Gem-Quality Andalusite from Brazil

Total Page:16

File Type:pdf, Size:1020Kb

Gem-Quality Andalusite from Brazil NOTES & NEW TECHNIQUES GEM-QUALITY ANDALUSITE FROM BRAZIL Shyamala Fernandes and Gagan Choudhary article are available in the G&G Data Depository (www.gia.edu/gandg). Widely known as a rock-forming mineral, andalusite is not frequently encountered as a gem material. This article documents the gemo- MATERIALS AND METHODS logical and spectroscopic properties of numer- From the parcel of rough, we randomly selected ous rough and cut samples of gem-quality about 150 specimens for examination that ranged andalusite from Brazil. The color varied from from ~0.4 to 3 g. We studied 15 samples in detail for yellowish green and green to brownish pink their crystallographic features, surface markings, (including bicolored green and brownish pink), cleavage directions, and pleochroism with respect to and some were faceted with the pleochroic col- crystallographic orientation. These samples exhibit- ors attractively oriented. Transparent samples of ed a variety of colors: green, yellowish green to the chiastolite variety of andalusite were partic- brownish green, brownish pink, and distinctly bicol- ularly interesting. All the samples displayed a ored green/pink. In addition, we selected six samples complex growth pattern, with the various inclu- of the pinkish brown to brownish pink variety chias- sions oriented along the growth directions. Heat tolite, which displayed distinct (sometimes partial) treatment produced subtle changes in color, if cross-shaped arrangements of dark inclusions. About any, but fracture filling with resin resulted in 20% of the 150 specimens were chiastolite, and they obvious improvements in apparent clarity. ranged in diaphaneity from transparent to opaque. We selected 72 of the 150 specimens, of moderate commercial quality, for fashioning on the basis of he name andalusite is derived from the Andalusia their coloration, clarity, and projected yield. Of these, Tregion of southern Spain, where the mineral was 18 were faceted (figure 2) and the other 54 were left first discovered (Dana and Ford, 1992). Gem-quality preformed. The preformed stones were categorized material is known from Brazil (Espírito Santo and into three color groups: green (17 specimens), brown- Minas Gerais States), Sri Lanka, the United States, ish pink (14), and strongly pleochroic pinkish Madagascar, Russia (Siberia), Myanmar (O’Donoghue, brown/yellowish green (23). On an additional seven 2006), and China (Liu, 2006). Andalusite varieties specimens (figure 3), we polished the largest parallel include highly pleochroic brownish pink/green (e.g., surfaces so we could obtain RI readings and examine figure 1), Mn-rich bright green (“viridine”), and chias- their internal features. tolite. The last is typically opaque and features a dark Standard gemological tests—including color obser- cross-shaped pattern formed by carbonaceous inclu- vations, SG measurements, fluorescence reactions, sions (Webster, 1994; O’Donoghue, 2006). and visible-range spectroscopy—were performed on This article reports the properties recorded from all samples. RI and optic sign were measured only on an ~1 kg parcel of medium-quality andalusite that was purchased from a gem merchant in Jaipur, India, who deals in rough from Brazil. The exact source of See end of article for About the Authors and Acknowledgments. the andalusite in Brazil was, unfortunately, not GEMS & GEMOLOGY, Vol. 45, No. 2, pp. 120–129. available. Additional photos to accompany this © 2009 Gemological Institute of America 120 NOTES & NEW TECHNIQUES GEMS & GEMOLOGY SUMMER 2009 with immersion, using fiber-optic and other forms of lighting (including darkfield and brightfield). Qualitative energy-dispersive X-ray fluorescence (EDXRF) chemical analyses of 31 green and brown- ish pink preforms, the seven polished slices, and the 18 faceted samples were performed with a PANalytical Minipal 2 instrument using two differ- ent conditions. Elements with lower atomic number (e.g., Al and Si) were measured at 4 kV tube voltage and 0.850 mA tube current with no filter; transition and heavier elements were analyzed at 25 kV and Figure 1. Brazil is a source of rare gem-quality 0.025 mA using an Al filter. andalusite, as shown by this exceptional 17.96 ct Infrared spectra of 31 preforms (green and brown- stone. Due to its strong dichroism, both pleochroic col- ish pink), 15 crystals (4–15 mm thick), seven pol- ors are distinctly visible. Courtesy of Palagems.com, ished slices, and five faceted samples that had under- Fallbrook, California; photo by Robert Weldon. gone fracture-filling processes were recorded in the 6000–400 cm−1 range at a standard resolution of 4 cm−1; 50 scans per sample were recorded with a the seven polished slices and the 18 faceted samples. Nicolet Avatar 360 Fourier-transform infrared (FTIR) To determine the variations in refractive index with spectrometer at room temperature in transmission respect to crystallographic axis, we polished the mode. We collected multiple spectra to find the ori- — – – prism faces [(110), (110), (110), (110)], one of the cor- entation of best transmission (depending on the ners [representing (100) or (010)], and the pinacoidal thickness and transparency of the samples), consid- face (001) of one prismatic crystal. RI was measured ering the pleochroic colors and crystallographic axes. with a GemLED refractometer. We obtained hydro- Raman analysis was performed on five rough static SG values using a Mettler Toledo CB 1503 samples and two polished slices in two directions— electronic balance. Fluorescence was tested using along the c-axis and along the a- or b-axis—in the standard long-wave (366 nm) and short-wave (254 2000–100 cm−1 range using a Renishaw InVia Raman nm) UV bulbs. Absorption spectra were observed confocal microspectrometer with 514 nm Ar-ion using a desk-model GIA Prism 1000 spectroscope. laser excitation, an exposure time of 10 seconds per We examined internal features with both a binocular scan, and 10 scans per sample. gemological microscope and a horizontal microscope We selected 24 rough samples for heat-treatment Figure 2. Eighteen andalusite samples (0.15–0.58 ct) Figure 3. Seven andalusite specimens (0.81–3.87 ct) were faceted to display the range of color. Photo by were polished as slices for inclusion studies and RI G. Choudhary. readings. Photo by G. Choudhary. NOTES & NEW TECHNIQUES GEMS & GEMOLOGY SUMMER 2009 121 were terminated by pinacoids or pyramids (figure 4) and exhibited four-sided prisms, often with the rec- tangular- or rhomb-shaped cross section associated with the orthorhombic crystal system (Webster, 1994). Most of these crystals had only one termina- tion and were broken at the other end. More than 80% of the rough displayed pro- nounced etching, consistent with their frosted sur- faces. This was evident on 12 of the 15 crystals selected for crystallographic study. The etching pat- tern varied from irregular to square or rectangular in Figure 4. A few of the specimens in the rough parcel of shape (figure 5, left). Many of the samples also exhib- andalusite displayed characteristic crystal forms with ited striations on the prism faces, parallel to the prism faces terminated by pyramids. The crystal shown c-axis. One of the crystals displayed two sets of stria- here weighs 1 g. Photo by G. Choudhary. tions on the same face (figure 5, right). One set was oriented along the c-axis, while the other consisted of lateral striations; such patterns indicate twinning or experiments; the original colors were brownish pink (8 various stages of overgrowth where two sectors/crys- samples), green (5), bicolored (3), and brownish pink tals have grown in different directions. Some crystals with a green component at their corners (8). We heated clearly displayed a smaller attached twinned crystal the stones in a muffle furnace with digital temperature oriented along or inclined toward the c-axis of the controls. Six stones were heated at 350°C and eight at main crystal. In addition, step-like planes indicating 550°C for 8 hours, while 10 samples were heated at cleavage (again, see figure 5, left) were present on the 1 1 800°C for 2 ⁄2 hours and then at 550°C for 5 ⁄2 hours. surfaces of all the samples studied; only one cleavage In addition, five of the faceted samples with eye-visible plane was seen in most samples, but in some cases surface-reaching fissures were selected for fracture fill- two directions were visible. Both directions were ori- ing. We used a colorless epoxy resin on three samples ented parallel to the prism faces, as reported previ- and Johnson & Johnson baby oil (also colorless) on two ously (Phillips and Griffen, 1986). samples, at pressures of 40 to 50 psi for 48 hours. The About 20% of the pinkish brown/brownish pink samples were photo-documented before the experi- samples contained black inclusions that formed par- ments, and the colors and inclusions were compared tial or complete chiastolite cross patterns. Most of before and after the treatments. these samples revealed black material in the core when viewed along the c-axis, while a few had a green central core with black outlines and arms. The RESULTS AND DISCUSSION six specimens selected for study included three with Crystal Morphology and Visual Observations. The dark cores (figure 6) and three with green cores (e.g., majority of the rough consisted of broken crystals figure 7, left). The cores varied from transparent to with frosted surfaces. Approximately 10% of them opaque and from almost square (figure 6, center) to Figure 5. Many of the anda- lusite samples displayed strong etching that varied from irregular to square or rectangular (left). Also com- mon were striations on the prism faces (right). The two- directional striations indicate the presence of twinning or various stages of overgrowth. Photomicrographs by G. Choudhary; magnified 60× (left) and 45× (right). 122 NOTES & NEW TECHNIQUES GEMS & GEMOLOGY SUMMER 2009 rectangular (figure 6, left and right).
Recommended publications
  • Andalusite, 0.5 to 1 Meter ANDALUSITE Across, and This Grades Into a Zone of Andalusite Al2sio5 Crystals in the Slate (Snelgrove Et Al., 1944)
    echelon pegmatites passes into a vein of fine- grained (10 to 30 mm) andalusite, 0.5 to 1 meter ANDALUSITE across, and this grades into a zone of andalusite Al2SiO5 crystals in the slate (Snelgrove et al., 1944). 2. Champion mine: As euhedral crystals to 5 cm One of three polymorphs of Al2SiO5 (the other two are kyanite and sillimanite), andalusite is partially altered to muscovite in quartz. On the primarily a constituent of medium-grade 36th level drift, 45 meters east of Number 7 shaft metamorphic rocks derived from shales. Also, it station: A body of massive andalusite in quartzite occurs very much less commonly as a constituent with chalcopyrite and muscovite, adjacent to a of a few rare pegmatites, some quartz veins, and large quartz vein localized along contact between aluminous hydrothermal replacement deposits. It Negaunee Iron Formation and Goodrich Quartzite is often strongly altered to muscovite. Northern (Babcock, 1966a, b). 3. Republic mine: With co- Peninsula. existing sillimanite in rocks adjacent to fayalitic Negaunee Iron Formation (olivine) (Haase and Klein, 1978). Also in a vein with beryl 300 paces east and 75 north of the western ¼ post of section 17, T46N, R29W. FROM: Robinson, G.W., 2004 Mineralogy of Michigan by E.W. Heinrich updated and revised: published by A.E. Seaman Mineral Museum, Houghton, MI, 252p. Figure 35: Andalusite crystals to 3 cm, coated with muscovite in quartz, from the Champion mine, Champion, Marquette County. A. E. Seaman Mineral Museum specimen No. DM 14850, Jeffrey Scovil photograph. Iron County: SW ¼ SE ¼ section 20, T42N, R3W, Lake Mary quadrangle: Found as 1 cm poikiloblasts in the Michigamme Slate with garnet, staurolite, sillimanite, and sericite (Bayley, 1959).
    [Show full text]
  • Metamorphic and Metasomatic Kyanite-Bearing Mineral
    Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece) Alexandre Tarantola, Panagiotis Voudouris, Aurélien Eglinger, Christophe Scheffer, Kimberly Trebus, Marie Bitte, Benjamin Rondeau, Constantinos Mavrogonatos, Ian Graham, Marius Etienne, et al. To cite this version: Alexandre Tarantola, Panagiotis Voudouris, Aurélien Eglinger, Christophe Scheffer, Kimberly Tre- bus, et al.. Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece). Minerals, MDPI, 2019, 10.3390/min9040252. hal-02932247 HAL Id: hal-02932247 https://hal.archives-ouvertes.fr/hal-02932247 Submitted on 7 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. minerals Article Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece) Alexandre Tarantola 1,* , Panagiotis Voudouris 2 , Aurélien Eglinger 1, Christophe Scheffer 1,3, Kimberly Trebus 1, Marie Bitte 1, Benjamin Rondeau 4 , Constantinos Mavrogonatos 2 , Ian Graham 5, Marius Etienne 1 and Chantal Peiffert
    [Show full text]
  • Compressibility and Crystal Structure of Andalusite at High Pressure
    American Mineralogist, Volume 69, pages 513-519,l9A Compressibility and crystal structure of andalusiteat high pressure RussBrr L. Relpn Department of Geological Sciences, University of Washington Seattle, Washington 98195 Llnnv W. FIncEn, RoBEnr M. HezeN Geophysical Laboratory, Carnegie Institution of Washington Washington, D. C. 20008 nxo SusRAre GnosB Department of Geological Sciences, University of Washington Seattle, Washington 98195 Abstract The unit-cell dimensions and crystal structure of andalusite Al2SiO5have been refined from X-ray data on single crystals mounted in a diamond anvil cell at pressuresof 12,25, and 37 kbar. Structure refinementswith anisotropic temperaturefactors yielded weighted R factors of 3.4, 4.9, and5.2%o respectively. The bulk modulusof andalusiteis 1.35t0.10 mbar and the axial compressionratios of orthorhombic unit-cell axes a:b:c are approxi- mately2.1:1.5:1.0. The relativelygreater compressibility of the A(IFOD bond resultsin a beingthe most compressibleaxis. Those bondsthat compress)3obetween I bar and 37 kbar at room temperature, are the bonds that also expand significantly between 25 and 1000"C at room pressure. Polyhedral bulk moduli for the Al(l) octahedron, the Al(2) trigonal bipyramid and the Si tetrahedronare 1.3t0.2, 1.6!0.5, and 4.1+1.5 mbar' respectively. Thus, the aluminum polyhedra are significantly more compressiblethan the silicon tetrahedron. The omega step-scanningtechnique of X-ray intensity data collection results in a significant improvement in accuracy and is recommended for structure determination with the diamond-anvil high-pressurecell. Introduction spectroscopicdata, the phonon spectra ofandalusite and High pressurestructure determination contain valuable their temperaturedependence have been determined and data on the equations of state, interatomic forces and interpreted on the basis of a rigid-ion model by Iishi et al.
    [Show full text]
  • Equations of State and Structures of Andalusite to 9.8 Gpa and Sillimanite to 8.5 Gpa
    American Mineralogist, Volume 91, pages 319–326, 2006 Equations of state and structures of andalusite to 9.8 GPa and sillimanite to 8.5 GPa JASON B. BURT,1,* NANCY L. ROSS,1 ROSS J. ANGEL,1 AND MARIO KOCH1,† 1Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, U.S.A. ABSTRACT The equations of state and structures of andalusite and sillimanite have been determined using high-pressure single-crystal X-ray diffraction. A third-order Birch-Murnaghan equation-of-state Þ t to 14 P-V data points measured between 1 bar and 9.8 GPa for andalusite yields values of KT0 = 144.2(7) GPa and K' = 6.8(2). A similar analysis for sillimanite involving a Þ t to 13 P-V data points between 1 bar and 8.5 GPa results in KT0 = 164(1) GPa and K' = 5.0(3). The axial compression of both structures is nonlinear and highly anisotropic (~60%) with the c-axis being the least compressible axis in both structures. The axial moduli determined with a parameterized form of the third-order Birch-Murnaghan equation of state are: Ka0 = 163(1) GPa, Kb0 = 113.1(7) GPa, and Kc0 = 297(1) GPa with Ka'0 = 2.1(3), Kb' 0 = 5.08(19), and Kc'0 = 11.1(4) for sillimanite, and Ka0 = 99.6(7) GPa, Kb0 = 152.2(9) GPa, and Kc0 = 236(3) GPa with Ka'0 = 5.83(19), Kb' 0 = 7.6(3), and Kc'0 = 5.5(9) for andalusite. The major compression mechanism in both structures involves shortening of bond lengths within the AlO6 octahedra with volume reductions of 7.4% and 5.1% in sillimanite and andalusite, respectively, over the pressure ranges studied.
    [Show full text]
  • Sulfur-Poor Intense Acid Hydrothermal Alteration: a Distinctive Hydrothermal Environment ⇑ Douglas C
    Ore Geology Reviews 88 (2017) 174–187 Contents lists available at ScienceDirect Ore Geology Reviews journal homepage: www.elsevier.com/locate/oregeo Sulfur-poor intense acid hydrothermal alteration: A distinctive hydrothermal environment ⇑ Douglas C. Kreiner , Mark D. Barton Department of Geosciences and Lowell Institute for Mineral Resources, University of Arizona, Tucson, AZ 85721, United States article info abstract Article history: A fundamentally distinct, sulfide-poor variant of intense acid (advanced argillic) alteration occurs at the Received 8 June 2016 highest structural levels in iron oxide-rich hydrothermal systems. Understanding the mineralogy, and Received in revised form 16 February 2017 geochemical conditions of formation in these sulfide-poor mineral assemblages have both genetic and Accepted 20 April 2017 environmental implications. New field observations and compilation of global occurrences of low- Available online 23 April 2017 sulfur advanced argillic alteration demonstrates that in common with the sulfide-rich variants of advanced argillic alteration, sulfide-poor examples exhibit nearly complete removal of alkalis, leaving Keywords: a residuum of aluminum-silicate + quartz. In contrast, the sulfur-poor variants lack the abundant pyri- Iron-oxide copper gold te ± other sulfides, hypogene alunite, Al-leached rocks (residual ‘‘vuggy” quartz) as well as the Au-Cu- IOCG Advanced argillic Ag ± As-rich mineralization of some sulfur-rich occurrences. Associated mineralization is dominated by Low-sulfur advanced argillic magnetite and/or hematite with accessory elements such as Cu, Au, REE, and P. These observations pre- sented here indicate there must be distinct geologic processes that result in the formation of low-sulfur advanced argillic styles of alteration. Hydrolysis of magmatic SO2 to sulfuric acid is the most commonly recognized mechanism for generat- ing hypogene advanced argillic alteration, but is not requisite for its formation.
    [Show full text]
  • TWO ANDALUSITE PEGMATITES from RIVERSIDE COUNTY. CALIFORNIA Ronbnr W. Wnnn, Uniaersity of California, Los Angeles, Col'ifornia
    TWO ANDALUSITE PEGMATITES FROM RIVERSIDE COUNTY. CALIFORNIA RonBnr W. Wnnn, Uniaersity of California, Los Angeles, Col'ifornia. CoNrnNrs Introduction. 581 Coahuila Mountain Area. 582 Sketch of the Regional Geology. 582 Geological Relations of the Pegmatites 584 GeneralStatement.. .. 584 Pegmatites of Group I 584 Pegmatites of Group Il 584 Mineralogy of the Pegmatites. 584 Group I General Mineralogy. 584 Andalusite.. 585 Other Minerals. 586 Group II General Mineralogy. 587 Evidence for Two Generations of Pegmatites 587 Winchester Area. 588 Sketch of the Regional Geology. 588 Geological Relations of the Pegmatites 588 Andalusite. 589 Corundum 589 Origin of Andaiusite and other Aluminum Silicates 590 Introduction. 590 Genesis in the Coahuila Mountain Deposit. 590 Genesis in the Winchester Deposit 592 Summary of Genesis 593 Acknowledgments .. 593 Assrnacr Reported occurrences of andalusite in pegmatite are reviewed and two new occurrences are described in which andalusite, corundum, microcline, and quartz are found in giant intergrowths, in metamorphic terrains. The geological setting is discussed and suggestions are ofiered as to the genesis of the occurrences. Thermal metamorphism of aluminous sedi- difierentiationare thought to accountfor thefeatures of the two n:x!:nlrT"ramorphic Iwrnorucrron Two pegmatite dikes, locally rich in andalusite, have been found in Riverside County, California. One dike containing giant crystals of andalusite is in Coahuila Mountain, an elongate foothill ridge of granitic peaks sub-parallel to the San Jacinto Mountains. The second locality is in an isolated hill standing above the Hemet Plain, near Winchester, 581 582 ROBERT W. WEBB California. The mineralogy, occurrence,and relations of the andalusite- bearing dikes to adjacent pegmatites are discussed.
    [Show full text]
  • A Sillimanite Gneiss Dome in the Yukon Crystalline Terrane, East-Central Alaska: Petrography and Garnet- Biotite Geothermometry
    PROPERTY OF DUG,r c LiiiRARYyw A Sillimanite Gneiss Dome in the Yukon Crystalline Terrane, East-Central Alaska: Petrography and Garnet- Biotite Geothermometry By CYNTHIA DUSEL-BACON and HELEN L. FOSTER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 1170-E Petrographic, geothermometric, and structural data are used to support the hypothesis that a 600-km* area of pelitic metamorphic rocks is a gneiss dome -- -- UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Dusel-Bacon. Cynthia. A sillimanite gneiss dome in the Yukon crystalline terrane, eastcentral Alaska. (Shorter contributions to general geology) (Geological Survey Professional Paper 1170-E) Bibliography Supt. of Docs. no.: 1 19.412: 1170-E 1. Gneiss--Alaska. 2. Intrusions (Geology)-Alaska. I. Foster, Helen Laura. 1919- . 11. Title. Ill. Series. IV. Series: United States: Geological Survey. Professional Paper 1170-E. QE475.G55D87 1983 552'.4 83-60003 1 For sale by the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 42304 CONTENTS Page Abstract .............................................................................................................................................................. El Introduction .....................................................................................................................................................
    [Show full text]
  • Kyanite-Sillimanite-Andalusite 2016.Pmd
    KYANITE, SILLIMANITE AND ANDALUSITE Indian Minerals Yearbook 2016 (Part- III : Mineral Reviews) 55th Edition KYANITE, SILLIMANITE AND ANDALUSITE (ADVANCE RELEASE) GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES Indira Bhavan, Civil Lines, NAGPUR – 440 001 PHONE/FAX NO. (0712) 2565471 PBX : (0712) 2562649, 2560544, 2560648 E-MAIL : [email protected] Website: www.ibm.gov.in November, 2017 30-1 KYANITE, SILLIMANITE AND ANDALUSITE 30 Kyanite, Sillimanite and Andalusite yanite, sillimanite and andalusite are Maharashtra, Rajasthan, Tamil Nadu and West Kunhydrous aluminosilicate minerals that Bengal collectively (Table-1). have the same chemical formula Al2 O3 but differ Sillimanite in crystal structure and physical properties. When The total reserves/resources of sillimanite as 0 calcined at high temperature around 1350 C to per NMI database, based on UNFC system in the 1380 0C for kyanite and slightly higher for country as on 1.4.2015 have been placed at 70.20 andalusite and sillimanite, these minerals are million tonnes. Out of these resources, the converted to mullite, (3 Al2O3.2SiO2) and silica reserves are only 6.50 million tonnes, while about 63.70 million tonnes are the remaining resources. (SiO2) which are refractory minerals. Out of total resources, more than 73.33% are Synthetic mullite is made by heating mixtures granular high-grade, while quartz sillimanite rocks of alumina and silica or bauxite and kaolin at and sillimanite bearing rocks are about 21.64%. Resources of massive sillimanite of all grades are around 1550 0C to 2000 0C. Refractory are heat about 4.83%. The resources are located mainly in resistant materials used in high temperature Odisha (25.15%), Tamil Nadu (24.87%), Uttar applications such as furnances, ladles, kilns, in Pradesh (16.30%), Andhra Pradesh (12.52%), the metallurgical, glass, chemical, cement and Kerala (10.17%) and Assam (6.55%).
    [Show full text]
  • C:\Documents and Settings\Alan Smithee\My Documents\MOTM
    @oqhk1/00Lhmdq`knesgdLnmsg9Jx`mhsd This month’s mineral is an unusual, polymorphic silicate mineral from Brazil. Our write-up explains its industrial and gemological uses, how our specimens were recovered as a by-product of gemstone mining, and why kyanite and other lesser-known gemstones are becoming increasingly popular in jewelry. OVERVIEW PHYSICAL PROPERTIES Chemistry: Al2SiO5 Aluminum Silicate, often containing iron and chromium. Class: Silicates Subclass: Nesosilicates (Independent Tetrahedral Silicates) Group: Subsaturate Nesosilicates (Nesosilicates with one or more oxygen ions in addition to those in the silica tetrahedra.) Subgroup: Kyanite Crystal System: Triclinic Crystal Habits: Usually as tabular or bladed, prismatic crystals elongated on the main axis and rarely terminated; often folded or wavy in bladed aggregates; also massive. Twinning common; well- developed, transparent crystals rare. Color: Primarily blue; also colorless and white; trace elements create shades of gray, green, brown, and occasionally pale pinks, oranges, and yellows. Exhibits pronounced, irregular color zoning. Luster: Vitreous to pearly Transparency: Transparent to translucent Streak: White Cleavage: Perfect in one direction, good in a second direction Fracture: Splintery to fibrous, brittle Hardness: 4.5-5.0 parallel to crystal length; 7.0 perpendicular to crystal length. Specific Gravity: 3.55-3.66 Refractive Index: 1.715-1.732 Luminescence: Weakly fluorescent Distinctive Features and Tests: Blue color; vitreous luster; bladed habit; perfect one-directional cleavage; splintery fracture; substantial variation in directional hardness; and occurrence in metamorphic environments with quartz [SiO2]; garnet-group member almandine [Fe3Al2(SiO4)3]; staurolite [(Fe,Mg,Zn)3-4(Al,Fe)18(Si,Al)8O48H2-4]; biotite micas (a group of basic potassium iron magnesium aluminosilicates); and the polymorphic minerals andalusite and sillimanite [both Al2SiO5].
    [Show full text]
  • A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates by Keith R. Long Open-File Report 91-0579 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1991 Preface In recent years, almost all countries in Latin America have adopted democratic political systems and liberal economic policies. The resulting favorable investment climate has spurred a new wave of North American investment in Latin American mineral resources and has improved cooperation between geoscience organizations on both continents. The U.S. Geological Survey (USGS) has responded to the new situation through cooperative mineral resource investigations with a number of countries in Latin America. These activities are now being coordinated by the USGS's Center for Inter-American Mineral Resource Investigations (CIMRI), recently established in Tucson, Arizona. In the course of CIMRI's work, we have found a need for a compilation of Spanish geological and mining terminology that goes beyond the few Spanish-English geological dictionaries available. Even geologists who are fluent in Spanish often encounter local terminology oijerga that is unfamiliar. These terms, which have grown out of five centuries of mining tradition in Latin America, and frequently draw on native languages, usually cannot be found in standard dictionaries. There are, of course, many geological terms which can be recognized even by geologists who speak little or no Spanish.
    [Show full text]
  • Dictionary of Geology and Mineralogy
    McGraw-Hill Dictionary of Geology and Mineralogy Second Edition McGraw-Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto All text in the dictionary was published previously in the McGRAW-HILL DICTIONARY OF SCIENTIFIC AND TECHNICAL TERMS, Sixth Edition, copyright ᭧ 2003 by The McGraw-Hill Companies, Inc. All rights reserved. McGRAW-HILL DICTIONARY OF GEOLOGY AND MINERALOGY, Second Edi- tion, copyright ᭧ 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 1234567890 DOC/DOC 09876543 ISBN 0-07-141044-9 This book is printed on recycled, acid-free paper containing a mini- mum of 50% recycled, de-inked fiber. This book was set in Helvetica Bold and Novarese Book by the Clarinda Company, Clarinda, Iowa. It was printed and bound by RR Donnelley, The Lakeside Press. McGraw-Hill books are available at special quantity discounts to use as premi- ums and sales promotions, or for use in corporate training programs. For more information, please write to the Director of Special Sales, McGraw-Hill, Professional Publishing, Two Penn Plaza, New York, NY 10121-2298. Or contact your local bookstore. Library of Congress Cataloging-in-Publication Data McGraw-Hill dictionary of geology and mineralogy — 2nd. ed. p. cm. “All text in this dictionary was published previously in the McGraw-Hill dictionary of scientific and technical terms, sixth edition, —T.p.
    [Show full text]
  • Compressibility and Crystal Structure of Sillimanite, Al2sio5, at High Pressure
    Phys Chem Minerals (1997) 25:39±47 Springer-Verlag 1997 ORIGINAL PAPER H. Yang ´ R.M. Hazen ´ L.W. Finger ´ C.T. Prewitt R.T. Downs Compressibility and crystal structure of sillimanite, Al2SiO5, at high pressure Received December 16, 1996 / Revised, accepted February 26, 1997 Abstract The unit-cell dimensions and crystal structure for metamorphic rocks, because of their abundance in of sillimanite at various pressures up to 5.29 GPa have metamorphosed pelitic sediments and simple pressure- been refined from single-crystal X-ray diffraction data. temperature phase equilibrium relations. From the crys- As pressure increases, a and b decrease linearly, whereas tal-chemical point of view, the Al2SiO5 polymorphs are c decreases nonlinearly with a slightly positive curvature. of particular interest because Al occurs in three different The axial compression ratios at room pressure are coordinations; in addition to one-half of total Al that is ba:bb:bc=1.22:1.63:1.00. Sillimanite exhibits the least octahedrally coordinated in each structure, the remaining compressibility along c, but the least thermal expansivity Al is four-, five-, and six-coordinated in sillimanite, and- along a (Skinner et al. 1961; Winter and Ghose 1979). alusite, and kyanite, respectively. Therefore, a detailed The bulk modulus of sillimanite is 171(1) GPa with knowledge of the responses of three polymorphic struc- K©=4 (3), larger than that of andalusite (151 GPa), but tures, especially the different types of Al-O bonds, to high smaller than that of kyanite (193 GPa). The bulk moduli temperature and pressure is essential to the understanding of the [Al1O6], [Al2O4], and [SiO4] polyhedra are of the crystal chemistry, physical properties, and phase re- 162(8), 269(33), and 367(89) GPa, respectively.
    [Show full text]