Ammonia Borane Composites for Solid State Hydrogen Storage and Calcium-Ammonia Solutions in Graphite

Total Page:16

File Type:pdf, Size:1020Kb

Ammonia Borane Composites for Solid State Hydrogen Storage and Calcium-Ammonia Solutions in Graphite Ammonia borane composites for solid state hydrogen storage and calcium-ammonia solutions in graphite Atahl Nathanson This thesis is in accordance with the requirements of the University College London for the degree of Engineering Doctorate February 2014 I Ammonia borane composites for solid state hydrogen storage and calcium-ammonia solutions in graphite Submitted for the degree of Doctor of Engineering February 2014 Abstract The dual problems of worlds growing population, increasing energy demand and global warming, necessitate an alternative to fossil fuels. Hydrogen is plentiful and has a high energy density but storage in high pressure tanks is complex and presents safety concerns. Ammonia borane (AB) is one of the most promising solid state hydrogen storage materials due to its high releasable hydrogen content (13.1 wt%), stability in air, and low toxicity. On heating, however, pure AB releases hydrogen only after long nucleation times and is accompanied by the liberation of gaseous impurities including borazine and ammonia; additionally, extensive material expansion and foaming occurs. AB composites with polyethylene oxide, polystyrene and imogolite have been synthesized. It is concluded that the decomposition of AB is best ameliorated by providing access to functional groups that catalyse alternative dehydrogenation routes. Lowering the onset of hydrogen loss to below the melting temperature limits the overall foam and expansion. The two dimensional confined motion of liquid ammonia in a multi staged ternary calcium ammonia graphite intercalation compound was studied with respect to temperature. Hopping diffusion at 300K gives way to rotation below 100K. The dynamics of this confined calcium ammonia solution are observed as similar to the three dimensional counterpart. II I, Atahl Nathanson confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis III Acknowledgements Firstly, a thank you to my supervisors Stephen Bennington and Neal Skipper for their guidance, support and the enthusiasm expressed for my scientific endeavours. Both provided distinct and valuable roles in allowing me to experience both academia and industry. The team at Cella Energy, Arthur (Thank you for being an invaluable mentor and friend.), Zeynep (Thanks for all the great food, help with experiments and political awareness.), Stephen (All that wardrobe advice and unfortunately I still wear shorts with tights.), Tom (We didn’t get shot!), Dave, Joe, Lucile, Marie, Lindsey (Tango till dawn with me?), Gemma (I’ve still got that duck!), Anna and Matt (Many thanks, soon we will all be published authors!) and Kevin (Thank you for starting for my ill car – it’s now in mechanical heaven.). Now all those at Isis: Tati (where would we be without your bus? Thank you for all those hours spent waiting for me at the side of the road), Aziz (keep up the music), Jordi (Who will throw things at me now?), Rowen, Bruno, Konstantin, Davide, Rob, Giovanni, Sev, Roberto (Thank you, I will come to Milan…soon…very soon!), Vicky (Thank you for all your help and patience.), Ruth (Thanks for Robbie and all the fabulous gossip.), Ivan (Thanks for all those great coffees and cakes.) and Joe (Keep peddling.). Thank you to the F10 crew for support during my write up. Emily, so handy with the hanky and the prep talks, thank you. Christian, Dave, Paddy, Radhika and Stephen, thanks for the help, lunches and letting me play my atrocious football. I’m building a team over in Chemistry so prepare yourselves! Hello and thanks also to the EngD group Nic, Nuru, Will, Szymon, Clyde, Marcus, Isaac, Liz, Jay and Kathrine, unfortunately dl-poly didn’t make the final cut this time. Thank you Chris for making the calcium and lithium graphite samples. Spencer and Jaqueline, without your guidance through Modes the neutron data would still be very raw. Derek, many thanks for all the science advices! Arthur, gracias for the Sketchup electrospinning picture. My three keen work experience students Bouyan, Ben and Hannah. Thank you for coming and being, well, so keen! Jaqueline (Thank you for your help, you’re always in my heart.), Jake (Thanks for tolerating my general madness.) and Eloise (your good wishes are always so well timed). Thank you to all my proof readers; Steve, Neal, Mum, Christian, Joe, Tim and Rhiain. So to my family, Mum, Dad, Phil, Rhiain, Brighid and Lucien. Thank you for believing in me and making me feel intelligent. Sarah, Gemma, Jade, Parry, Isaac and Suki, you rock my world, IV thanks for letting me live in your home. And last but not least thanks to Robbie my feline bed warmer. V Contents 1 An introduction to hydrogen storage and graphite intercalation compounds ............ 1 Hydrogen....................................................................................................................... 1 Fossil fuels and global warming ........................................................................... 1 A hydrogen economy ............................................................................................ 1 Hydrogen storage targets for vehicles ........................................................................... 4 Current hydrogen storage methods for vehicles............................................................ 4 Storing hydrogen as a gas or liquid ....................................................................... 7 Clathrates .............................................................................................................. 7 Physisorbed hydrogen storage .............................................................................. 8 Chemisorbed hydrogen storage ............................................................................. 9 Alkali metal ammonia graphite intercalation compounds .......................................... 12 2 Materials introduction .............................................................................................. 15 Ammonia borane ......................................................................................................... 15 Structure .............................................................................................................. 15 Ammonia borane synthesis and regeneration ..................................................... 17 The reaction pathway of the dehydrogenation of ammonia borane .................... 17 Modifying the dehydration properties of ammonia borane – literature study ............. 20 Ammonia borane in water ................................................................................... 20 Ammonia borane in alternative solvents ............................................................. 20 Ammonia borane in ionic liquids ........................................................................ 21 Ammonia borane in acidic conditions................................................................. 22 Zeolites and metal organic frameworks .............................................................. 23 Carbon ................................................................................................................. 23 Metal catalysts and ammonia borane .................................................................. 24 Ammonia borane in the presence of polymers .................................................... 24 Materials used and project aims .................................................................................. 25 Polymers ............................................................................................................. 25 VI Clays ................................................................................................................... 27 Graphite intercalation compounds .............................................................................. 30 3 Experimental methods ............................................................................................. 32 Making samples .......................................................................................................... 32 Electrospinning ................................................................................................... 32 Spinning parameters ............................................................................................ 39 Freeze drying ...................................................................................................... 41 Dry mixing .......................................................................................................... 41 A vapour transport method for intercalation into graphite .......................................... 42 Analysing samples ...................................................................................................... 42 Scanning electron microscopy ............................................................................ 42 Fourier transform infrared spectroscopy ............................................................. 44 Foam tests ........................................................................................................... 45 Thermogravimetric analysis and differential scanning calorimetry .................... 45 Mass spectrometry .............................................................................................. 47 X-ray diffraction ................................................................................................. 53 Nuclear magnetic resonance spectroscopy .........................................................
Recommended publications
  • Densifying Metal Hydrides with High Temperature and Pressure
    3,784,682 United States Patent Office Patented Jan. 8, 1974 feet the true density. That is, by this method only theo- 3,784,682 retical or near theoretical densities can be obtained by DENSIFYING METAL HYDRIDES WITH HIGH making the material quite free from porosity (p. 354). TEMPERATURE AND PRESSURE The true density remains the same. Leonard M. NiebylsM, Birmingham, Mich., assignor to Ethyl Corporation, Richmond, Va. SUMMARY OF THE INVENTION No Drawing. Continuation-in-part of abandoned applica- tion Ser. No. 392,370, Aug. 24, 1964. This application The process of this invention provides a practical Apr. 9,1968, Ser. No. 721,135 method of increasing the true density of hydrides of Int. CI. COlb 6/00, 6/06 metals of Groups II-A, II-B, III-A and III-B of the U.S. CI. 423—645 8 Claims Periodic Table. More specifically, true densities of said 10 metal hydrides may be substantially increased by subject- ing a hydride to superatmospheric pressures at or above ABSTRACT OF THE DISCLOSURE fusion temperatures. When beryllium hydride is subjected A method of increasing the density of a hydride of a to this process, a material having a density of at least metal of Groups II-A, II-B, III-A and III-B of the 0.69 g./cc. is obtained. It may or may not be crystalline. Periodic Table which comprises subjecting a hydride to 15 a pressure of from about 50,000 p.s.i. to about 900,000 DESCRIPTION OF THE PREFERRED p.s.i. at or above the fusion temperature of the hydride; EMBODIMENT i.e., between about 65° C.
    [Show full text]
  • Thermodynamic Hydricity of Small Borane Clusters and Polyhedral Closo-Boranes
    molecules Article Thermodynamic Hydricity of Small Borane Clusters y and Polyhedral closo-Boranes Igor E. Golub 1,* , Oleg A. Filippov 1 , Vasilisa A. Kulikova 1,2, Natalia V. Belkova 1 , Lina M. Epstein 1 and Elena S. Shubina 1,* 1 A. N. Nesmeyanov Institute of Organoelement Compounds and Russian Academy of Sciences (INEOS RAS), 28 Vavilova St, 119991 Moscow, Russia; [email protected] (O.A.F.); [email protected] (V.A.K.); [email protected] (N.V.B.); [email protected] (L.M.E.) 2 Faculty of Chemistry, M.V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, 119991 Moscow, Russia * Correspondence: [email protected] (I.E.G.); [email protected] (E.S.S.) Dedicated to Professor Bohumil Štibr (1940-2020), who unfortunately passed away before he could reach the y age of 80, in the recognition of his outstanding contributions to boron chemistry. Academic Editors: Igor B. Sivaev, Narayan S. Hosmane and Bohumír Gr˝uner Received: 6 June 2020; Accepted: 23 June 2020; Published: 25 June 2020 MeCN Abstract: Thermodynamic hydricity (HDA ) determined as Gibbs free energy (DG◦[H]−) of the H− detachment reaction in acetonitrile (MeCN) was assessed for 144 small borane clusters (up 2 to 5 boron atoms), polyhedral closo-boranes dianions [BnHn] −, and their lithium salts Li2[BnHn] (n = 5–17) by DFT method [M06/6-311++G(d,p)] taking into account non-specific solvent effect (SMD MeCN model). Thermodynamic hydricity values of diborane B2H6 (HDA = 82.1 kcal/mol) and its 2 MeCN dianion [B2H6] − (HDA = 40.9 kcal/mol for Li2[B2H6]) can be selected as border points for the range of borane clusters’ reactivity.
    [Show full text]
  • Diborane (B2H6) 2 Heavier Boron Hydrides in the Form of Volatile Liquids Such As
    Even in the absence of contamination, diborane is so reactive that it will slowly decompose by itself, forming H gas and Diborane (B2H6) 2 heavier boron hydrides in the form of volatile liquids such as Storage and Delivery B5H9 and sublimable solids such as B10H14. These heavier hydrides are delivered with the gas and can cause Air Products supplies a wide range of gases and chemicals contamination of the process and fouling of the delivery system that are used for integrated circuit, flat panel display and components. Figure 1 shows the internals of the first stage of photovoltaic device manufacturing. Understanding the proper a two-stage gas regulator that was fouled by B10H14 deposits. storage and handling requirements of these specialty materials is essential to obtain consistent results and to ensure the highest level of process safety. In this technical bulletin, we will provide the user with some of the knowledge required for its effective storage and use. Figure 1: Picture of the first stage of diborane mixture regulator Diborane (formula B2H6) is a colorless, spontaneously fouled with solid decomposition products. flammable (pyrophoric) gas. It burns rapidly in air and reacts vigorously with water with the evolution of heat. The gas has The gas-phase decomposition rate of diborane was shown to a distinct, noxious odor and is extremely toxic by inhalation or increase with concentration and with temperature. Pure by skin exposure. Because of these hazards, it is essential diborane is so reactive in its pure state that it may only be that all gas handling systems used for diborane be tightly stored or transported if surrounded with dry ice to prevent rapid sealed and carefully leak checked.
    [Show full text]
  • Herbert Charles Brown, a Biographical Memoir
    NATIONAL ACADEMY OF SCIENCES H E R B E R T Ch ARLES BROWN 1 9 1 2 — 2 0 0 4 A Biographical Memoir by E I-I CH I N EGIS HI Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2008 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph Credit Here. HERBERT CHARLES BROWN May 22, 1912–December 19, 2004 BY EI -ICH I NEGISHI ERBERT CHARLES BROWN, R. B. Wetherill Research Profes- Hsor Emeritus of Purdue University and one of the truly pioneering giants in the field of organic-organometallic chemistry, died of a heart attack on December 19, 2004, at age 92. As it so happened, this author visited him at his home to discuss with him an urgent chemistry-related matter only about 10 hours before his death. For his age he appeared well, showing no sign of his sudden death the next morn- ing. His wife, Sarah Baylen Brown, 89, followed him on May 29, 2005. They were survived by their only child, Charles A. Brown of Hitachi Ltd. and his family. H. C. Brown shared the Nobel Prize in Chemistry in 1979 with G. Wittig of Heidelberg, Germany. Their pioneering explorations of boron chemistry and phosphorus chemistry, respectively, were recognized. Aside from several biochemists, including V. du Vigneaud in 1955, H. C. Brown was only the second American organic chemist to win a Nobel Prize behind R. B. Woodward, in 1965. His several most significant contribu- tions in the area of boron chemistry include (1) codiscovery of sodium borohyride (1972[1], pp.
    [Show full text]
  • Catalytic, Thermal, Regioselective Functionalization of Alkanes and Arenes with Borane Reagents
    ACS Symposium Series 885, Activation and Functionalization of C-H Bonds, Karen I. Goldberg and Alan S. Goldman, eds. 2004. CHAP TER 8 Catalytic, Thermal, Regioselective Functionalization of Alkanes and Arenes with Borane Reagents John F. Hartwig Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107 Work in the author’s group that has led to a regioselective catalytic borylation of alkanes at the terminal position is summarized. Early findings on the photochemical, stoichiometric functionalization of arenes and alkanes and the successful extension of this work to a catalytic functionalization of alkanes under photochemical conditions is presented first. The discovery of complexes that catalyze the functionalization of alkanes to terminal alkylboronate esters is then presented, along with mechanistic studies on these system and computational work on the stoichiometric reactions of isolated metal-boryl compounds with alkanes. Parallel results on the development of catalysts and a mechanistic understanding of the borylation of arenes under mild conditions to form arylboronate esters are also presented. © 2004 American Chemical Society 136 137 1. Introduction Although alkanes are considered among the least reactive organic molecules, alkanes do react with simple elemental reagents such as halogens and oxygen.1,2) Thus, the conversion of alkanes to functionalized molecules at low temperatures with control of selectivity and at low temperatures is a focus for development of catalytic processes.(3) In particular the conversion of an alkane to a product with a functional group at the terminal position has been a longstanding goal (eq. 1). Terminal alcohols such as n-butanol and terminal amines, such as hexamethylene diamine, are major commodity chemicals(4) that are produced from reactants several steps downstream from alkane feedstocks.
    [Show full text]
  • Boranes in Organic Chemistry 2. Β-Aminoalkyl- and Β-Sulfanylalkylboranes in Organic Synthesis V.M
    Eurasian ChemTech Journal 4 (2002) 153-167 Boranes in Organic Chemistry 2. β-Aminoalkyl- and β-sulfanylalkylboranes in organic synthesis V.M. Dembitsky1, G.A. Tolstikov2*, M. Srebnik1 1Department of Pharmaceutical Chemistry and Natural Products, School of Pharmacy, P.O. Box 12065, The Hebrew University of Jerusalem, Jerusalem 91120, Israel 2Novosibirsk Institute of Organic Chemistry SB RAS, 9, Lavrentieva Ave., Novosibirsk, 630090, Russia Abstract Problems on using of β-aminoalkyl- and β-sulfanylalkylboranes in organic synthesis are considered in this review. The synthesis of boron containing α-aminoacids by Curtius rearrangement draws attention. The use of β-aminoalkylboranes available by enamine hydroboration are described. Examples of enamine desamination with the formation of alkenes, aminoalcohols and their transfor- mations into allylic alcohol are presented. These conversions have been carried out on steroids and nitro- gen containing heterocyclic compounds. The dihydroboration of N-vinyl-carbamate and N-vinyl-urea have been described. Examples using nitrogen and oxygen containing boron derivatives for introduction of boron functions were presented. The route to borylhydrazones by hydroboration of enehydrazones was envisaged. The possibility of trialkylamine hydroboration was shown on indole alkaloids and 11-azatricyclo- [6.2.11,802,7]2,4,6,9-undecatetraene examples. The synthesis of β-sulfanyl-alkylboranes by various routes was described. The synthesis of boronic thioaminoacids was carried out by free radical thiilation of dialkyl-vinyl- boronates. Ethoxyacetylene has been shown smoothly added 1-ethylthioboracyclopentane. Derivatives of 1,4-thiaborinane were readily obtained by divinylboronate hydroboration. Dialkylvinylboronates react with mercaptoethanol with the formation of 1,5,2-oxathioborepane derivatives. Stereochemistry of thiavinyl esters hydroboration leading to stereoisomeric β-sulfanylalkylboranes are discussed.
    [Show full text]
  • 276262828.Pdf
    FUNDAMENTAL STUDIES OF CATALYTIC DEHYDROGENATION ON ALUMINA-SUPPORTED SIZE-SELECTED PLATINUM CLUSTER MODEL CATALYSTS by Eric Thomas Baxter A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry The University of Utah May 2018 Copyright © Eric Thomas Baxter 2018 All Rights Reserved T h e U n iversity of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Eric Thomas Baxter has been approved by the following supervisory committee members: Scott L. Anderson , Chair 11/13/2017 Date Approved Peter B. Armentrout , Member 11/13/2017 Date Approved Marc D. Porter , Member 11/13/2017 Date Approved Ilya Zharov , Member 11/13/2017 Date Approved Sivaraman Guruswamy , Member 11/13/2017 Date Approved and by Cynthia J. Burrows , Chair/Dean of the Department/College/School of Chemistry and by David B. Kieda, Dean of The Graduate School. ABSTRACT The research presented in this dissertation focuses on the use of platinum-based catalysts to enhance endothermic fuel cooling. Chapter 1 gives a brief introduction to the motivation for this work. Chapter 2 presents fundamental studies on the catalytic dehydrogenation of ethylene by size-selected Ptn (n = 4, 7, 8) clusters deposited onto thin film alumina supports. The model catalysts were probed by a combination of experimental and theoretical techniques including; temperature-programmed desorption and reaction (TPD/R), low energy ion scattering spectroscopy (ISS), X-ray photoelectron spectroscopy (XPS), plane wave density-functional theory (PW-DFT), and statistical mechanical theory. It is shown that the Pt clusters dehydrogenated approximately half of the initially adsorbed ethylene, leading to deactivation of the catalyst via (coking) carbon deposition.
    [Show full text]
  • Electroless Nickel, Alloy, Composite and Nano Coatings - a Critical Review
    Electroless nickel, alloy, composite and nano coatings - A critical review Sudagar, J., Lian, J., & Sha, W. (2013). Electroless nickel, alloy, composite and nano coatings - A critical review. Journal of Alloys and Compounds, 571, 183–204. https://doi.org/10.1016/j.jallcom.2013.03.107 Published in: Journal of Alloys and Compounds Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2013 Elsevier. This manuscript is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:02. Oct. 2021 ELECTROLESS NICKEL, ALLOY, COMPOSITE AND NANO COATINGS - A CRITICAL REVIEW Jothi Sudagar Department of Metallurgical and Materials Engineering, Indian Institute of Technology- Madras (IIT-M), Chennai - 600 036, India Jianshe Lian College of Materials Science and Engineering, Jilin University, Changchun 130025, China.
    [Show full text]
  • Catalysis and Chemical Engineering February 19-21, 2018
    Scientific UNITED Group 2nd International Conference on Catalysis and Chemical Engineering February 19-21, 2018 Venue Paris Marriott Charles de Gaulle Airport Hotel 5 Allee du Verger, Zone Hoteliere Roissy en France, 95700 France Exhibitors Supporting Sponsor Publishing Partner Supporter Index Keynote Presentations .......06 - 13 Speaker Presentations .......14 - 100 Poster Presentations .......102 - 123 About Organizer .......124 - 125 Key Concepts → Catalytic Materials & Mechanisms → Catalysis for Chemical Synthesis → Catalysis and Energy → Nanocatalysis → Material Sciences → Electrocatalysis → Environmental Catalysis → Chemical Kinetics → Reaction Engineering → Surface and Colloidal Phenomena → Enzymes and Biocatalysts → Photocatalysis → Nanochemistry → Polymer Engineering → Fluid Dynamics & its Phenomena → Simulation & Modeling → Catalysis for Renewable Sources → Organometallics Chemistry → Catalysis and Zeolites → Catalysis in Industry → Catalysis and Pyrolysis February 19 1Monday Keynote Presentations The Development of Phosphorus- and Carbon-Based Photocatalysts Jimmy C Yu The Chinese University of Hong Kong, Hong Kong Abstract This presentation describes the recent progress in the design and fabrication of phosphorus- and carbon-based photocatalysts. Phosphorus is one of the most abundant elements on earth. My research group discovered in 2012 that elemental red phosphorus could be used for the generation of hydrogen from photocatalytic water splitting. Subsequent studies show that the activity of red-P can be greatly improved by structural modification. Among the phosphorus compounds, the most stable form is phosphate. Its photocatalytic property was reported decades ago. Phosphides have also attracted attention as they can replace platinum as an effective co-catalyst. In terms of environmental friendliness, carbon is even more attractive than phosphorus. In 2017, we found that carbohydrates in biomass can be converted to semi conductive hydrothermal carbonation carbon (HTCC).
    [Show full text]
  • Identification of Diborane(4) with Bridging B–H–B Bonds
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Identification of diborane(4) with bridging B–H–B bonds† Cite this: Chem. Sci.,2015,6, 6872 Sheng-Lung Chou,a Jen-Iu Lo,a Yu-Chain Peng,a Meng-Yeh Lin,a Hsiao-Chi Lu,a Bing-Ming Cheng*a and J. F. Ogilvieb The irradiation of diborane(6) dispersed in solid neon at 3 K with tunable far-ultraviolet light from a Received 17th July 2015 synchrotron yielded a set of IR absorption lines, the pattern of which implies a carrier containing two Accepted 14th August 2015 boron atoms. According to isotope effects and quantum-chemical calculations, we identified this new DOI: 10.1039/c5sc02586a species as diborane(4), B2H4, possessing two bridging B–H–B bonds. Our work thus establishes a new www.rsc.org/chemicalscience prototype, diborane(4), for bridging B–H–B bonds in molecular structures. Introduction The B–H–B linkage in these compounds is considered to be an atypical electron-decient covalent chemical bond.7 Creative Commons Attribution 3.0 Unported Licence. The structure that B2H6 adopts in its electronic ground state According to calculations, diborane species possessing less and most stable conformation contains two bridging B–H–B than 6 hydrogen atoms and bridging B–H–Bbondscan 8–13 bonds, and four terminal B–H bonds. Although Bauer, from exist, but all possible candidates are transient species, experiments with the electron diffraction of gaseous samples in difficult to prepare and to identify. Since the pioneering work the laboratory of Pauling and Brockway, favoured a structure of involving absorption spectra of samples at temperatures less 14,15 diborane(6) with a central B–B bond analogous to that of than 100 K, many free radicals and other unstable 16–20 ethane,1 Longuet-Higgins deduced the bridged structure for compounds dispersed in inert hosts have been detected.
    [Show full text]
  • Boron-Based (Nano-)Materials: Fundamentals and Applications
    crystals Editorial Boron-Based (Nano-)Materials: Fundamentals and Applications Umit B. Demirci 1,*, Philippe Miele 1 and Pascal G. Yot 2 1 Institut Européen des Membranes (IEM), UMR 5635, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, CC047, F-34095 Montpellier, France; [email protected] 2 Institut Charles Gerhardt Montpellier (ICGM), UMR 5253 (UM-CNRS-ENSCM), Université de Montpellier, CC 15005, Place Eugène Bataillon, 34095 Montpellier cedex 05, France; [email protected] * Correspondence: [email protected]; Tel.: +33-(0)4-6714-9160 Academic Editor: Helmut Cölfen Received: 6 September 2016; Accepted: 13 September 2016; Published: 19 September 2016 Abstract: The boron (Z = 5) element is unique. Boron-based (nano-)materials are equally unique. Accordingly, the present special issue is dedicated to crystalline boron-based (nano-)materials and gathers a series of nine review and research articles dealing with different boron-based compounds. Boranes, borohydrides, polyhedral boranes and carboranes, boronate anions/ligands, boron nitride (hexagonal structure), and elemental boron are considered. Importantly, large sections are dedicated to fundamentals, with a special focus on crystal structures. The application potentials are widely discussed on the basis of the materials’ physical and chemical properties. It stands out that crystalline boron-based (nano-)materials have many technological opportunities in fields such as energy storage, gas sorption (depollution), medicine, and optical and electronic devices. The present special issue is further evidence of the wealth of boron science, especially in terms of crystalline (nano-)materials. Keywords: benzoxaboronate; borane; borohydride; boron-based material; boron-treat steel; boron nitride; boronate; carborane; metallacarborane; polyborate 1. Introduction Boron (Z = 5) is one of the lightest elements of the periodic table, coming just before carbon (Z = 6).
    [Show full text]
  • Efficient Synthesis of Alkali Borohydrides From
    metals Article Efficient Synthesis of Alkali Borohydrides from Mechanochemical Reduction of Borates Using Magnesium–Aluminum-Based Waste Thi Thu Le 1, Claudio Pistidda 1,* , Julián Puszkiel 1,2 , Chiara Milanese 3 , Sebastiano Garroni 4 , Thomas Emmler 1, Giovanni Capurso 1 , Gökhan Gizer 1 , Thomas Klassen 1,5 and Martin Dornheim 1 1 Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht GmbH, Max-Planck-Strasse 1, Geesthacht D-21502, Schleswig-Holstein, Germany; [email protected] (T.T.L.); [email protected] (J.P.); [email protected] (T.E.); [email protected] (G.C.); [email protected] (G.G.); [email protected] (T.K.); [email protected] (M.D.) 2 Department of Physical chemistry of Materials, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche, Av. Bustillo km 9500 S.C. de Beriloche, Argentina 3 Pavia H2 Lab, C.S.G.I. & Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy; [email protected] 4 Department of Chemistry and Pharmacy and INSTM, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; [email protected] 5 Helmut Schmidt University, University of the Federal Armed Forces Hamburg, D-22043 Hamburg, Germany * Correspondence: [email protected]; Tel.: +49-4152-87-2644 Received: 23 August 2019; Accepted: 24 September 2019; Published: 29 September 2019 Abstract: Lithium borohydride (LiBH4) and sodium borohydride (NaBH4) were synthesized via mechanical milling of LiBO2, and NaBO2 with Mg–Al-based waste under controlled gaseous atmosphere conditions. Following this approach, the results herein presented indicate that LiBH4 and NaBH4 can be formed with a high conversion yield starting from the anhydrous borates under 70 bar H .
    [Show full text]