Glossary of Geologic Terms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
17. Clay Mineralogy of Deep-Sea Sediments in the Northwestern Pacific, Dsdp, Leg 20
17. CLAY MINERALOGY OF DEEP-SEA SEDIMENTS IN THE NORTHWESTERN PACIFIC, DSDP, LEG 20 Hakuyu Okada and Katsutoshi Tomita, Department of Geology, Kagoshima University, Kagoshima 890, Japan INTRODUCTION intensity of montmorillonite can be obtained by sub- tracting the (001) reflection intensity of chlorite from the Clay mineral study of samples collected during Leg 20 of preheating or pretreating reflection intensity at 15 Å. the Deep Sea Drilling Project in the western north Pacific In a specimen with coexisting kaolinite and chlorite, was carried out mainly by means of X-ray diffraction their overlapping reflections make it difficult to determine analyses. Emphasis was placed on determining vertical quantitatively these mineral compositions. For such speci- changes in mineral composition of sediments at each site. mens Wada's method (Wada, 1961) and heat treatment Results of the semiquantitative and quantitative deter- were adopted. minations of mineral compositions of analyzed samples are The following shows examples of the determination of shown in Tables 1, 2, 3, 5, and 7. The mineral suites some intensity ratios of reflections of clay minerals. presented here show some unusual characters as discussed below. The influence of burial diagenesis is also evidenced Case 1 in the vertical distribution of some authigenic minerals. Montmorillonite (two layers of water molecules between These results may contribute to a better understanding silicate layers)—kaolinite mixture. of deep-sea sedimentation on the northwestern Pacific This is the situation in which samples contain both plate. montmorillonite and kaolinite. The first-order basal reflec- tions of these minerals do not overlap. When the (002) ANALYTICAL PROCEDURES reflection of montmorillonite, which appears at about 7 Å, Each sample was dried in air, and X-ray diffraction is absent or negligible, the intensity ratio is easily obtained. -
Mount Apatite Park, Auburn, Maine
Mount Apatite Park is a 325-acre wooded park located in the western portion of the city. The park offers a wide variety of recreational opportunities not often found in municipal park settings. Rock hounds have known about this area for over 150 years, when the first discoveries of gem-quality tourmaline were found there. Since then, the area has experienced a great deal of mineral exploration, both commercial and amateur. Today amateurs may still search the mine tailings for apatite, tourmaline, and quartz specimens (special rules apply). The park features approximately four miles of trails for non-motorized uses such as hiking, mountain biking, cross-country skiing, and snowshoeing. The Andy Valley Sno Gypsies also maintain a snowmobile trailhead within the park, which links to miles of regional snowmobile trails.The park is open from dawn until dusk year-round. As with all municipal parks, hunting is not allowed within park boundaries. Park brochures, which include a trail map, park rules, and other park information, are available at the Auburn Parks & Recreation Department office, Monday through Friday, 8a.m.-4:30p.m. Mount Apatite Park, Auburn, Maine Significance The Mt. Apatite quarries were important producers of commercial feldspar in the early 1900's. They played a prominent part in Maine's mining history. During the course of this mining activity, rare minerals and colorful crystals of green and pink tourmaline were found in both the Greenlaw and Maine Feldspar Quarries. These quarries also produced many large crystals of transparent smoky quartz. The complexity of the mineral assemblage at Mt. -
Download PDF About Minerals Sorted by Mineral Name
MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky. -
Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States
BEST PRACTICES for: Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States First Edition Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Cover Photos—Credits for images shown on the cover are noted with the corresponding figures within this document. Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States September 2010 National Energy Technology Laboratory www.netl.doe.gov DOE/NETL-2010/1420 Table of Contents Table of Contents 5 Table of Contents Executive Summary ____________________________________________________________________________ 10 1.0 Introduction and Background -
Bedrock Geology Glossary from the Roadside Geology of Minnesota, Richard W
Minnesota Bedrock Geology Glossary From the Roadside Geology of Minnesota, Richard W. Ojakangas Sedimentary Rock Types in Minnesota Rocks that formed from the consolidation of loose sediment Conglomerate: A coarse-grained sedimentary rock composed of pebbles, cobbles, or boul- ders set in a fine-grained matrix of silt and sand. Dolostone: A sedimentary rock composed of the mineral dolomite, a calcium magnesium car- bonate. Graywacke: A sedimentary rock made primarily of mud and sand, often deposited by turbidi- ty currents. Iron-formation: A thinly bedded sedimentary rock containing more than 15 percent iron. Limestone: A sedimentary rock composed of calcium carbonate. Mudstone: A sedimentary rock composed of mud. Sandstone: A sedimentary rock made primarily of sand. Shale: A deposit of clay, silt, or mud solidified into more or less a solid rock. Siltstone: A sedimentary rock made primarily of sand. Igneous and Volcanic Rock Types in Minnesota Rocks that solidified from cooling of molten magma Basalt: A black or dark grey volcanic rock that consists mainly of microscopic crystals of pla- gioclase feldspar, pyroxene, and perhaps olivine. Diorite: A plutonic igneous rock intermediate in composition between granite and gabbro. Gabbro: A dark igneous rock consisting mainly of plagioclase and pyroxene in crystals large enough to see with a simple magnifier. Gabbro has the same composition as basalt but contains much larger mineral grains because it cooled at depth over a longer period of time. Granite: An igneous rock composed mostly of orthoclase feldspar and quartz in grains large enough to see without using a magnifier. Most granites also contain mica and amphibole Rhyolite: A felsic (light-colored) volcanic rock, the extrusive equivalent of granite. -
The Geology, Petrography and Geochemistry of Gabbroic Rocks Of
The Geology, Petrography and Geochemistry of Gabbroic Rocks of the Pants Lake Intrusive Suite on the Donner/Teck South Voisey's Bay Property, North-Central Labrador, Canada Heather E. MacDonald A thesis submitted in conformity with the requirements for the degree of Mastet's of Science Graduate Department of the Department of Geology University of Toronto O Copyright by Heather E. MacDonald, 1999 National Library Bibliothèque nationale 1*1 of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellingtori Street 395. rue Wellington OttawaON K1A ON4 OnawaON KlAONQ Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or seii reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de rnicrofiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur consewe la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantiai extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. The Geology, Petrography and Ceochernistry of Gabbroic Rocks of the Pants Lake Intrusive Suite on the Donner/Teck South Voisey's Bay Property, North-Central Labrador, Canada Heather E. MacDonald Master's of Science, 1999 Department of Geology University of Toronto Abstract The South Voisey's Bay property held by Donner Minerals Limited in North-Central Labrador hosts Ni-Cu-Co mineralization within gabbroic rocks of the Pants Lake Intrusive Suite (PLIS). -
Neuro-Fuzzy Classification of Felsic Lava Geomorphology at Alarcon Rise, Mexico Christina Hefron Maschmeyer University of South Carolina
University of South Carolina Scholar Commons Theses and Dissertations 2016 Neuro-Fuzzy Classification of Felsic Lava Geomorphology at Alarcon Rise, Mexico Christina Hefron Maschmeyer University of South Carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Geology Commons Recommended Citation Maschmeyer, C. H.(2016). Neuro-Fuzzy Classification of Felsic Lava Geomorphology at Alarcon Rise, Mexico. (Master's thesis). Retrieved from https://scholarcommons.sc.edu/etd/3566 This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. NEURO-FUZZY CLASSIFICATION OF FELSIC LAVA GEOMORPHOLOGY AT ALARCON RISE, MEXICO by Christina Hefron Maschmeyer Bachelor of Science College of Charleston, 2014 Bachelor of Arts College of Charleston, 2014 Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science in Geological Sciences College of Arts and Sciences University of South Carolina 2016 Accepted by: Scott White, Director of Thesis Michael Bizimis, Reader Brian Dreyer, Reader Lacy Ford, Senior Vice Provost and Dean of Graduate Studies © Copyright by Christina Hefron Maschmeyer, 2016 All Rights Reserved. ii DEDICATION This thesis is dedicated to Dr. Jim Carew for making me go to graduate school. iii ACKNOWLEDGEMENTS Data for this study were collected during cruises in 2012 aboard the R/V Zephyr and R/V Western Flyer and during 2015 on the R/V Rachel Carson and R/V Western Flyer from the Monterey Bay Aquarium Research Institute. I want to thank the captains, crews, ROV pilots and science parties for their work during these expeditions. -
Self-Guiding Geology Tour of Stanley Park
Page 1 of 30 Self-guiding geology tour of Stanley Park Points of geological interest along the sea-wall between Ferguson Point & Prospect Point, Stanley Park, a distance of approximately 2km. (Terms in bold are defined in the glossary) David L. Cook P.Eng; FGAC. Introduction:- Geomorphologically Stanley Park is a type of hill called a cuesta (Figure 1), one of many in the Fraser Valley which would have formed islands when the sea level was higher e.g. 7000 years ago. The surfaces of the cuestas in the Fraser valley slope up to the north 10° to 15° but approximately 40 Mya (which is the convention for “million years ago” not to be confused with Ma which is the convention for “million years”) were part of a flat, eroded peneplain now raised on its north side because of uplift of the Coast Range due to plate tectonics (Eisbacher 1977) (Figure 2). Cuestas form because they have some feature which resists erosion such as a bastion of resistant rock (e.g. volcanic rock in the case of Stanley Park, Sentinel Hill, Little Mountain at Queen Elizabeth Park, Silverdale Hill and Grant Hill or a bed of conglomerate such as Burnaby Mountain). Figure 1: Stanley Park showing its cuesta form with Burnaby Mountain, also a cuesta, in the background. Page 2 of 30 Figure 2: About 40 million years ago the Coast Mountains began to rise from a flat plain (peneplain). The peneplain is now elevated, although somewhat eroded, to about 900 metres above sea level. The average annual rate of uplift over the 40 million years has therefore been approximately 0.02 mm. -
Module 7 Igneous Rocks IGNEOUS ROCKS
Module 7 Igneous Rocks IGNEOUS ROCKS ▪ Igneous Rocks form by crystallization of molten rock material IGNEOUS ROCKS ▪ Igneous Rocks form by crystallization of molten rock material ▪ Molten rock material below Earth’s surface is called magma ▪ Molten rock material erupted above Earth’s surface is called lava ▪ The name changes because the composition of the molten material changes as it is erupted due to escape of volatile gases Rocks Cycle Consolidation Crystallization Rock Forming Minerals 1200ºC Olivine High Ca-rich Pyroxene Ca-Na-rich Amphibole Intermediate Na-Ca-rich Continuous branch Continuous Discontinuous branch Discontinuous Biotite Na-rich Plagioclase feldspar of liquid increases liquid of 2 Temperature decreases Temperature SiO Low K-feldspar Muscovite Quartz 700ºC BOWEN’S REACTION SERIES Rock Forming Minerals Olivine Ca-rich Pyroxene Ca-Na-rich Amphibole Na-Ca-rich Continuous branch Continuous Discontinuous branch Discontinuous Biotite Na-rich Plagioclase feldspar K-feldspar Muscovite Quartz BOWEN’S REACTION SERIES Rock Forming Minerals High Temperature Mineral Suite Olivine • Isolated Tetrahedra Structure • Iron, magnesium, silicon, oxygen • Bowen’s Discontinuous Series Augite • Single Chain Structure (Pyroxene) • Iron, magnesium, calcium, silicon, aluminium, oxygen • Bowen’s Discontinuos Series Calcium Feldspar • Framework Silicate Structure (Plagioclase) • Calcium, silicon, aluminium, oxygen • Bowen’s Continuous Series Rock Forming Minerals Intermediate Temperature Mineral Suite Hornblende • Double Chain Structure (Amphibole) -
Full-Text PDF (Final Published Version)
Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H. -
The Science Behind Volcanoes
The Science Behind Volcanoes A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, volcanic ash and gases to escape from the magma chamber below the surface. Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust in the interiors of plates, e.g., in the East African Rift, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "Plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so- called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. Volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere. -
Andalusite, 0.5 to 1 Meter ANDALUSITE Across, and This Grades Into a Zone of Andalusite Al2sio5 Crystals in the Slate (Snelgrove Et Al., 1944)
echelon pegmatites passes into a vein of fine- grained (10 to 30 mm) andalusite, 0.5 to 1 meter ANDALUSITE across, and this grades into a zone of andalusite Al2SiO5 crystals in the slate (Snelgrove et al., 1944). 2. Champion mine: As euhedral crystals to 5 cm One of three polymorphs of Al2SiO5 (the other two are kyanite and sillimanite), andalusite is partially altered to muscovite in quartz. On the primarily a constituent of medium-grade 36th level drift, 45 meters east of Number 7 shaft metamorphic rocks derived from shales. Also, it station: A body of massive andalusite in quartzite occurs very much less commonly as a constituent with chalcopyrite and muscovite, adjacent to a of a few rare pegmatites, some quartz veins, and large quartz vein localized along contact between aluminous hydrothermal replacement deposits. It Negaunee Iron Formation and Goodrich Quartzite is often strongly altered to muscovite. Northern (Babcock, 1966a, b). 3. Republic mine: With co- Peninsula. existing sillimanite in rocks adjacent to fayalitic Negaunee Iron Formation (olivine) (Haase and Klein, 1978). Also in a vein with beryl 300 paces east and 75 north of the western ¼ post of section 17, T46N, R29W. FROM: Robinson, G.W., 2004 Mineralogy of Michigan by E.W. Heinrich updated and revised: published by A.E. Seaman Mineral Museum, Houghton, MI, 252p. Figure 35: Andalusite crystals to 3 cm, coated with muscovite in quartz, from the Champion mine, Champion, Marquette County. A. E. Seaman Mineral Museum specimen No. DM 14850, Jeffrey Scovil photograph. Iron County: SW ¼ SE ¼ section 20, T42N, R3W, Lake Mary quadrangle: Found as 1 cm poikiloblasts in the Michigamme Slate with garnet, staurolite, sillimanite, and sericite (Bayley, 1959).