PHYLOGENOMIC CONFLICT in HYLARANA 1 Exons, Introns, And

Total Page:16

File Type:pdf, Size:1020Kb

PHYLOGENOMIC CONFLICT in HYLARANA 1 Exons, Introns, And bioRxiv preprint doi: https://doi.org/10.1101/765610; this version posted September 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. PHYLOGENOMIC CONFLICT IN HYLARANA 1 Exons, Introns, and UCEs Reveal Conflicting Phylogenomic Signals in a Rapid 2 Radiation of Frogs (Ranidae: Hylarana) 3 4 Kin Onn Chan1,2,*, Carl R. Hutter2, Perry L. Wood, Jr.3, L. Lee Grismer4, Rafe M. 5 Brown2 6 7 1 Lee Kong Chian National History Museum, Faculty of Science, National University of 8 Singapore, 2 Conservatory Drive, Singapore 117377. Email: [email protected] 9 10 2 Biodiversity Institute and Department of Ecology and Evolutionary Biology, University 11 of Kansas, Lawrence, KS 66045, USA. Email: [email protected]; [email protected] 12 13 3 Department of Biological Sciences & Museum of Natural History, Auburn University, 14 Auburn, Alabama 36849, USA. Email: [email protected] 15 16 4 Herpetology Laboratory, Department of Biology, La Sierra University, 4500 Riverwalk 17 Parkway, Riverside, California 92505, USA. Email: [email protected] 18 19 *Corresponding author 20 1 bioRxiv preprint doi: https://doi.org/10.1101/765610; this version posted September 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. CHAN ET AL. 21 Abstract.—Numerous types of genomic markers have been used to resolve recalcitrant 22 nodes, yet their relative performance and congruence have rarely been compared directly. 23 Using target-capture sequencing, we obtained more than 12,000 highly informative exons 24 and introns, including ~600 UCEs to address long-standing systematic problems in 25 Southeast Asian Golden-backed frogs of the genus complex Hylarana. To reduce gene 26 tree estimation errors, we filtered the data using different thresholds of taxon 27 completeness and parsimony informative sites (PIS) in addition to using the best-fit 28 models of DNA evolution to estimate individual single-locus gene trees. We then 29 estimated species trees using concatenation (IQ-TREE), summary coalescent (ASTRAL), 30 and distance-based methods (ASTRID). Topological incongruence among these methods 31 and variation in nodal support were examined in detail using a suite of different measures 32 including quartet frequencies, bootstrap, local posterior probabilities, gene concordance 33 factors, and quartet scores. Results showed that high levels of incongruence were present 34 along the backbone of the phylogeny, specifically surrounding short internodes. We also 35 demonstrated that filtering data by PIS was more efficacious at improving congruence 36 compared to filtering by missing data, and that exons were more sensitive to data filtering 37 than introns and UCEs. Despite utilizing more than 6.9 million characters and 2.7 million 38 PIS, analyses failed to converge on a single concordant topology. Instead, exons, introns, 39 and UCEs produced genuinely strongly-supported yet conflicting phylogenetic signals, 40 which affected our phylogeny estimates at different scales/levels—indicating a general, 41 potentially alarming challenge for phylogenomics inference employing many of todays 42 massive datasets. Additionally, bootstrap values were consistently high despite low levels 43 of congruence and high proportions of gene trees that support conflicting topologies, bioRxiv preprint doi: https://doi.org/10.1101/765610; this version posted September 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. PHYLOGENOMIC CONFLICT IN HYLARANA 44 indicating that traditional bootstraps are likely poor measures of congruence or branch 45 support in large phylogenomic datasets, especially during instances of rapid 46 diversification. Although low bootstrap values do ostensibly reflect low heuristic support, 47 we recommend that high bootstrap support obtained from large genomic datasets be 48 interpreted with caution. Additional complimentary measures such quartet frequencies, 49 gene concordance factors, quartet scores, and posterior probabilities can be useful to 50 provide a more robust and accurate representation of bipartition certainty and ultimately, 51 evolutionary history of incompletely resolved or poorly-understood clades. 52 Keywords: FrogCap, bootstrap, branch support, incongruence, quartet frequency, gene 53 concordance factor 54 55 Generating large amounts of data is no longer an issue in the era of 56 phylogenomics. Instead, limitations are imposed by model complexities (parameter 57 space) and computational tractability. Furthermore, analyzing genome-scale data has 58 revealed a different suite of challenges including high levels of incongruence, conflicting 59 evolutionary histories, and systematic bias (Gee 2003; Phillips et al. 2004; Philippe et al. 60 2011; Delsuc et al. 2005; Philippe et al. 2005; Jeffroy et al. 2006; Galtier and Daubin 61 2008; Dell’Ampio et al. 2014; Smith et al. 2015; Zhang et al. 2015; Leaché et al. 2015; 62 Kendall and Colijn 2016; Crowl et al. 2017; Reddy et al. 2017; Platt et al. 2018; Pease et 63 al. 2018; Roycroft et al. 2019). It is therefore important to find a “sweetspot” that 64 optimizes the shifting trade-off between amount of data and analytical resources without 65 compromising the accuracy of inferences. As such, understanding the impacts of data 66 filtering/subsampling strategies and performing robust assessments on analytical methods 3 bioRxiv preprint doi: https://doi.org/10.1101/765610; this version posted September 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. CHAN ET AL. 67 and the accuracy of species tree inferences are integral components to the rapidly 68 expanding future of the field. 69 Incongruence can arise not only from biological processes such as hybridization, 70 horizontal gene transfer, and incomplete lineage sorting that violate the assumption of 71 orthology (Whitfield and Lockhart 2007; Whitfield and Kjer 2008; Eaton et al. 2015; 72 Meiklejohn et al. 2016; Tarver et al. 2016; Ottenburghs et al. 2017; Léveillé-Bourret et al. 73 2018), but also through systematic biases associated with the analysis of large datasets. 74 Gene tree estimation errors (GTEE) resulting from (but not limited to) model 75 misspecification or insufficient phylogenetic signal can increase noise and affect 76 phylogenetic inference (Roure et al. 2013; Doyle et al. 2015; Roch and Warnow 2015; 77 Vachaspati and Warnow 2015; Blom et al. 2017; Molloy and Warnow 2017; Nute et al. 78 2018). Due to different underlying models and assumptions, different analytical methods 79 such as concatenation, distance-based, and coalescent-based summary methods can also 80 produce variable results. Several studies have argued that concatenation can perform as 81 well or better than summary methods, which may be adversely affected by high GTEE 82 (Gatesy and Springer 2014; Simmons and Gatesy 2015; Tonini et al. 2015). Conversely, 83 concatenation analyses have also been shown to fail or produce spuriously high support 84 for the wrong tree (Weisrock et al. 2012; Wielstra et al. 2014; Roch and Steel 2015; 85 Warnow 2015; Molloy and Warnow 2017; Mendes and Hahn 2018). Although it is 86 widely acknowledged that GTEE is an important analytical challenge, potentially 87 affecting species tree estimation, recent studies suggest that distance- and summary-based 88 methods that are statistically consistent under the MSC model may perform better under a 89 wide range of model conditions—and that they have the potential to produce low error bioRxiv preprint doi: https://doi.org/10.1101/765610; this version posted September 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. PHYLOGENOMIC CONFLICT IN HYLARANA 90 rates when many genes are available and GTEE is low (Bayzid and Warnow 2013; Patel 91 2013; Lanier and Knowles 2015; Roch and Warnow 2015; Mirarab et al. 2016; Baca et 92 al. 2017; Molloy and Warnow 2017; Nute et al. 2018; Vachaspati and Warnow 2018). 93 Therefore, if large amounts of gene trees can be estimated with low GTEE, the power of 94 coalescent-based methods can be harnessed to estimate species trees with high accuracy. 95 Analyses of massive gene sequence datasets have also demonstrated how 96 traditional measures of support such as the non-parametric bootstrap and posterior 97 probabilities can be positively misleading (Phillips et al. 2004; Seo 2008; Wiens and 98 Morrill 2011; Kumar et al. 2012; Weisrock et al. 2012; Yang and Zhu 2018; Roycroft et 99 al. 2019). Resampling methods such as non-parametric bootstrapping essentially measure 100 site-sampling variance as opposed to observed variance in the data. Because site- 101 sampling variance is an inverse function of sample size (amount of data), bootstrap 102 values will inevitably inflate as the amount of data increases (Felsenstein 1985; Kumar et 103 al. 2012); this tendency does not necessarily reflect variation in the data themselves. In 104 contrast, calculating Bayesian posterior probabilities is computationally expensive and 105 can also produce spuriously high support in big datasets (Susko 2008; Yang and Zhu 106 2018). As genome-scale datasets become more common, more robust characterizations of 107 uncertainty is needed to tease apart conflict from true signal strength (Gadagkar et al.
Recommended publications
  • Phylogenetic Analysis of Anostracans (Branchiopoda: Anostraca) Inferred from Nuclear 18S Ribosomal DNA (18S Rdna) Sequences
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 25 (2002) 535–544 www.academicpress.com Phylogenetic analysis of anostracans (Branchiopoda: Anostraca) inferred from nuclear 18S ribosomal DNA (18S rDNA) sequences Peter H.H. Weekers,a,* Gopal Murugan,a,1 Jacques R. Vanfleteren,a Denton Belk,b and Henri J. Dumonta a Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium b Biology Department, Our Lady of the Lake University of San Antonio, San Antonio, TX 78207, USA Received 20 February 2001; received in revised form 18 June 2002 Abstract The nuclear small subunit ribosomal DNA (18S rDNA) of 27 anostracans (Branchiopoda: Anostraca) belonging to 14 genera and eight out of nine traditionally recognized families has been sequenced and used for phylogenetic analysis. The 18S rDNA phylogeny shows that the anostracans are monophyletic. The taxa under examination form two clades of subordinal level and eight clades of family level. Two families the Polyartemiidae and Linderiellidae are suppressed and merged with the Chirocephalidae, of which together they form a subfamily. In contrast, the Parartemiinae are removed from the Branchipodidae, raised to family level (Parartemiidae) and cluster as a sister group to the Artemiidae in a clade defined here as the Artemiina (new suborder). A number of morphological traits support this new suborder. The Branchipodidae are separated into two families, the Branchipodidae and Ta- nymastigidae (new family). The relationship between Dendrocephalus and Thamnocephalus requires further study and needs the addition of Branchinella sequences to decide whether the Thamnocephalidae are monophyletic. Surprisingly, Polyartemiella hazeni and Polyartemia forcipata (‘‘Family’’ Polyartemiidae), with 17 and 19 thoracic segments and pairs of trunk limb as opposed to all other anostracans with only 11 pairs, do not cluster but are separated by Linderiella santarosae (‘‘Family’’ Linderiellidae), which has 11 pairs of trunk limbs.
    [Show full text]
  • Investgating Determinants of Phylogeneic Accuracy
    IMPACT OF MOLECULAR EVOLUTIONARY FOOTPRINTS ON PHYLOGENETIC ACCURACY – A SIMULATION STUDY Dissertation Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in Biology by Bhakti Dwivedi UNIVERSITY OF DAYTON August, 2009 i APPROVED BY: _________________________ Gadagkar, R. Sudhindra Ph.D. Major Advisor _________________________ Robinson, Jayne Ph.D. Committee Member Chair Department of Biology _________________________ Nielsen, R. Mark Ph.D. Committee Member _________________________ Rowe, J. John Ph.D. Committee Member _________________________ Goldman, Dan Ph.D. Committee Member ii ABSTRACT IMPACT OF MOLECULAR EVOLUTIONARY FOOTPRINTS ON PHYLOGENETIC ACCURACY – A SIMULATION STUDY Dwivedi Bhakti University of Dayton Advisor: Dr. Sudhindra R. Gadagkar An accurately inferred phylogeny is important to the study of molecular evolution. Factors impacting the accuracy of a phylogenetic tree can be traced to several consecutive steps leading to the inference of the phylogeny. In this simulation-based study our focus is on the impact of the certain evolutionary features of the nucleotide sequences themselves in the alignment rather than any source of error during the process of sequence alignment or due to the choice of the method of phylogenetic inference. Nucleotide sequences can be characterized by summary statistics such as sequence length and base composition. When two or more such sequences need to be compared to each other (as in an alignment prior to phylogenetic analysis) additional evolutionary features come into play, such as the overall rate of nucleotide substitution, the ratio of two specific instantaneous, rates of substitution (rate at which transitions and transversions occur), and the shape parameter, of the gamma distribution (that quantifies the extent of iii heterogeneity in substitution rate among sites in an alignment).
    [Show full text]
  • Eidesstattliche Erklärung
    ZENTRUM FÜR BIODIVERSITÄT UND NACHHALTIGE LANDNUTZUNG SEKTION BIODIVERSITÄT, ÖKOLOGIE UND NATURSCHUTZ CENTRE OF BIODIVERSITY AND SUSTAINABLE LAND USE SECTION: BIODIVERSITY, ECOLOGY AND NATURE CONSERVATION Mitochondrial genomes and the complex evolutionary history of the cercopithecine tribe Papionini Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen vorgelegt von Dipl. Biol. Rasmus Liedigk aus Westerstede Göttingen, September 2014 Referent: PD Dr. Christian Roos Korreferent: Prof. Dr. Eckhard Heymann Tag der mündlichen Prüfung: 19.9.2014 Table of content 1 General introduction .............................................................................................. 1 1.1 An introduction to phylogenetics ....................................................................... 1 1.2 Tribe Papionini – subfamily Cercopithecinae ..................................................... 3 1.2.1 Subtribe Papionina.................................................................................... 4 1.2.2 Subtribe Macacina, genus Macaca ........................................................... 5 1.3 Papionin fossils in Europe and Asia................................................................... 7 1.3.1 Fossils of Macaca ..................................................................................... 8 1.3.2 Fossils of Theropithecus ........................................................................... 9 1.4 The mitochondrial genome and its
    [Show full text]
  • Helminths of 13 Species of Microhylid Frogs (Anura: Microhylidae) from Papua New Guinea Stephen R
    JOURNAL OF NATURAL HISTORY, 2016 http://dx.doi.org/10.1080/00222933.2016.1190416 Helminths of 13 species of microhylid frogs (Anura: Microhylidae) from Papua New Guinea Stephen R. Goldberga, Charles R. Burseyb and Fred Krausc aDepartment of Biology, Whittier College, Whittier, CA, USA; bDepartment of Biology, Pennsylvania State University, Shenango Campus, Sharon, PA, USA; cDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA ABSTRACT ARTICLE HISTORY In an attempt to better document the invertebrate biodiversity of the Received 8 December 2015 threatened fauna of Papua New Guinea (PNG), 208 microhylid frogs Accepted 27 April 2016 representing 13 species collected in 2009 and 2010 in PNG were KEYWORDS examined for endoparasitic helminths. This study found mature indi- Endoparasites; microhylid viduals of one species of Digenea (Opisthioglyphe cophixali), adults of frogs; Microhylidae; Papua two species of Cestoda (Nematotaenia hylae, Cylindrotaenia sp.) and New Guinea cysticerci of an unidentified cestode species; adults of nine species of Nematoda (Aplectana krausi, Bakeria bakeri, Cosmocerca novaeguineae, Cosmocercella phrynomantisi, Falcaustra papuensis, Icosiella papuensis, Ochtoterenella papuensis, Parathelandros allisoni, Parathelandros ander- soni), and one species of Acanthocephala (cystacanths in the family Centrorhynchidae). There was a high degree of endemism among the helminth species infecting the microhylids, with 83% of the species known only from PNG. Yet the helminth fauna infecting
    [Show full text]
  • Genetics 540 Winter, 2001 Models of DNA Evolution – Part 2 Joe Felsenstein Department of Genetics University of Washington
    Genetics 540 Winter, 2001 Models of DNA evolution { part 2 Joe Felsenstein Department of Genetics University of Washington joe@genetics A model of variation in evolutionary rates among sites The basic idea is that the rate at each site is drawn independently from a distribution of rates. The most widely used choice is the Gamma distribution, which has density function (if its mean is 1): αα rα 1 e α r f(r) = − − Γ(α) Unrealistic aspects of the model: • There is no reason, aside from mathematical convenience, to assume that the Gamma is the right distribution. A common variation is to assume there is a separate probability f0 of having rate 0. • Rates at different sites appear to be correlated, which this model does not allow. • Rates are not constant throughout evolution { they change with time. α = 0.25 cv = 2 α = 11.1111 α = 1 cv = 0.3 frequency cv = 1 0 0.5 1 1.5 2 rate Gamma distributions with mean 1 and different coefficients of variation (standard deviation / mean). α = 1=CV 2 is the \shape parameter" of the Gamma distribution Hidden Markov Models These are the most widely used models allowing rate variation to be correlated along the sequence. We assume: • There are a finite number of rates, m. Rate i is ri. • There are probabilities pi of a site having rate i. • A process not visible to us (\hidden") assigns rates to sites. It is a Markov process working along the sequence. For example it might have transition probability Prob (jji) of changing to rate j in the next site, given that it is at rate i in this site.
    [Show full text]
  • Cfreptiles & Amphibians
    HTTPS://JOURNALS.KU.EDU/REPTILESANDAMPHIBIANSTABLE OF CONTENTS IRCF REPTILES & AMPHIBIANSREPTILES • VOL & AMPHIBIANS15, NO 4 • DEC 2008 • 28(2):189 270–273 • AUG 2021 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS FirstFEATURE ARTICLESRecord of Interspecific Amplexus . Chasing Bullsnakes (Pituophis catenifer sayi) in Wisconsin: betweenOn the Road to Understandinga Himalayan the Ecology and Conservation of the Toad, Midwest’s Giant Serpent Duttaphrynus ...................... Joshua M. Kapfer 190 . The Shared History of Treeboas (Corallus grenadensis) and Humans on Grenada: himalayanusA Hypothetical Excursion ............................................................................................................................ (Bufonidae), and a RobertHimalayan W. Henderson 198 RESEARCH ARTICLES Paa. TheFrog, Texas Horned Lizard Nanorana in Central and Western Texas ....................... vicina Emily Henry, Jason(Dicroglossidae), Brewer, Krista Mougey, and Gad Perry 204 . The Knight Anole (Anolis equestris) in Florida from ............................................. the BrianWestern J. Camposano, Kenneth L. Krysko, Himalaya Kevin M. Enge, Ellen M. Donlan, andof Michael India Granatosky 212 CONSERVATION ALERT . World’s Mammals in Crisis ...............................................................................................................................V. Jithin, Sanul Kumar, and Abhijit Das .............................. 220 . More Than Mammals .....................................................................................................................................................................
    [Show full text]
  • Terrestrial Biodiversity Field Assessment in the May River and Upper Sepik River Catchments SDP-6-G-00-01-T-003-018
    Frieda River Limited Sepik Development Project Environmental Impact Statement Appendix 8b – Terrestrial Biodiversity Field Assessment in the May River and Upper Sepik River Catchments SDP-6-G-00-01-T-003-018 Terrestrial Biodiversity Field Assessment in the May River and Upper Sepik River Catchments Sepik Development Project (Infrastructure Corridor) August 2018 SDP-6-G-00-01-T-003-018 page i CONTRIBUTORS Wayne Takeuchi Wayne is a retired tropical forest research biologist from the Harvard University Herbaria and Arnold Arboretum. He is one of the leading floristicians in Papuasian botany and is widely known in professional circles for wide-ranging publications in vascular plant taxonomy and conservation. His 25-year career as a resident scientist in Papua New Guinea began in 1988 at the Wau Ecology Institute (subsequently transferring to the PNG National Herbarium in 1992) and included numerous affiliations as a research associate or consultant with academic institutions, non-governmental organisations (NGOs) and corporate entities. Despite taking early retirement at age 57, botanical work has continued to the present on a selective basis. He has served as the lead botanist on at least 38 multidisciplinary surveys and has 97 peer-reviewed publications on the Malesian flora. Kyle Armstrong, Specialised Zoological Pty. Ltd – Mammals Dr Kyle Armstrong is a consultant Zoologist, trading as ‘Specialised Zoological’, providing a variety of services related to bats, primarily on acoustic identification of bat species from echolocation call recordings, design and implementation of targeted surveys and long term monitoring programmes for bats of conservation significance, and the provision of management advice on bats. He is also currently Adjunct Lecturer at The University of Adelaide, an Honorary Research Associate of the South Australian Museum, and had four years as President of the Australasian Bat Society, Inc.
    [Show full text]
  • BOA5.1-2 Frog Biology, Taxonomy and Biodiversity
    The Biology of Amphibians Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) Phyllomedusidae: Agalychnis annae 5.1-2: Frog Biology, Taxonomy & Biodiversity Part 2, Neobatrachia Hylidae: Dendropsophus ebraccatus CLassification of Order: Anura † Triadobatrachus Ascaphidae Leiopelmatidae Bombinatoridae Alytidae (Discoglossidae) Pipidae Rhynophrynidae Scaphiopopidae Pelodytidae Megophryidae Pelobatidae Heleophrynidae Nasikabatrachidae Sooglossidae Calyptocephalellidae Myobatrachidae Alsodidae Batrachylidae Bufonidae Ceratophryidae Cycloramphidae Hemiphractidae Hylodidae Leptodactylidae Odontophrynidae Rhinodermatidae Telmatobiidae Allophrynidae Centrolenidae Hylidae Dendrobatidae Brachycephalidae Ceuthomantidae Craugastoridae Eleutherodactylidae Strabomantidae Arthroleptidae Hyperoliidae Breviceptidae Hemisotidae Microhylidae Ceratobatrachidae Conrauidae Micrixalidae Nyctibatrachidae Petropedetidae Phrynobatrachidae Ptychadenidae Ranidae Ranixalidae Dicroglossidae Pyxicephalidae Rhacophoridae Mantellidae A B † 3 † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus 2 Anura Sub Orders Super Families (including Apoda Urodela Prosalirus †) 1 Archaeobatrachia A Hyloidea 2 Mesobatrachia B Ranoidea 1 Anura Salientia 3 Neobatrachia Batrachia Lissamphibia *Gerobatrachus may be the sister taxon Salientia Temnospondyls
    [Show full text]
  • Amphibian Ark Number 42 Keeping Threatened Amphibian Species Afloat March 2018
    AArk Newsletter NewsletterNumber 42, March 2018 amphibian ark Number 42 Keeping threatened amphibian species afloat March 2018 In this issue... The first experience of reintroduction of the Critically Endangered Golden Mantella frog in ® Madagascar ...................................................... 2 Resources on the AArk web site for amphibian program managers.......................... 4 Conservation Needs Assessments in Colombia .......................................................... 5 First release trials for Variable Harlequin Frogs in Panama .............................................. 6 New children’s books by Amphibian Ark ........... 8 North America Biology, Husbandry and Conservation Training Course .......................... 9 Conservation Needs Assessments for Malaysian amphibians .................................... 11 A European early warning system for a deadly salamander pathogen ........................ 12 Recent animal husbandry documents on the AArk web site.................................................. 15 Save Amphibians, Join the #AmphibiousAF Family ............................................................. 15 A future-proofing plan for Papua New Guinea frogs ................................................... 16 Amphibian Ark donors, January 2017 - March 2018..................................................... 18 Amphibian Ark c/o Conservation Planning Specialist Group 12101 Johnny Cake Ridge Road Apple Valley MN 55124-8151 USA www.amphibianark.org Phone: +1 952 997 9800 Fax: +1 952 997 9803 World
    [Show full text]
  • ANALISIS FILOGENETIK DAN ESTIMASI WAKTU DIVERGENSI Amolops Cope, 1865 SENSU LATO PAPARAN SUNDA SECARA INSILICO
    ANALISIS FILOGENETIK DAN ESTIMASI WAKTU DIVERGENSI Amolops Cope, 1865 SENSU LATO PAPARAN SUNDA SECARA INSILICO SKRIPSI Oleh : LUHUR SEPTIADI NIM. 15620102 JURUSAN BIOLOGI FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2019 ANALISIS FILOGENETIK DAN ESTIMASI WAKTU DIVERGENSI Amolops Cope, 1865 SENSU LATO PAPARAN SUNDA SECARA INSILICO SKRIPSI Oleh : LUHUR SEPTIADI NIM. 15620102 Diajukan Kepada: Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang Untuk Memenuhi Salah Satu Persyaratan dalam Memperoleh Gelar Sarjana Sains (S.Si) JURUSAN BIOLOGI FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2019 i ANALISIS FILOGENETIK DAN ESTIMASI WAKTU DIVERGENSI Amolops Cope, 1865 SENSU LATO PAPARAN SUNDA SECARA INSILICO SKRIPSI Oleh : LUHUR SEPTIADI NIM. 15620102 Telah diperiksa dan disetujui untuk diuji Tanggal : 13 Juni 2019 Pembimbing I Pembimbing II Berry Fakhry Hanifa, M.Sc Oky Bagas Prasetyo, M.Pd.I NIDT. 19871217 20160801 1 066 NIDT. 19890113 20180201 1 244 Mengetahui, Ketua Jurusan Biologi Romaidi, M.Si., D.Sc NIP. 19810201 200901 1 019 ii ANALISIS FILOGENETIK DAN ESTIMASI WAKTU DIVERGENSI Amolops Cope, 1865 SENSU LATO PAPARAN SUNDA SECARA INSILICO SKRIPSI Oleh : LUHUR SEPTIADI NIM. 15620102 telah dipertahankan Di depan Dewan Penguji Skripsi dan dinyatakan diterima sebagai salah satu persyaratan untuk memperoleh gelar Sarjana Sains (S.Si) Tanggal: 13 Juni 2019 Penguji Utama Kholifah Holil, M.Si NIP. 19751106 200912 2 002 Ketua Penguji Fitriyah, M.Si NIP. 19860725 201903 2 013 Sekretaris Penguji Berry Fakhry Hanifa, M.Sc NIDT. 19871217 20160801 1 066 Anggota Penguji Oky Bagas Prasetyo, M.Pd.I NIDT. 19890113 20180201 1 244 Mengetahui, Ketua Jurusan Biologi Romaidi, M.Si., D.Sc NIP.
    [Show full text]
  • 1704632114.Full.Pdf
    Phylogenomics reveals rapid, simultaneous PNAS PLUS diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary Yan-Jie Fenga, David C. Blackburnb, Dan Lianga, David M. Hillisc, David B. Waked,1, David C. Cannatellac,1, and Peng Zhanga,1 aState Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; bDepartment of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611; cDepartment of Integrative Biology and Biodiversity Collections, University of Texas, Austin, TX 78712; and dMuseum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720 Contributed by David B. Wake, June 2, 2017 (sent for review March 22, 2017; reviewed by S. Blair Hedges and Jonathan B. Losos) Frogs (Anura) are one of the most diverse groups of vertebrates The poor resolution for many nodes in anuran phylogeny is and comprise nearly 90% of living amphibian species. Their world- likely a result of the small number of molecular markers tra- wide distribution and diverse biology make them well-suited for ditionally used for these analyses. Previous large-scale studies assessing fundamental questions in evolution, ecology, and conser- used 6 genes (∼4,700 nt) (4), 5 genes (∼3,800 nt) (5), 12 genes vation. However, despite their scientific importance, the evolutionary (6) with ∼12,000 nt of GenBank data (but with ∼80% missing history and tempo of frog diversification remain poorly understood. data), and whole mitochondrial genomes (∼11,000 nt) (7). In By using a molecular dataset of unprecedented size, including 88-kb the larger datasets (e.g., ref.
    [Show full text]
  • Larval Systematics of the Peninsular Malaysian Ranidae (Amphibia: Anura)
    LARVAL SYSTEMATICS OF THE PENINSULAR MALAYSIAN RANIDAE (AMPHIBIA: ANURA) LEONG TZI MING NATIONAL UNIVERSITY OF SINGAPORE 2005 LARVAL SYSTEMATICS OF THE PENINSULAR MALAYSIAN RANIDAE (AMPHIBIA: ANURA) LEONG TZI MING B.Sc. (Hons.) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES THE NATIONAL UNIVERSITY OF SINGAPORE 2005 This is dedicated to my dad, mum and brothers. i ACKNOWLEDGEMENTS I am grateful to the many individuals and teams from various institutions who have contributed to the completion of this thesis in various avenues, of which encouragement was the most appreciated. They are, not in any order of preference, from the National University of Singapore (NUS): A/P Peter Ng, Tan Heok Hui, Kelvin K. P. Lim, Darren C. J. Yeo, Tan Swee Hee, Daisy Wowor, Lim Cheng Puay, Malcolm Soh, Greasi Simon, C. M. Yang, H. K. Lua, Wang Luan Keng, C. F. Lim, Yong Ann Nee; from the National Parks Board (Singapore): Lena Chan, Sharon Chan; from the Nature Society (Singapore): Subaraj Rajathurai, Andrew Tay, Vilma D’Rozario, Celine Low, David Teo, Rachel Teo, Sutari Supari, Leong Kwok Peng, Nick Baker, Tony O’Dempsey, Linda Chan; from the Wildlife Department (Malaysia): Lim Boo Liat, Sahir bin Othman; from the Forest Research Institute of Malaysia (FRIM): Norsham Yaakob, Terry Ong, Gary Lim; from WWF (Malaysia): Jeet Sukumaran; from the Economic Planning Unit, Malaysia (EPU): Puan Munirah; from the University of Sarawak (UNIMAS): Indraneil Das; from the National Science Museum, Thailand: Jairujin Nabhitabhata, Tanya Chan-ard, Yodchaiy Chuaynkern; from the University of Kyoto: Masafumi Matsui; from the University of the Ryukyus: Hidetoshi Ota; from my Indonesian friends: Frank Bambang Yuwono, Ibu Mumpuni (MZB), Djoko Iskandar (ITB); from the Philippine National Museum (PNM): Arvin C.
    [Show full text]