Acronyms, Abbreviations and Definitions

Total Page:16

File Type:pdf, Size:1020Kb

Acronyms, Abbreviations and Definitions XII. Acronyms, Abbreviations and Definitions °C Degrees Celsius µA/cm2 Micro ampere(s) per square centimeter °F Degrees Fahrenheit µg Microgram(s) D Change, delta µm Micrometer(s); micron(s) ~ Approximately µM Micromolar ≈ Equals approximately µmol Micromole(s) > Greater than µΩ-cm2 Micro-ohm(s) - square centimeter ≥ Greater than or equal to µV Micro volt(s) ” Inch(s) Ω Ohm(s) ≤ Less than or equal to Ω-cm2 Ohm-square centimeter < Less than A Ampere, amps # Number Å Angstrom 2 ½ % Percent Ao Arrhenius constant, ml/(cm -min-atm ) ® Registered trademark AAO Anodic aluminum oxide $ U.S. Dollars AB Ammonia borane, NH3BH3 1-D, 1D One-dimensional ABH2 Ammonium borohydride, NH4BH4 2-D, 2D Two-dimensional ABI Automated ball indentation; agent-based 2-FPTf 2, fluoropyridinium triflate investment 3-D, 3D Three-dimensional ABM Agent-based modeling 1Q First quarter of the fiscal year ABMS Agent-based modeling and simulation 2Q Second quarter of the fiscal year ABPBI Poly(2,5-benzimidazole) 3Q Third quarter of the fiscal year AC Activated carbon; air-cooled; alternating current 4Q Fourth quarter of the fiscal year A/C Anode/cathode 6F Hexafluorinated (biphenol A) sulfonated poly(arylene ether sulfone) ACF Activated carbon fibers 2 6FCN-x HexaFluoro bisphenol A based A/cm Amps per square centimeter disulfonated polybenzonitirle (H+ form) ACN Acetonitrile (x denotes degree of sulfonation) ACR Autothermal cyclic reforming 6FK Partially fluorinated poly(arylene ether ACS American Chemical Society ketone) AC Transit Alameda-Contra Costa Transit 6F-x HexaFluoro bisphenol A based AE Alkaline earth disulfonated polySulfone (H+ form) (x denotes degree of sulfonation) AECL Atomic Energy Canada, Limited 8YSZ 8 mol% yttria-stabilized zirconia AEO Annual Energy Outlook 11B-NMR Boron 11 nuclear magnetic resonance AER Absorption-enhanced reforming; all- electric range 19FNMR 19Fluorine nuclear magnetic resonance AES Auger electron spectroscopy α-AlH3 Alpha polymorph of aluminum hydride AFB Airfoil bearing DBa The difference in magnetic induction at high and low applied magnetic fields AFM Atomic force microscopy; anti- ferromagnetic DG Gibbs free energy of reaction AFP Automated fiber placement DH Enthalpy of reaction, Enthalpy of hydrogenation AFV Alternative fuel vehicle Ag Silver DH°f Standard heat of formation DP Pressure drop, pressure change AgCl Silver chloride λ Lambda, hydration number A-h Amp-hour µA Micro ampere(s) AIBN Azobisisobutyl nitrile FY 2009 Annual Progress Report 1523 DOE Hydrogen Program XII. Acronyms, Abbreviations and Definitions AIChE American Institute of Chemical ATP Adenosine triphosphate Engineers ATPase Adenosine triphosphatase AISI American Iron & Steel Institute ATR Autothermal reformer; autothermal AK Alkali reforming; attenuated total reflection Al Aluminum ATR-FTIR Attenuated total reflectance Fourier Al* Aluminum particles catalyzed with transform infrared titanium Au Gold Al2O3 Aluminum oxide a.u. Arbitrary units Al-AB Aluminum ammonia-borane AuS Gold sulfide AlCl3 Aluminum chloride AuSnOx Gold supported on hydrous tin oxide ALD Atomic layer deposition AuTiOx Gold supported on titanium oxide AlH3 Aluminum hydride; alane Avg Average ALS Advanced Light Source at Lawrence DBa The difference in magnetic induction at Berkeley National Laboratory high and low applied magnetic fields AM 1.5 Air Mass 1.5 solar illumination B Boron AMBH Ammine metal borohydride B2O3 Boron oxide; diboron trioxide AMR Annual merit review; active magnetic Ba Barium regenerator BAC Bond additivity correction AMRL Active magnetic regenerative liquefier barg Bar gauge ANL Argonne National Laboratory bcc Body-centered cubic ANS American Nuclear Society BCN Boron carbon nitride ANSI American National Standards Institute BCP Block copolymers 2 ½ Ao Arrhenius constant, ml/(cm -min-atm ) BDC Benzenedicarboxylate AP Advanced prototype BDS Broadband dielectric spectroscopy AP Anode polarization Be Beryllium APC Adaptive process control BeD-XRD Beryllium dome X-ray diffraction APCI, APCi Air Products and Chemicals, Inc. BES Basic Energy Sciences office within the APR Aqueous-phase reforming DOE Office of Science APRxn Aqueous phase reaction BET Brunauer-Emmett-Teller surface area APU Auxiliary power unit analysis method Ar Argon B-G Boron-doped graphitic material Arb, arb. Arbitrary B-H Borohydride; boron/hydrogen bond ARET Alternative and renewable energy BH4 Borohydride technologies Bi Bismuth As Arsenic BILI Bio-derived liquid fuels a-Si Amorphous silicon BisSF Bisphenol-Sulfone a-SiC Amorphous silicon carbide BM Ball-milled; ball mill a-SiGe Amorphous silicon germanium BMG Bulk metallic glasses ASM American Society of Metals bmimBF4 1-butyl-3-methyl-imidazolium ASME American Society of Mechanical tetrafluoroborate Engineers bmimCl 1-butyl-3-methyl-imidazolium chloride ASPEN Modeling software, computer code for BmimOTf 1-butyl-3-methyl-imidazolium triflate process analysis bmimPF6 1-butyl-3-methyl-imidazolium ASR Area-specific resistance hexafluorophosphate ASTM ASTM International BMPFFP 1-butyl-1-methyl-pyrrolidinium AT Ammonia triborane tris(pentafluoroethyl)trifluorophosphate at% Atomic percent BN Boron-nitrogen atm Atmosphere BNHx Dehydrogenated ammonia-borane DOE Hydrogen Program 1524 FY 2009 Annual Progress Report XII. Acronyms, Abbreviations and Definitions BNL Brookhaven National Laboratory C3H8 Propane BNNT Boron nitride nanotubes C&S Codes and Standards B-O Any oxidized boron species, borate Ca Calcium Boc Tert-butoxycarbonyl CA Carbon aerogel B(OH)3 Boric acid CaBr2 Calcium bromide BOL Beginning of life CaCO3 Calcium carbonate BOMD Born-Oppenheimer Molecular Dynamics CAD Computer-aided design BOP, BoP Balance of plant CAE Computer-assisted engineering 11B-NMR Boron 11 nuclear magnetic resonance CaFCP California Fuel Cell Partnership BP Formerly British Petroleum, British CAFE Corporate Average Fuel Economy Petroleum America Production Company CaI Clostridium acetobutylicum hydrogenase BPDC Biphenyldicarboxylate CALPHAD Calculation of phase diagrams bpe Bis(4-pyridyl)ethane Caltech California Institue of Technology BPEE 1,2-bipyridylethene CaO Calcium oxide BPP Bipolar plate CARB California Air Resources Board BPPPO Biphenol-based phenyl phosphine oxide CaS Calcium sulfide BPPPO-35 Biphenol-based phenyl phosphine CBM Conduction band minimum oxide copolymer, 35% molar fraction CBN Carbon-boron-nitrogen of disulfonic acid unit (35% level of sulfonation) CBS Casa Bonita strain; complete basis set BPS Ballard Power Systems; bi phenyl sulfone cc Cubic centimeter(s) BPS100 Fully disulfonated poly(arylene ether CCA Charge control agent sulfone) CCAT Connecticut Center for Advanced BPSH Block polysulfone ether polymers; bi Technology, Inc. phenyl sulfone: H form CCD Charge-coupled device BPSH-x BiPhenyl based disulfonated polySulfone cCH2 Cryo-compressed hydrogen (H+ form) (x denotes degree of CCM Catalyst-coated membrane; coordinate sulfonation) measuring machine BPSH-30 Biphenyl sulfone H form, 30% molar cc/min Cubic centimeters per minute fraction of disulfonic acid unit (30% level ccp Cubic close-packing of sulfonation) CCSD(T) Coupled cluster theory with single and BPVE Perfluorocyclobutane-biphenyl vinyl double excitations plus a perturbative ether correction for triple excitations BPVE-6F Perfluorocyclobutane-biphenyl vinyl Cd Cadmium ether hexafluoroisopropylidene CD Compact disk; charge depleting; cathode BPy 2,2’-bipyridine dewpoint BPY 4,4’-bypyridine CDC Carbide-derived carbon Br Bromine cDNA Complementary DNA Br Diatomic bromine 2 CDO Code development organization BSC Bi-electrode supported cell CDP Composite data product BTB 1,3,5-benzenetribenzoate CdS Cadmium sulfide BTU, Btu British thermal unit(s) Ce Cerium Bu SnCl Tributyltin chloride 3 CEA Commissariat à l’Énergie Atomique Bu SnSnBu Hexabutyldistannane 3 3 CEMM Compressor-expander motor module BV Benzyl viologen CeO2 Ceric oxide BxHy Polyhedral boranes CEQA California Environmental Quality Act C Carbon; Couloumb; coulomb CF Carbon fiber; carbon foam C H Ethylene 2 4 CFC Chlorofluorocarbon C2H6 Ethane FY 2009 Annual Progress Report 1525 DOE Hydrogen Program XII. Acronyms, Abbreviations and Definitions CFCC Colorado Fuel Cell Center COS Carbon oxysulfide; carbonyl sulfide CFD Computational fluid dynamics COSMO/RS COnductor like Screening MOdel CFM, cfm Cubic feet per minute for Realistic Solvents (computational method) CGM Charge-generating material CoT City of Taylor CGO Cerium gadolinium oxide, CoTMPP Cobalt tetramethoxyphenyl porphyrin Gd-doped CeO2 CGS Copper gallium diselenide CoTPP Cobalt tetraphenyl porphyrin COx Oxides of carbon CGSe2 Copper gallium diselenide CH Hydrogenated graphene cp Specific heat CPO Coordination polymer Oslo CH2 Compressed hydrogen gas CPO, CPOX Catalytic partial oxidation CH4 Methane CHHP Combined heat, hydrogen, and power CP-Ti Commercially pure titanium Chl Chlorophyll CPU Computer processing unit CHP Combined heat and power Cr Chromium CHSCoE Chemical Hydrogen Storage Center of CRBJT Combined reverse-Brayton Joule- Excellence Thompson CI Compression ignition CRW Clipped random wave CIGS Copper indium gallium diselenide Cs Cesium CS Charge sustaining CIGSe2 Copper indium gallium diselenide CIRRUS Cell Ice Regulation & Removal Upon CSA Canadian Standards Association; cell Start-up stack assembly CIS CuInSe (alloy of copper, indium, and CSD Compression-storage-delivery selenium) CSM Colorado School of Mines; combined Cl Chlorine structure & material cm Centimeter CSR Catalytic steam reforming; compressive stress relaxation cm2 Square centimeter
Recommended publications
  • Densifying Metal Hydrides with High Temperature and Pressure
    3,784,682 United States Patent Office Patented Jan. 8, 1974 feet the true density. That is, by this method only theo- 3,784,682 retical or near theoretical densities can be obtained by DENSIFYING METAL HYDRIDES WITH HIGH making the material quite free from porosity (p. 354). TEMPERATURE AND PRESSURE The true density remains the same. Leonard M. NiebylsM, Birmingham, Mich., assignor to Ethyl Corporation, Richmond, Va. SUMMARY OF THE INVENTION No Drawing. Continuation-in-part of abandoned applica- tion Ser. No. 392,370, Aug. 24, 1964. This application The process of this invention provides a practical Apr. 9,1968, Ser. No. 721,135 method of increasing the true density of hydrides of Int. CI. COlb 6/00, 6/06 metals of Groups II-A, II-B, III-A and III-B of the U.S. CI. 423—645 8 Claims Periodic Table. More specifically, true densities of said 10 metal hydrides may be substantially increased by subject- ing a hydride to superatmospheric pressures at or above ABSTRACT OF THE DISCLOSURE fusion temperatures. When beryllium hydride is subjected A method of increasing the density of a hydride of a to this process, a material having a density of at least metal of Groups II-A, II-B, III-A and III-B of the 0.69 g./cc. is obtained. It may or may not be crystalline. Periodic Table which comprises subjecting a hydride to 15 a pressure of from about 50,000 p.s.i. to about 900,000 DESCRIPTION OF THE PREFERRED p.s.i. at or above the fusion temperature of the hydride; EMBODIMENT i.e., between about 65° C.
    [Show full text]
  • Thermodynamic Hydricity of Small Borane Clusters and Polyhedral Closo-Boranes
    molecules Article Thermodynamic Hydricity of Small Borane Clusters y and Polyhedral closo-Boranes Igor E. Golub 1,* , Oleg A. Filippov 1 , Vasilisa A. Kulikova 1,2, Natalia V. Belkova 1 , Lina M. Epstein 1 and Elena S. Shubina 1,* 1 A. N. Nesmeyanov Institute of Organoelement Compounds and Russian Academy of Sciences (INEOS RAS), 28 Vavilova St, 119991 Moscow, Russia; [email protected] (O.A.F.); [email protected] (V.A.K.); [email protected] (N.V.B.); [email protected] (L.M.E.) 2 Faculty of Chemistry, M.V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, 119991 Moscow, Russia * Correspondence: [email protected] (I.E.G.); [email protected] (E.S.S.) Dedicated to Professor Bohumil Štibr (1940-2020), who unfortunately passed away before he could reach the y age of 80, in the recognition of his outstanding contributions to boron chemistry. Academic Editors: Igor B. Sivaev, Narayan S. Hosmane and Bohumír Gr˝uner Received: 6 June 2020; Accepted: 23 June 2020; Published: 25 June 2020 MeCN Abstract: Thermodynamic hydricity (HDA ) determined as Gibbs free energy (DG◦[H]−) of the H− detachment reaction in acetonitrile (MeCN) was assessed for 144 small borane clusters (up 2 to 5 boron atoms), polyhedral closo-boranes dianions [BnHn] −, and their lithium salts Li2[BnHn] (n = 5–17) by DFT method [M06/6-311++G(d,p)] taking into account non-specific solvent effect (SMD MeCN model). Thermodynamic hydricity values of diborane B2H6 (HDA = 82.1 kcal/mol) and its 2 MeCN dianion [B2H6] − (HDA = 40.9 kcal/mol for Li2[B2H6]) can be selected as border points for the range of borane clusters’ reactivity.
    [Show full text]
  • Catalytic, Thermal, Regioselective Functionalization of Alkanes and Arenes with Borane Reagents
    ACS Symposium Series 885, Activation and Functionalization of C-H Bonds, Karen I. Goldberg and Alan S. Goldman, eds. 2004. CHAP TER 8 Catalytic, Thermal, Regioselective Functionalization of Alkanes and Arenes with Borane Reagents John F. Hartwig Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107 Work in the author’s group that has led to a regioselective catalytic borylation of alkanes at the terminal position is summarized. Early findings on the photochemical, stoichiometric functionalization of arenes and alkanes and the successful extension of this work to a catalytic functionalization of alkanes under photochemical conditions is presented first. The discovery of complexes that catalyze the functionalization of alkanes to terminal alkylboronate esters is then presented, along with mechanistic studies on these system and computational work on the stoichiometric reactions of isolated metal-boryl compounds with alkanes. Parallel results on the development of catalysts and a mechanistic understanding of the borylation of arenes under mild conditions to form arylboronate esters are also presented. © 2004 American Chemical Society 136 137 1. Introduction Although alkanes are considered among the least reactive organic molecules, alkanes do react with simple elemental reagents such as halogens and oxygen.1,2) Thus, the conversion of alkanes to functionalized molecules at low temperatures with control of selectivity and at low temperatures is a focus for development of catalytic processes.(3) In particular the conversion of an alkane to a product with a functional group at the terminal position has been a longstanding goal (eq. 1). Terminal alcohols such as n-butanol and terminal amines, such as hexamethylene diamine, are major commodity chemicals(4) that are produced from reactants several steps downstream from alkane feedstocks.
    [Show full text]
  • Crown Chemical Resistance Chart
    Crown Polymers, Corp. 11111 Kiley Drive Huntley, IL. 60142 USA www.crownpolymers.com 847-659-0300 phone 847-659-0310 facisimile 888-732-1270 toll free Chemical Resistance Chart Crown Polymers Floor and Secondary Containment Systems Products: CrownShield covers the following five (4) formulas: CrownShield 50, Product No. 320 CrownCote, Product No. 401 CrownShield 40-2, Product No. 323 CrownShield 28, Product No. 322 CrownPro AcidShield, Product No. 350 CrownCote AcidShield, Product No. 430 CrownPro SolventShield, Product No. 351 CrownCote SolventShield, Product No. 440 This chart shows chemical resistance of Crown Polymers foundational floor and secondary containment product line that would be exposed to chemical spill or immersion conditions. The chart was designed to provide general product information. For specific applications, contact your local Crown Polymers Floor and Secondary Containment Representative or call direct to the factory. ; Resistant to chemical immersion up to 7 days followed by wash down with water 6 Spillage environments that will be cleaned up within 72 hours after initial exposure. 9 Not Recommended Chemical CrownShield SolventShield AcidShield Chemical CrownShield SolventShield AcidShield 1, 4-Dichloro-2-butene 9 6 6 Aluminum Bromate ; ; ; 1, 4-Dioxane 9 6 6 Aluminum Bromide ; ; ; 1-1-1 Trichloroethane 9 ; ; Aluminum Chloride ; ; ; 2, 4-Pentanedione 6 ; 6 Aluminum Fluoride (25%) ; ; ; 3, 4-Dichloro-1-butene 6 6 6 Aluminum Hydroxide ; ; ; 4-Picoline (0-50%) 9 6 6 Aluminum Iodine ; ; ; Acetic Acid (0-15%) 9 6 6
    [Show full text]
  • Boranes in Organic Chemistry 2. Β-Aminoalkyl- and Β-Sulfanylalkylboranes in Organic Synthesis V.M
    Eurasian ChemTech Journal 4 (2002) 153-167 Boranes in Organic Chemistry 2. β-Aminoalkyl- and β-sulfanylalkylboranes in organic synthesis V.M. Dembitsky1, G.A. Tolstikov2*, M. Srebnik1 1Department of Pharmaceutical Chemistry and Natural Products, School of Pharmacy, P.O. Box 12065, The Hebrew University of Jerusalem, Jerusalem 91120, Israel 2Novosibirsk Institute of Organic Chemistry SB RAS, 9, Lavrentieva Ave., Novosibirsk, 630090, Russia Abstract Problems on using of β-aminoalkyl- and β-sulfanylalkylboranes in organic synthesis are considered in this review. The synthesis of boron containing α-aminoacids by Curtius rearrangement draws attention. The use of β-aminoalkylboranes available by enamine hydroboration are described. Examples of enamine desamination with the formation of alkenes, aminoalcohols and their transfor- mations into allylic alcohol are presented. These conversions have been carried out on steroids and nitro- gen containing heterocyclic compounds. The dihydroboration of N-vinyl-carbamate and N-vinyl-urea have been described. Examples using nitrogen and oxygen containing boron derivatives for introduction of boron functions were presented. The route to borylhydrazones by hydroboration of enehydrazones was envisaged. The possibility of trialkylamine hydroboration was shown on indole alkaloids and 11-azatricyclo- [6.2.11,802,7]2,4,6,9-undecatetraene examples. The synthesis of β-sulfanyl-alkylboranes by various routes was described. The synthesis of boronic thioaminoacids was carried out by free radical thiilation of dialkyl-vinyl- boronates. Ethoxyacetylene has been shown smoothly added 1-ethylthioboracyclopentane. Derivatives of 1,4-thiaborinane were readily obtained by divinylboronate hydroboration. Dialkylvinylboronates react with mercaptoethanol with the formation of 1,5,2-oxathioborepane derivatives. Stereochemistry of thiavinyl esters hydroboration leading to stereoisomeric β-sulfanylalkylboranes are discussed.
    [Show full text]
  • Gasket Chemical Services Guide
    Gasket Chemical Services Guide Revision: GSG-100 6490 Rev.(AA) • The information contained herein is general in nature and recommendations are valid only for Victaulic compounds. • Gasket compatibility is dependent upon a number of factors. Suitability for a particular application must be determined by a competent individual familiar with system-specific conditions. • Victaulic offers no warranties, expressed or implied, of a product in any application. Contact your Victaulic sales representative to ensure the best gasket is selected for a particular service. Failure to follow these instructions could cause system failure, resulting in serious personal injury and property damage. Rating Code Key 1 Most Applications 2 Limited Applications 3 Restricted Applications (Nitrile) (EPDM) Grade E (Silicone) GRADE L GRADE T GRADE A GRADE V GRADE O GRADE M (Neoprene) GRADE M2 --- Insufficient Data (White Nitrile) GRADE CHP-2 (Epichlorohydrin) (Fluoroelastomer) (Fluoroelastomer) (Halogenated Butyl) (Hydrogenated Nitrile) Chemical GRADE ST / H Abietic Acid --- --- --- --- --- --- --- --- --- --- Acetaldehyde 2 3 3 3 3 --- --- 2 --- 3 Acetamide 1 1 1 1 2 --- --- 2 --- 3 Acetanilide 1 3 3 3 1 --- --- 2 --- 3 Acetic Acid, 30% 1 2 2 2 1 --- 2 1 2 3 Acetic Acid, 5% 1 2 2 2 1 --- 2 1 1 3 Acetic Acid, Glacial 1 3 3 3 3 --- 3 2 3 3 Acetic Acid, Hot, High Pressure 3 3 3 3 3 --- 3 3 3 3 Acetic Anhydride 2 3 3 3 2 --- 3 3 --- 3 Acetoacetic Acid 1 3 3 3 1 --- --- 2 --- 3 Acetone 1 3 3 3 3 --- 3 3 3 3 Acetone Cyanohydrin 1 3 3 3 1 --- --- 2 --- 3 Acetonitrile 1 3 3 3 1 --- --- --- --- 3 Acetophenetidine 3 2 2 2 3 --- --- --- --- 1 Acetophenone 1 3 3 3 3 --- 3 3 --- 3 Acetotoluidide 3 2 2 2 3 --- --- --- --- 1 Acetyl Acetone 1 3 3 3 3 --- 3 3 --- 3 The data and recommendations presented are based upon the best information available resulting from a combination of Victaulic's field experience, laboratory testing and recommendations supplied by prime producers of basic copolymer materials.
    [Show full text]
  • Chapter 13 Group 13 Elements
    Chapter 13 Group 13 Elements Physical Properties Metals Halides, oxides, hydroxides, salts of oxoacids Compounds containing nitrogen Metal boride Electron deficient borane and carborane clusters: an introduction 1 Borax Boron Relative abundances of the group 13 elements in the Earth’s crust. http://www.astro.virginia.edu/class/oconnell/LBT/ Abundances of elements in the Earth’s crusts. 2 Production of aluminium in the US between 1960 and 2008. World production (estimated) and US consumption of gallium between 1980 and 2008 3 Uses of aluminium in the US in 2008 Uses of boron in the US in 2008 Some physical properties of the group 13 elements, M, and their ions. 4 Some physical properties of the group 13 elements, M, and their ions. (Continued) α Part of one layer of the infinite lattice of -rhombohedral boron, showing the B 12 - icosahedral building blocks which are covalently linked to give a rigid, infinite lattice. 5 B 12 B12 +12B B60 B84 = B 12 B12 B60 β The construction of the B 84 -unit, the main building block of the infinite lattice of - rhombohedral boron. (a) In the centre of the unit is a B 12 -icosahedron, and (b) to each of these 12, another boron atom is covalently bonded. (c) A B60 -cage is the outer ‘skin’ of the B 84 -unit. (d) The final B 84 -unit can be described in terms of covalently bonded sub-units (B 12 )(B 12 )(B 60 ). Neutral Group 13 Hydrides Molecular compounds – BnHm B2H6 Delocalized 3-center 2-electron B-H-B interactions 6 Selected reactions of B 2H6 and Ga 2H6 GaBH 6 Gas Phase Solid State Part of one chain of the polymeric structure of crystalline GaBH 6 (X-ray diffraction at 110 K) 7 Adducts of GaH 3 t Formation of adducts RH 2N•GaH 3 (R = Me, Bu) − [Al 2H6(THF) 2] [Al(BH 4)3] [Al(BH 4)4] 8 π The formation of partial -bonds in a trigonal planar BX 3 molecule Reaction of BX 3 with a Lewis base Boron Halide Clusters B4Cl 4 B8Cl 8 B9Br 9 The family of BnXn (X = Cl, Br, I) molecules possess cluster structures.
    [Show full text]
  • The Institute of Paper Chemistry
    The Institute of Paper Chemistry Appleton, Wisconsin Doctor's Dissertation Reaction Products of Lignin Model Compounds and Sodium Hydrosulfide Thomas G. Zentner June, 1953 A STUDY OF THE REACTION PRODUCTS OF LIGNIN MODEL COMPOUNDS AND SODIUM HYDROSULFIDE A thesis submitted by Thomas G. Zentner B.S. 1948, Texas A & M College M.S. 1950, Lawrence College in partial fulfillment of the requirements of The Institute of Paper Chemistry for the degree of Doctor of Philosophy from Lawrence College, Appleton, Wisconsin June, 1952 TABLE OF CONTENTS INTRODUCTION 1 HISTORICAL REVIEW 2 PRESENTATION OF THE PROBLEM 8 EXPERIMENTAL PROCEDURES 10 Synthesis of Compounds 10 Synthesis of 1-(4-Hydroxy-3-methoxyphenyl)-l-propanol 10 Synthesis of 1-(4-Benzoxy-3-methoxyphenyl)-l-propanol 11 Reaction of 1-(4-Benzoxy-3-methoxyphenyl) l-propanol with Benzyl Chloride 12 Synthesis of Propiovanillone 14 Synthesis of (-(4-Acetyl-2-methoxyphenoxy)acetovanillone 17 Attempted Synthesis of a-(2-Methoxy-4-methylphehoxy)- propiovanillone 17 Attempted Synthesis of 4-[l-(2-Methoxy-4-methylphenoxy)- l-propyl]guaiacol 21 Synthesis of 2t,4-Dihydroxy-3-methoxychalcone 23 Synthesis of 4,4'-Dihydroxy-3,3 -dimethoxychalcone 24 Synthesis of 4-Propionylpyrocatechol 24 Synthesis of Bis[l-(4-hydroxy-3-methoxyphenyl)-1- propyl] Disulfide 26 Reaction of Isolated Native Lignin with Potassium Hydrosulfide 27 Sodium Hydrosulfide Cooks 28 Cooking Liquor 28 General Procedures 30 Propiovanillone' 32 iii 2 ,4-Dihydroxy-3-methoxychalcone 34 4,4'-Dihydroxy-3,3 '-methoxychalcohe 37 4'-Hydroxy-3t-methoxyflavanone 39 2-Vanillylidene-3-coumaranone 41 Vanillin 44 G- (4-Acetyl-2-methoxyphenoxy)acetovanillone 45 1-(4-Hydroxy-3-methoxyphenyl)-1-propanol 49 DISCUSSION 58 SUMMARY AND CONCLUSIONS 69 LITERATURE CITED 71 INTRODUCTION Although the kraft process has been in use for many years, there is no sound explanation of the role played by the sulfide ion in the cook.
    [Show full text]
  • Chemical Resistance 100% SOLIDS EPOXY SYSTEMS
    Chemical Resistance 100% SOLIDS EPOXY SYSTEMS CHEMICAL 8300 SYSTEM 8200 SYSTEM 8000 SYSTEM OVERKOTE PLUS HD OVERKOTE HD OVERKRETE HD BASED ON ONE YEAR IMMERSION TESTING –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Acetic Acid (0-15%) G II Acetonitrile LLG L Continuous Immersion Acetone (0-20%) LLL Acetone (20-30%) Suitable for continuous immersion in that chemical (based on LLG Acetone (30-50%) L G I ONE YEAR testing) to assure unlimited service life. Acetone (50-100%) G II Acrylamide (0-50%) LLL G Short-Term Exposure Adipic Acid Solution LLL Alcohol, Isopropyl LLL Suitable for short-term exposure to that chemical such as Alcohol, Ethyl LLG secondary containment (72 hours) or splash and spill Alcohol, Methyl LLI (immediate clean-up). Allyl Chloride LLI Allylamine (0-20%) L L I Allylamine (20-30%) L G I I Not Suitable Allylamine (30-50%) GGI Not suitable for any exposure to that chemical. Aluminum Bromide LL– Aluminum Chloride L L – Aluminum Fluoride (0-25%) L L – This chart shows chemical resistance of our various Aluminum Hydroxide LLL 1 topping materials (90 mils – ⁄4"). These ratings are based on Aluminum Iodide LL– temperatures being ambient. At higher temperatures, chemical Aluminum Nitrate LL– resistance may be effected. When chemical exposure is Aluminum Sodium Chloride L L – minimal to non-existent, a 9000 System–FlorClad™ HD or Aluminum Sulfate LLL 4600 System– BriteCast™ HD may be used. Alums L L L 2-Aminoethoxyethanol Resistance data is listed with the assumption that the material GGG has properly cured for at least four days, at recommended Ammonia – Wet L L – temperatures, prior to any chemical exposure.
    [Show full text]
  • Corrosion-2020) (461 Event of the European Federation of Corrosion)
    European Federation of Corrosion National Academy of Sciences of Ukraine Ministry of Education and Science of Ukraine Ukrainian Association of Corrosionists Karpenko Physico-Mechanical Institute Ivan Franko Lviv National University Ivano-Frankivsk National Technical University of Oil and Gas ХV International Conference «Problems of corrosion and corrosion protection of materials» (Corrosion-2020) (461 event of the European Federation of Corrosion) ABSTRACT BOOK October 15–16, 2020 Lviv, Ukraine UДC 539.3, 620.193, 620.194, 620.179, 620.197, 621.181:669.018, 621.785. XV International Conference “Problems of Corrosion and Corrosion Protection of Materials“ (Corrosion-2020). October 15-16, 2020, Lviv, Ukraine: Book of Abstract / Karpenko Physico-Mechanical Institute of NAS of Ukraine; S. Korniy, М.-О. Danyliak, Yu. Maksishko (Eds.). – Lviv, 2020. – 121 p. XV International Conference “Problems of Corrosion and Corrosion Protection of Materials“ (Corrosion-2020) was held at Lviv Palace of Arts on October 15-16, 2020. This Book of Abstract contains the results of studies are devoted to fundamentals of corrosion and corrosion assisted mechanical fracture; hydrogen and gas corrosion; new corrosion resistant materials; thermal spray, electroplated and other coatings; inhibitor, biocidal and electrochemical protection; testing methods and corrosion control; corrosion protection of oil and gas industry and chemical equipment. In the authors edition. Editorial board: S. Korniy, М.-О. Danyliak, Yu. Maksishko ©Karpenko Physico-Mechanical Institute of NAS of Ukraine, Lviv, 2020 CONFERENCE TOPICS: fundamentals of corrosion and corrosion assisted mechanical fracture; hydrogen and gas corrosion; new corrosion resistant materials and coatings; inhibitor and biocidal protection; electrochemical protection; testing methods and corrosion control; corrosion protected equipment of the oil and gas, chemical and energy industries.
    [Show full text]
  • Ammonia-Borane: a Promising Material for Hydrogen Storage
    0 1) Background BES021 Ammonia-Borane: a Promising Material for Hydrogen Storage H3NBH3 H2 + (H2NBH2)n H2 + (HNBH)n H2 + BN 6.5 wt% H 13.1 wt% 19.6 wt% • High storage capacity has drawn attention to hydrogen release methods and mechanisms: – Catalyzed hydrolysis – Solid thermolysis – Catalyzed solid thermolysis - Solution thermolysis in ethers and ionic liquids - Catalyzed solution thermolysis Cf. A. Staubitz et al. Chem. Rev. 2010, 110, 4079-4124. This presentation does not contain any proprietary or confidential information 2) Base-Promoted AB dehydrogenation Enhanced AB H2-Release with Proton Sponge in Ionic Liquids or Tetraglyme with Reduced Foaming o NH3BH3 + 5 mol % PS at 85 C in Ionic Liquids or Tetraglyme (250 mg) (91 mg) (250 mg) 5.60 mat. wt. % H2 pKa = 11.1 Himmelberger, D.; Yoon, C. W.; Bluhm, M. E.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc. 2009, 131, 14101. Proton Sponge Increases Release Rate of Second Equivalent of H2 from AB 2nd Equiv. AB with 5 mol% PS in bmimCl at 85°C Proton Sponge Induces Loss of a Second H2- Equivalent from Thermally Dehydrogenated AB − Model Studies: AB/[Et3BNH2BH3] Reactions Show Chain Growth -H • • + − 2 - NH3BH3+ Li BEt3H Et3BNH2BH3 -H2 − NH BH [Et3BNH2BH2NH2BH3] 3 3 Mass spec and GIAO/NMR studies indicate chain growth • - X-ray structure Et3BNH2BH3 0h • 11B{1H} NMR AB • 67h • AB ★ -19.7 (q) ★ -11.0 (t) -6.1(s) DFT optimized structure of ★ − [Et3BNH2BH2NH2BH3] GIAO calculated 11B chem. shifts: -8.2, -12.0, -23.5 ppm Verkade’s Base Also Activates AB H2-Release 50 wt% bmimCl 2 Verkade’s Base of H Equiv.
    [Show full text]
  • Traumatic Shock. Ii. the Preparation of Cystine, Methionine, and Homocystine Containing Radioactive Sulfur
    TRAUMATIC SHOCK. II. THE PREPARATION OF CYSTINE, METHIONINE, AND HOMOCYSTINE CONTAINING RADIOACTIVE SULFUR Arnold M. Seligman, … , Alexander M. Rutenburg, Henry Banks J Clin Invest. 1943;22(2):275-279. https://doi.org/10.1172/JCI101393. Research Article Find the latest version: https://jci.me/101393/pdf TRAUMATIC SHOCK. II. THE PREPARATION OF CYSTINE, METHIONINE, AND HOMOCYSTINE CONTAINING RADIOACTIVE SULFUR By ARNOLD M. SELIGMAN, ALEXANDER M. RUTENBURG, AND HENRY BANKS 1 (From the Surgical Research Department of the Beth Israel Hospital and the Department of Surgery, Harvard Medical School, Boston) (Received for publication November 12, 1942) In order to prepare, from radioactive sulfur, the benzyl mercaptan (I) (0.6 moles), reported by sulfur-containing amino acids of a high order of Wood and du Vigneaud (4) in 23 per cent yield, specific activity for biological experiments such was found to give a 21.5 per cent yield when 0.06 as those described in the foregoing publication, it mole was used. Reduction of benzylcysteine was necessary (owing to the cost of radioactive (VIII) to cysteine with sodium and butyl alcohol sulfur) to investigate the efficiency of utilization did not give good yields; therefore, sodium and of small amounts of sulfur. The synthetic meth- liquid ammonia were used. Since radioactive ods utilized are not novel, but are described be- benzyl mercaptan is necessary for the synthesis of low because of the data obtained on yields in all three amino acids, a method of preparation of numerous small scale preparations. Since pres- the mercaptan from hydrogen sulfide, other than ent methods of preparing radioactive sulfur from that described by Tarver and Schmidt, in 70 per neutron bombardment of carbon tetrachloride in- cent yield, was investigated.
    [Show full text]