIX 2h 3- Synthesis of Dimethyl Aromatized LX 26 h. Rf values of Cyanidin and Its Derivatives Obtained by Acid Treatment of the Leucoanthocyanidin of Hemlock Wood in Various Solvents 39 5- Absorption Spectra of Dahlia (D) and Synthetic (S) Cyanidin and Their Aluminium Complexes 1+3 6. Absorption Spectra of Wood Anthocyanidin (W) and Aluminium Complexed Wood Anthocyanidin (c) hk 7- Absorption Spectra of the 3-Isopropyl Ether of the Wood Antho• cyanidin (PW) and the Corresponding Aluminium Complex (CPW) . 1+5 8. Difference Spectrum of Hemlock Anthocyanidin 1+6 9. Paperchromatogram of the Alkaline Degradation Products 1+8 10. Proposed Alkaline Degradation of a Dimeric Leucoanthocyanidin. 50 i 11. Suggested Structure and Degradation Products of Hemlock Leucoanthocyanidin 53 12. Separation of Lignans with Time of Development 55 13• Separation of Lignans by Two-dimensional Chromatography 57 Ik. Separation of Lignans by Counter-current Distribution 59 15- Thin Layer Chromatography of Lignans in Solvent S-2k 60 l6. Separation of Conidendrin and Hydroxymatairesinol on Chromatobars , 62 17- Infrared Spectra of Hydroxymatairesinol and Derivatives 66 18. Infrared Spectra of HMR, Reduced HMR, and Their Acetate Derivatives 68 19• Nuclear Magnetic Resonance Spectra of HMR and Structurally Related Known Compounds 69 20. Suggested Synthetic Route A to Dimethyl Hydroxymatairesinol. 75 21. Suggested Synthetic Route B to Dimethyl Hydroxymatairesinol . 77 22. Distributor for Chromatobars 91 (viii) 23. Two Kilogram Capacity Extractor 9^ 2k. Fractionation of the Methanol Extract of Hemlock Wood 96 25 • First Separation of Fraction C on Chromatobars 101 26. Combined Fractions I to IV of Lignans from First Chromatobar Separation 102 21. Thin Layer Chromatography of Fractions from Chromatobars I to II 103 28. Thin Layer Chromatography of Fractions from Chromatobars III and IV 10k 29. Infrared Spectra of Lignans from Hemlock Wood 115 30. Infrared Spectra of Hydroxymatairesinol (HMR) and HMR-benzoate. Il6 31. Infrared Spectra of HMR and Derivatives 117 32. Infrared Spectra of Hemlock Leucoanthocyanidin and Related Compounds 118 (ix) LIST OF TABLES I. Percentage Composition of Typical Plants 3 II. Leucoanthocyanidins 8 III. Lignans 20 LIV. Rf Values of Anthocyanidins from Hemlock Wood Prepared in Various Solvents 40 V. Absorption Maxima of Anthocyanidin hi VI. Alkaline Degradation Products 49 VII. R„ Values of Lignans in the Methanol Extract of Hemlock Wood 54 rV VIII. Colors and Rf Values of Lignans in TLC with Three Different Spray Reagen ts 6l IX. Chromatographic Tests of Hydroxymatairesinol (HMR) 63 X. Supporting Materials and Adsorbents for Chromatography 88 XI. Solvents for Chromatography 89 XII. Spray Reagents for Chromatography 90 XIII. Composition and Dimensions of Chromatoplates and Chromatobars 90 XIV.
Recommended publications
  • Wo 2007/133479 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 22 November 2007 (22.11.2007) PCT WO 2007/133479 A2 (51) International Patent Classification: Not classified (74) Agent: GODLEWSKI, Richard, J.; P.O. Box 2269, Bloomington, IN 47402-2269 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2007/0 10828 kind of national protection available): AE, AG, AL, AM, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, (22) International Filing Date: 4 May 2007 (04.05.2007) CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, (25) Filing Language: English IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, MX, (26) Publication Language: English MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, (30) Priority Data: TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW 60/799,608 10 May 2006 (10.05.2006) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicants (for all designated States except US): COOK GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, INCORPORATED [US/US]; 750 North Daniel's Way, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), P.O.
    [Show full text]
  • Sources of Crude Drug, Plant Families, Biogenesis of Phytochemicals
    1 Sources of Crude Drug, Plant Families, Biogenesis of Phytochemicals SOURCES OF CRUDE DRUG Plant Oldest source of drugs. 25% of the drugs prescribed worldwide come from plants More than 200 drugs considered as basic and essential by the World Health Organisation (WHO) Significant number of synthetic drugs obtained from natural precursors. Example: Digoxin from Digitalis species, quinine and quinidine from Cinchona species, vincristrine and vinblastine from Catharanthus roseus, atropine from Atropa belladonna and morphine and codeine from Papaver somniferum. Animal Second largest source of crude drugs. Example: Honey from honeybee, beeswax from bees, cod liver oil from shark, bufalin from toad, animal pancreas is a source of Insulin, musk oil from musk, spermaceti wax from sperm whale, woolfat from sheep, carminic acid from colchineal, venoms from snake Mineral Highly purified form of naturally occurring mineral substances is used in medicine Example: Sulphur is a key ingredient in certain bacteriostatic drugs, shilajit is used as tonic, calamine is used as anti-itching agent Marine Major part of earth is covered with water bodies and hence bioactive compounds from marine flora and fauna (microorganisms, algae, fungi, invertebrates, and 1 Contd… 2 Pharmacognosy and Phytochemistry: A Companion Handbook vertebrates) have extensive past and present use in the treatment of many diseases Marine Serve as compounds of interest both in their natural form and as templates for synthetic modification. Several molecules isolated from various
    [Show full text]
  • Phenolic Compounds in Cereal Grains and Their Health Benefits
    and antioxidant activity are reported in the Phenolic Compounds in Cereal literature. Unfortunately, it is difficult to make comparisons of phenol and anti- Grains and Their Health Benefits oxidant activity levels in cereals since different methods have been used. The ➤ Whole grain cereals are a good source of phenolics. purpose of this article is to give an overview ➤ Black sorghums contain high levels of the unique 3-deoxyanthocyanidins. of phenolic compounds reported in whole ➤ Oats are the only source of avenanthramides. grain cereals and to compare their phenol and antioxidant activity levels. ➤ Among cereal grains, tannin sorghum and black rice contain the highest antioxidant activity in vitro. Phenolic Acids Phenolic acids are derivatives of benzoic and cinnamic acids (Fig. 1) and are present in all cereals (Table I). There are two Most of the literature on plant phenolics classes of phenolic acids: hydroxybenzoic L. DYKES AND L. W. ROONEY focuses mainly on those in fruits, acids and hydroxycinnamic acids. Hy- TEXAS A&M UNIVERSITY vegetables, wines, and teas (33,50,53,58, droxybenzoic acids include gallic, p- College Station, TX 74). However, many phenolic compounds hydroxybenzoic, vanillic, syringic, and in fruits and vegetables (i.e., phenolic acids protocatechuic acids. The hydroxycinna- esearch has shown that whole grain and flavonoids) are also reported in cereals. mic acids have a C6-C3 structure and Rconsumption helps lower the risk of The different species of grains have a great include coumaric, caffeic, ferulic, and cardiovascular disease, ischemic stroke, deal of diversity in their germplasm sinapic acids. The phenolic acids reported type II diabetes, metabolic syndrome, and resources, which can be exploited.
    [Show full text]
  • Cloning and Functional Characterization of Dihydroflavonol
    International Journal of Molecular Sciences Article Cloning and Functional Characterization of Dihydroflavonol 4-Reductase Gene Involved in Anthocyanidin Biosynthesis of Grape Hyacinth 1,2, 2,3, 1,2 1,2 1,2 Hongli Liu y, Qian Lou y, Junren Ma , Beibei Su , Zhuangzhuang Gao and Yali Liu 1,2,* 1 College of Landscape Architecture and Arts, Northwest A & F University, Yangling 712100, China; [email protected] (H.L.); [email protected] (J.M.); [email protected] (B.S.); [email protected] (Z.G.) 2 State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling 712100, China; [email protected] 3 College of Horticulture, Northwest A & F University, Yangling 712100, China * Correspondence: [email protected]; Tel.: +86-139-9187-9060 These authors contributed equally to this work. y Received: 12 August 2019; Accepted: 19 September 2019; Published: 24 September 2019 Abstract: Grape hyacinth (Muscari spp.) is a popular ornamental plant with bulbous flowers noted for their rich blue color. Muscari species have been thought to accumulate delphinidin and cyanidin rather than pelargonidin-type anthocyanins because their dihydroflavonol 4-reductase (DFR) does not efficiently reduce dihydrokaempferol. In our study, we clone a novel DFR gene from blue flowers of Muscari. aucheri. Quantitative real-time PCR (qRT-PCR) and anthocyanin analysis showed that the expression pattern of MaDFR had strong correlations with the accumulation of delphinidin, relatively weak correlations with cyanidin, and no correations with pelargonidin. However, in vitro enzymatic analysis revealed that the MaDFR enzyme can reduce all the three types of dihydroflavonols (dihydrokaempferol, dihydroquercetin, and dihydromyricetin), although it most preferred dihydromyricetin as a substrate to produce leucodelphinidin, the precursor of blue-hued delphinidin.
    [Show full text]
  • The Science of Flavonoids the Science of Flavonoids
    The Science of Flavonoids The Science of Flavonoids Edited by Erich Grotewold The Ohio State University Columbus, Ohio, USA Erich Grotewold Department of Cellular and Molecular Biology The Ohio State University Columbus, Ohio 43210 USA [email protected] The background of the cover corresponds to the accumulation of flavonols in the plasmodesmata of Arabidopsis root cells, as visualized with DBPA (provided by Dr. Wendy Peer). The structure corresponds to a model of the Arabidopsis F3 'H enzyme (provided by Dr. Brenda Winkel). The chemical structure corresponds to dihydrokaempferol. Library of Congress Control Number: 2005934296 ISBN-10: 0-387-28821-X ISBN-13: 978-0387-28821-5 ᭧2006 Springer ScienceϩBusiness Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer ScienceϩBusiness Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America (BS/DH) 987654321 springeronline.com PREFACE There is no doubt that among the large number of natural products of plant origin, debatably called secondary metabolites because their importance to the eco- physiology of the organisms that accumulate them was not initially recognized, flavonoids play a central role.
    [Show full text]
  • Anthocyanin Pigments: Beyond Aesthetics
    molecules Review Anthocyanin Pigments: Beyond Aesthetics , Bindhu Alappat * y and Jayaraj Alappat y Warde Academic Center, St. Xavier University, 3700 W 103rd St, Chicago, IL 60655, USA; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Academic Editor: Pasquale Crupi Received: 29 September 2020; Accepted: 19 November 2020; Published: 24 November 2020 Abstract: Anthocyanins are polyphenol compounds that render various hues of pink, red, purple, and blue in flowers, vegetables, and fruits. Anthocyanins also play significant roles in plant propagation, ecophysiology, and plant defense mechanisms. Structurally, anthocyanins are anthocyanidins modified by sugars and acyl acids. Anthocyanin colors are susceptible to pH, light, temperatures, and metal ions. The stability of anthocyanins is controlled by various factors, including inter and intramolecular complexations. Chromatographic and spectrometric methods have been extensively used for the extraction, isolation, and identification of anthocyanins. Anthocyanins play a major role in the pharmaceutical; nutraceutical; and food coloring, flavoring, and preserving industries. Research in these areas has not satisfied the urge for natural and sustainable colors and supplemental products. The lability of anthocyanins under various formulated conditions is the primary reason for this delay. New gene editing technologies to modify anthocyanin structures in vivo and the structural modification of anthocyanin via semi-synthetic methods offer new opportunities in this area. This review focusses on the biogenetics of anthocyanins; their colors, structural modifications, and stability; their various applications in human health and welfare; and advances in the field. Keywords: anthocyanins; anthocyanidins; biogenetics; polyphenols; flavonoids; plant pigments; anthocyanin bioactivities 1. Introduction Anthocyanins are water soluble pigments that occur in most vascular plants.
    [Show full text]
  • Problems Encountered in Measuring the Leucoanthocyanin Content of Pears
    AN ABSTRACT OF THE THESIS OF RENATA MAE URY for the M. S. in Foods and Nutrition (Name) (Degree) (Major) Date thesis is presented Q/zA/ 3-3L /9£V Title PROBLEMS ENCOUNTERED IN MEASURING THE LEUCO- ANTHOCYANIN CONTENT OF PEARS Abstract approved (Major professor) (T^ This study explored some of the difficulties involved in measur- ing the leucoanthocyanin content of Bartlett pears by a currently used method which involves extracting the leucoanthocyanin from the plant tissue, converting it to anthocyanidin and measuring the resulting pigment colorimetrically. Both the extraction and the conversion of leucoanthocyanin were investigated. (ethaholic) The effectiveness of five solvents, 70% acetone^ 95% ethanol, methanol, 40% aqueous acetone and 0. 1 N HCl in 40% aqueous acetone, was studied. Acetone extracted approximately 60% of the leucoantho- cyanin, ethanol extracted one-fourth and methanol extracted one- third. The conversion was studied by varying the normality of the de- veloper (HCl in n-butanol), the dispersing medium and the source of leucoanthocyanin (marc, slurry or synthetic leucocyanidin). The conversion appeared to be dependent on interrelations among all three of these factors. For developing the anthocyanidin from marc previously extracted with ethanol, a combination of a dispersing medium of 70% acetone and a normality of 0. 6 was better than ethanol and a normality of either 0. 025 or 0. 6. Seventy percent acetone and 0. 025 N gave the small- est conversion. For developing the anthocyanidin from the slurries, 0. 025 N HC1 in n-butanol was used, as browning occurred due to phlobaphene formation with higher normalities. This normality plus a dispersing medium of 70% acetone gave greater yields of anthocyani- din than did ethanol, methanol or aqueous acetone and 0.
    [Show full text]
  • Molecular Sciences Managing Phenol Contents in Crop Plants By
    Int. J. Mol. Sci. 2010, 11, 807-857; doi:10.3390/ijms11030807 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Managing Phenol Contents in Crop Plants by Phytochemical Farming and Breeding—Visions and Constraints Dieter Treutter Unit Fruit Science, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Dürnast 2, D-85354 Freising, Germany; E-Mail: [email protected]; Tel.: +49-8161-713-753 Received: 15 January 2010; in revised form: 2 February 2010 / Accepted: 3 February 2010 / Published: 2 March 2010 Abstract: Two main fields of interest form the background of actual demand for optimized levels of phenolic compounds in crop plants. These are human health and plant resistance to pathogens and to biotic and abiotic stress factors. A survey of agricultural technologies influencing the biosynthesis and accumulation of phenolic compounds in crop plants is presented, including observations on the effects of light, temperature, mineral nutrition, water management, grafting, elevated atmospheric CO2, growth and differentiation of the plant and application of elicitors, stimulating agents and plant activators. The underlying mechanisms are discussed with respect to carbohydrate availability, trade-offs to competing demands as well as to regulatory elements. Outlines are given for genetic engineering and plant breeding. Constraints and possible physiological feedbacks are considered for successful and sustainable application of agricultural techniques with respect to management of plant phenol profiles and concentrations. Keywords: flavonoids; phenylpropanoids; elicitor; stress; agricultural technology; apple; tomato; strawberry; lettuce; grapevine 1. Introduction It was about 15 years ago that a booming interest in phenolic compounds, i.e., phenylpropanoids and flavonoids, started among scientists from varying research fields.
    [Show full text]
  • ( 12 ) United States Patent
    US010722444B2 (12 ) United States Patent ( 10 ) Patent No.: US 10,722,444 B2 Gousse et al. (45 ) Date of Patent : Jul. 28 , 2020 (54 ) STABLE HYDROGEL COMPOSITIONS 4,605,691 A 8/1986 Balazs et al . 4,636,524 A 1/1987 Balazs et al . INCLUDING ADDITIVES 4,642,117 A 2/1987 Nguyen et al. 4,657,553 A 4/1987 Taylor (71 ) Applicant: Allergan Industrie , SAS , Pringy (FR ) 4,713,448 A 12/1987 Balazs et al . 4,716,154 A 12/1987 Malson et al. ( 72 ) 4,772,419 A 9/1988 Malson et al. Inventors: Cécile Gousse , Dingy St. Clair ( FR ) ; 4,803,075 A 2/1989 Wallace et al . Sébastien Pierre, Annecy ( FR ) ; Pierre 4,886,787 A 12/1989 De Belder et al . F. Lebreton , Annecy ( FR ) 4,896,787 A 1/1990 Delamour et al. 5,009,013 A 4/1991 Wiklund ( 73 ) Assignee : Allergan Industrie , SAS , Pringy (FR ) 5,087,446 A 2/1992 Suzuki et al. 5,091,171 A 2/1992 Yu et al. 5,143,724 A 9/1992 Leshchiner ( * ) Notice : Subject to any disclaimer , the term of this 5,246,698 A 9/1993 Leshchiner et al . patent is extended or adjusted under 35 5,314,874 A 5/1994 Miyata et al . U.S.C. 154 (b ) by 0 days. 5,328,955 A 7/1994 Rhee et al . 5,356,883 A 10/1994 Kuo et al . (21 ) Appl . No.: 15 /514,329 5,399,351 A 3/1995 Leshchiner et al . 5,428,024 A 6/1995 Chu et al .
    [Show full text]
  • Bbm:978-3-540-73733-9/1.Pdf
    Sachverzeichnis Abelmoschus esculenta 481 Aflatoxine 449 Abelmoschus esculentus 491 Afzelechin 469 Abietinsäure 26 Agar-Agar 362, 402, 412 Acacetin 478 Agarose 412, 413 Acacia 402 Agave sisalana 69, 70 Acanthoscelides obtectus 648, 649 Aglycon 353 Acarbose 372, 399, 400, 401 Agmatin 151 ACE 292 Agnosterin 34 Acetoacetyl-ACP 575 AIDS 410 Acetobacter suboxidans 375 Ajmalicin 200 α-Acetobromglucose 355 Ajmalin 196 Acetoide 5, 43 Ajuga ripponesis 391 Acetylcholin 143ff, 148, 158, 185, 323 Ajugose 391 Acetylcholinesterase 323 Akazie 478, 481 Acetylcoenzym A 44, 376, 378, 442 aktivierte Isopren 44 N-Acetyl-Cystein 265 Alanin 254, 270, 273f, 276, 288, 315 N-Acetyl-D-glucosamin 363 β-Alanin 259 β-Acetyldigoxin 112 Albumin 308 N-Acetylmuraminsäure 363, 365 Albumine 312 O-Acetylsamandarin 234 Alcaligenes faecalis 402 Achras zapota 60 Aldonsäuren 342 Aciclovir 439 Aldosen 335 Aconitum 1 Aldosteron 76, 85, 87 ACP 575 Algin 402 Acrinomycin 260 Alginate 402, 413 Actinomadura 168 Alitam 307 Actinomycin D 306 Alkaloide 143 Actinoplanes 399 Allelopathica 180 Acyl-Carrierprotein 575 Alliin 261 Adamantoylchlorid 352 Allithiamin 426 ADD 95 Allomethylose 341 Adenin 425, 426, 430, 436, 452 Aloin 386 Adenocalymna alliaceum 478 Amanita muscaria 148 Adenosin 432 Amanita phalloides 329 Adenosintriphosphat 442 Amanita strobiliformis 261 Adhatoda vasica 192 Amanitin 329 Adonis vernalis 100, 343 Amantia mappa 148 Adonitol 343 Amaranthenol 41 Adrenalin 145, 146, 147 Amaranthöl 34, 41 Adriamycin 293, 604 AMD 40 676 Sachverzeichnis Amentoflavon 479 anomeren Effekt 339
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0224164 A1 Lebreton (43) Pub
    US 20110224164A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0224164 A1 Lebreton (43) Pub. Date: Sep. 15, 2011 (54) FLUID COMPOSITIONS FOR IMPROVING Publication Classification SKIN CONDITIONS (51) Int. Cl. (75) Inventor: Pierre F. Lebreton, Annecy (FR) 3G 0.O :08: (73) Assignee: Allergan Industrie, SAS, Pringy (FR) (52) U.S. Cl. .......................................................... 514/54 (21)21) Appl. NoNo.: 12/777,1069 (57) ABSTRACT (22) Filed: May 10, 2010 The present specification discloses fluid compositions com O O prising a matrix polymerand stabilizing component, methods Related U.S. Application Data of making Such fluid compositions, and methods of treating (60) Provisional application No. 61/313,664, filed on Mar. skin conditions in an individual using Such fluid composi 12, 2010. tions. Patent Application Publication Sep. 15, 2011 Sheet 1 of 3 US 2011/0224164 A1 girl is" . .... i E.- &;',EE 3 isre. fire;Sigis's Patent Application Publication Sep. 15, 2011 Sheet 2 of 3 US 2011/0224164 A1 Wiscosity"in a a set g : i?vs. iii.tige: ssp. r. E. site is Patent Application Publication Sep. 15, 2011 Sheet 3 of 3 US 2011/0224164 A1 Fi; ; ; ; , ; i 3 -i-...-- m M mommam mm M. M. MS ' ' s 6. ;:S - - - is : s s: s e 3. 83 8 is is a is É . ; i: ; ------es----- .- mm M. Ma Yum YM Mm - m - -W Mmm-m a 'm m - - - S. 'm - i. So m m 3 - - - - - - - - --- f ; : : ---- ' - - - - - - - - - - - - - - - . : 2. ----------- US 2011/0224164 A1 Sep. 15, 2011 FLUID COMPOSITIONS FOR IMPROVING 0004. The fluid compositions disclosed in the present SKIN CONDITIONS specification achieve this goal.
    [Show full text]
  • Chemical Synthesis of Proanthocyanidins in Vitro and Their Reactions in Aging Wines
    Molecules 2008, 13, 3007-3032; DOI: 10.3390/molecules13123007 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Chemical Synthesis of Proanthocyanidins in Vitro and Their Reactions in Aging Wines Fei He †, Qiu-Hong Pan †, Ying Shi and Chang-Qing Duan * Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, P.R. China; E-mails: [email protected] (F. H.); [email protected] (Q-H. P.); [email protected] (Y. S.) † These authors equally contributed to this work. * Author to whom correspondence should be addressed; E-mail: [email protected]; Tel: +86-10-62737136; Fax: +86-10-62737136. Received: 15 November 2008; in revised form: 26 November 2008 / Accepted: 27 November 2008 / Published: 4 December 2008 Abstract: Proanthocyanidins are present in many fruits and plant products like grapes and wine, and contribute to their taste and health benefits. In the past decades of years, substantial progresses has been achieved in the identification of composition and structure of proanthocyanidins, but the debate concerning the existence of an enzymatic or nonenzymatic mechanism for proanthocyanidin condensation still goes on. Substantial attention has been paid to elucidating the potential mechanism of formation by means of biomimetic and chemical synthesis in vitro. The present paper aims at summarizing the research status on chemical synthesis of proanthocyanidins, including non-enzymatic synthesis of proanthocyanidin precursors, chemical synthesis of proanthocyanidins with direct condensation of flavanols and stereoselective synthesis of proanthocyanidins. Proanthocyanidin-involved reactions in aging wines are also reviewed such as direct and indirect reactions among proanthocyanidins, flavanols and anthocyanins.
    [Show full text]