Eidesstattliche Erklärung
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Analysis of Anostracans (Branchiopoda: Anostraca) Inferred from Nuclear 18S Ribosomal DNA (18S Rdna) Sequences
MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 25 (2002) 535–544 www.academicpress.com Phylogenetic analysis of anostracans (Branchiopoda: Anostraca) inferred from nuclear 18S ribosomal DNA (18S rDNA) sequences Peter H.H. Weekers,a,* Gopal Murugan,a,1 Jacques R. Vanfleteren,a Denton Belk,b and Henri J. Dumonta a Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium b Biology Department, Our Lady of the Lake University of San Antonio, San Antonio, TX 78207, USA Received 20 February 2001; received in revised form 18 June 2002 Abstract The nuclear small subunit ribosomal DNA (18S rDNA) of 27 anostracans (Branchiopoda: Anostraca) belonging to 14 genera and eight out of nine traditionally recognized families has been sequenced and used for phylogenetic analysis. The 18S rDNA phylogeny shows that the anostracans are monophyletic. The taxa under examination form two clades of subordinal level and eight clades of family level. Two families the Polyartemiidae and Linderiellidae are suppressed and merged with the Chirocephalidae, of which together they form a subfamily. In contrast, the Parartemiinae are removed from the Branchipodidae, raised to family level (Parartemiidae) and cluster as a sister group to the Artemiidae in a clade defined here as the Artemiina (new suborder). A number of morphological traits support this new suborder. The Branchipodidae are separated into two families, the Branchipodidae and Ta- nymastigidae (new family). The relationship between Dendrocephalus and Thamnocephalus requires further study and needs the addition of Branchinella sequences to decide whether the Thamnocephalidae are monophyletic. Surprisingly, Polyartemiella hazeni and Polyartemia forcipata (‘‘Family’’ Polyartemiidae), with 17 and 19 thoracic segments and pairs of trunk limb as opposed to all other anostracans with only 11 pairs, do not cluster but are separated by Linderiella santarosae (‘‘Family’’ Linderiellidae), which has 11 pairs of trunk limbs. -
Investgating Determinants of Phylogeneic Accuracy
IMPACT OF MOLECULAR EVOLUTIONARY FOOTPRINTS ON PHYLOGENETIC ACCURACY – A SIMULATION STUDY Dissertation Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in Biology by Bhakti Dwivedi UNIVERSITY OF DAYTON August, 2009 i APPROVED BY: _________________________ Gadagkar, R. Sudhindra Ph.D. Major Advisor _________________________ Robinson, Jayne Ph.D. Committee Member Chair Department of Biology _________________________ Nielsen, R. Mark Ph.D. Committee Member _________________________ Rowe, J. John Ph.D. Committee Member _________________________ Goldman, Dan Ph.D. Committee Member ii ABSTRACT IMPACT OF MOLECULAR EVOLUTIONARY FOOTPRINTS ON PHYLOGENETIC ACCURACY – A SIMULATION STUDY Dwivedi Bhakti University of Dayton Advisor: Dr. Sudhindra R. Gadagkar An accurately inferred phylogeny is important to the study of molecular evolution. Factors impacting the accuracy of a phylogenetic tree can be traced to several consecutive steps leading to the inference of the phylogeny. In this simulation-based study our focus is on the impact of the certain evolutionary features of the nucleotide sequences themselves in the alignment rather than any source of error during the process of sequence alignment or due to the choice of the method of phylogenetic inference. Nucleotide sequences can be characterized by summary statistics such as sequence length and base composition. When two or more such sequences need to be compared to each other (as in an alignment prior to phylogenetic analysis) additional evolutionary features come into play, such as the overall rate of nucleotide substitution, the ratio of two specific instantaneous, rates of substitution (rate at which transitions and transversions occur), and the shape parameter, of the gamma distribution (that quantifies the extent of iii heterogeneity in substitution rate among sites in an alignment). -
The Evolution of the Lepilemuridae-Cheirogaleidae Clade
The evolution of the Lepilemuridae-Cheirogaleidae clade By Curswan Allan Andrews Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY In the Faculty of SCIENCE at the NELSON MANDELA UNIVERSITY Promoters Prof. Judith C. Masters Dr. Fabien G.S. Génin Prof. Graham I.H. Kerley April 2019 1 i Dedication To my mothers’ Cecelia Andrews & Johanna Cloete ii DECLARATION FULL NAME: Curswan Allan Andrews STUDENT NUMBER: 214372952 QUALIFICATION: Doctor of Philosophy DECLARATION: In accordance with Rule G5.6.3, I hereby declare that the above-mentioned thesis is my own work and that it has not previously been submitted for assessment to another University or for another qualification. Signature ________________ Curswan Andrews iii ABSTRACT The Lepilemuridae and the Cheirogaleidae, according to recent molecular reconstructions, share a more recent common ancestor than previously thought. Further phylogenetic reconstructions have indicated that body size evolution in this clade was marked by repeated dwarfing events that coincided with changes in the environment. I aimed to investigate the morphological implications of changes in body size within the Lepilemur-cheirogaleid clade, testing four predictions. Together with Dr. Couette, I collected data on the overall palate shape and predicted that shape is likely to be influenced by several factors including phylogeny, body size and diet. Geometric morphometric analyses revealed that, although a strong phylogenetic signal was detected, diet had the major effect on palate shape. In a similar vein, when examining the arterial circulation patterns in these taxa, I predicted that changes in body size would result in changes and possible reductions in arterial size, particularly the internal carotid artery (ICA) and stapedial artery (SA). -
Genetics 540 Winter, 2001 Models of DNA Evolution – Part 2 Joe Felsenstein Department of Genetics University of Washington
Genetics 540 Winter, 2001 Models of DNA evolution { part 2 Joe Felsenstein Department of Genetics University of Washington joe@genetics A model of variation in evolutionary rates among sites The basic idea is that the rate at each site is drawn independently from a distribution of rates. The most widely used choice is the Gamma distribution, which has density function (if its mean is 1): αα rα 1 e α r f(r) = − − Γ(α) Unrealistic aspects of the model: • There is no reason, aside from mathematical convenience, to assume that the Gamma is the right distribution. A common variation is to assume there is a separate probability f0 of having rate 0. • Rates at different sites appear to be correlated, which this model does not allow. • Rates are not constant throughout evolution { they change with time. α = 0.25 cv = 2 α = 11.1111 α = 1 cv = 0.3 frequency cv = 1 0 0.5 1 1.5 2 rate Gamma distributions with mean 1 and different coefficients of variation (standard deviation / mean). α = 1=CV 2 is the \shape parameter" of the Gamma distribution Hidden Markov Models These are the most widely used models allowing rate variation to be correlated along the sequence. We assume: • There are a finite number of rates, m. Rate i is ri. • There are probabilities pi of a site having rate i. • A process not visible to us (\hidden") assigns rates to sites. It is a Markov process working along the sequence. For example it might have transition probability Prob (jji) of changing to rate j in the next site, given that it is at rate i in this site. -
Associations Between Nutrition, Gut Microbial Communities, and Health in Nonhuman Primates
Associations Between Nutrition, Gut Microbial Communities, and Health in Nonhuman Primates A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Jonathan Brent Clayton IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Advised by Drs. Timothy J. Johnson and Michael P. Murtaugh December 2015 © Jonathan Brent Clayton 2015 Acknowledgements I would like to thank my advisors, Drs. Timothy Johnson and Michael Murtaugh, for believing in my abilities from day one, and helping me to design a thesis project based on my research interests and passion for nonhuman primate health. I would like to thank my aforementioned advisors and remaining committee members, Drs. Ken Glander, Herbert Covert and Dominic Travis for their daily guidance, unwavering support, and embarking on this journey with me. I would also like to thank Dr. Mark Rutherford, Lisa Hubinger, and Kate Barry for taking care of administrative matters. I am thankful for the incredible group of colleagues in the Johnson lab for their support, helpfulness, and friendship; Jessica Danzeisen, Kyle Case, Dr. Bonnie Youmans, Dr. Elicia Grace, and Dr. Kevin Lang. I am also thankful to the members of the Knights lab, Pajau Vangay and Tonya Ward for their help with data analysis and copious constructive feedback. I would like to thank Dr. Steve Ross and the Lester E. Fisher Center for the Study and Conservation of Apes staff for training me on behavioral data collection methodology, which was a critical step in preparation for data collection in Vietnam. I am also thankful to Francis Cabana for helping to analyze the feeding ecology and nutritional analysis data. -
Conference Program
AAPA AAPA Physically Distanced but Intellectually Connected 90th Annual Meeting of the American Association of Physical Anthropologists April 7-28, 2021 • physanth.org CONFERENCE PROGRAM PROGRAM OF THE 90TH ANNUAL MEETING OF THE AMERICAN ASSOCIATION OF PHYSICAL ANTHROPOLOGISTS APRIL 7 – 28, 2021 To be held at the ONLINE on the Pathable Platform AAPA Scientific Program Committee Leslea J. Hlusko, Chair C. Eduardo Guerra Amorim Erin Kane Krithivasan Sankaranarayanan Ben Auerbach Saige Kelmelis Lauren Schroeder Heather Battles Kristina Killgrove Eric Shattuck Jonathan Bethard Marc Kissel Tanya Smith Michelle Bezanson Susan Kuzminsky Katie Starkweather Sarah Amugongo Brown Myra Laird Bethany Usher Francisca Alves Cardoso Nathan Lents Caroline VanSickle Susanne Cote Christopher Lynn Catalina Villamil Elisabeth Cuerrier-Richer Alison Murray Cara Wall-Scheffler Victoria M Dominguez Cara Ocobock Kerryn Warren Rebecca Gilmour Thomas Rein Karen Weinstein Jesse Goliath Terrence Ritzman Julie Wieczkowski Lauren Halenar-Price Michael Rivera Teresa Wilson Jennifer Hotzman Gwen Robbins Schug Xinjun Zhang Kent Johnson Julienne Rutherford Printed on 30% recycled content paper with soy based inks AAPA Conference Program 3 AAPA Meetings Director 2020-2021 Lori Strong, Burk & Associates, Inc. AAPA Executive Committee Anne L. Grauer Contributed Sessions President Planning Committee Steven R. Leigh C. Eduardo Guerra Amorim President-Elect Heather Battles Leslea J. Hlusko Michelle Bezanson Vice President and Program Chair Susanne Cote Rachel Caspari Elisabeth -
Intellectualism and Interesting Facts on Baboons (Papio Anubis Les.; Family: Cercopithecidae) (The Olive Baboons) in Yankari Game Reserve, Bauchi, Nigeria
International Journal of Research Studies in Zoology (IJRSZ) Volume 3, Issue 2, 2017, PP 51-55 ISSN 2454-941X http://dx.doi.org/10.20431/2454-941X.0302004 www.arcjournals.org Intellectualism and Interesting Facts on Baboons (Papio anubis Les.; Family: Cercopithecidae) (the olive baboons) in Yankari Game Reserve, Bauchi, Nigeria Ukwubile Cletus Anes Department of Science Laboratory Technology, Biology Unit, School of Science and Technology, Federal Polytechnic Bali, Nigeria. Abstract: Baboons are the type of monkey that are found in African forests and the Arabians. There are five species of baboons worldwide which are distributed in different habitats such as tropical rainforests, savannas, open woodlands and semi-arid areas. A close observation made on baboons at the Yankari Game Reserve(YGR), showed that they feed on various foods which are the reason they are known as pests as well as they are scavengers on elephant's dung. Apart from poaching activity by humans, baboons at YGR are also threatened by loss of habitat due to regular predatory activity by a lion (Pathera leo) in the reserve on the baboons. Out of the five species, only one species (Papio anubis) are found in the large population at the Yankari Game Reserve. This increase in the population of the olive baboons at the YGR has become a source of concern to tourists and researchers who visit the reserve. Due to frequent visits by people to the reserve, the baboons has developed a high level of intellectualism as well as tricks to overcome the dominance by humans encroaching their habitat. Some of these behaviours are groupings, pretence, and acrobatics. -
AFRICAN PRIMATES the Journal of the Africa Section of the IUCN SSC Primate Specialist Group
Volume 9 2014 ISSN 1093-8966 AFRICAN PRIMATES The Journal of the Africa Section of the IUCN SSC Primate Specialist Group Editor-in-Chief: Janette Wallis PSG Chairman: Russell A. Mittermeier PSG Deputy Chair: Anthony B. Rylands Red List Authorities: Sanjay Molur, Christoph Schwitzer, and Liz Williamson African Primates The Journal of the Africa Section of the IUCN SSC Primate Specialist Group ISSN 1093-8966 African Primates Editorial Board IUCN/SSC Primate Specialist Group Janette Wallis – Editor-in-Chief Chairman: Russell A. Mittermeier Deputy Chair: Anthony B. Rylands University of Oklahoma, Norman, OK USA Simon Bearder Vice Chair, Section on Great Apes:Liz Williamson Oxford Brookes University, Oxford, UK Vice-Chair, Section on Small Apes: Benjamin M. Rawson R. Patrick Boundja Regional Vice-Chairs – Neotropics Wildlife Conservation Society, Congo; Univ of Mass, USA Mesoamerica: Liliana Cortés-Ortiz Thomas M. Butynski Andean Countries: Erwin Palacios and Eckhard W. Heymann Sustainability Centre Eastern Africa, Nanyuki, Kenya Brazil and the Guianas: M. Cecília M. Kierulff, Fabiano Rodrigues Phillip Cronje de Melo, and Maurício Talebi Jane Goodall Institute, Mpumalanga, South Africa Regional Vice Chairs – Africa Edem A. Eniang W. Scott McGraw, David N. M. Mbora, and Janette Wallis Biodiversity Preservation Center, Calabar, Nigeria Colin Groves Regional Vice Chairs – Madagascar Christoph Schwitzer and Jonah Ratsimbazafy Australian National University, Canberra, Australia Michael A. Huffman Regional Vice Chairs – Asia Kyoto University, Inuyama, -
Kenneth L. Chiou Education Research Activities
Kenneth L. Chiou Washington University in St. Louis Office: McMillan 318 Department of Anthropology Phone: (314) 935-5252 Campus Box 1114 One Brookings Drive Email: [email protected] St. Louis, MO 63130 Website: kennychiou.com Education Present Ph.D. Candidate in Physical Anthropology, Washington University. 2012 M.A., Physical Anthropology, Washington University. 2010 B.A. with Honors, Anthropology, New York University. Research Activities 2013- Population genomics of a baboon hybrid zone in Zambia, Washington present University: Ph.D. Dissertation. Advisor Jane Phillips-Conroy. 2013- Ethoinformatics: developing data services for behavioral research, Washington present University. With Anthony Di Fiore, Tom Igoe, and Jane Phillips-Conroy. 2012- Behavior and social organization of Kinda baboons, Papio kindae, Washington present University. With Anna Weyher. 2011- Ecological niche modeling of Central American squirrel monkeys, Saimiri present oerstedii, Washington University. With Mary Blair. 2012 Comparative acoustics and vocal recognition of Kinda (Papio kindae) and gray-footed chacma (Papio ursinus griseipes) baboons of Kafue National Park, Zambia, Washington University. 2011-2012 Zambian baboon capture and release project, Kafue National Park, Zambia: Team Member. 2011-2012 The Kinda baboon (Papio kindae) gut microbiome, Jeffrey Gordon Lab, Center for Genome Sciences & Systems Biology, Washington University: Visiting Researcher. 2009-2010 \Wired monkeys" project: developing physical computing products for wildlife biology, New York University: Team Member. 2009-2010 The phylogenetic and phylogeographic history of squirrel monkeys, genus Saimiri, New York University: B.A. Thesis. Advisor Anthony Di Fiore. 2009-2010 Proyecto Primates, Tiputini Biodiversity Station, Ecuador: Team Member. 2008-2010 Intern supervisor, Molecular Primatology Laboratory, New York University. 2009 Reproductive endocrinology of female lowland woolly monkeys, Lagothrix poeppigii, New York University. -
Population Genomics of a Baboon Hybrid Zone in Zambia Kenneth Lyu Chiou Washington University in St
Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2017 Population Genomics of a Baboon Hybrid Zone in Zambia Kenneth Lyu Chiou Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Biological and Physical Anthropology Commons, and the Genetics Commons Recommended Citation Chiou, Kenneth Lyu, "Population Genomics of a Baboon Hybrid Zone in Zambia" (2017). Arts & Sciences Electronic Theses and Dissertations. 1094. https://openscholarship.wustl.edu/art_sci_etds/1094 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Anthropology Dissertation Examination Committee: Jane Phillips-Conroy, Chair Amy Bauernfeind Clifford Jolly Allan Larson Amanda Melin Population Genomics of a Baboon Hybrid Zone in Zambia By Kenneth L. Chiou A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2017 St. Louis, Missouri © Kenneth L. Chiou Contents List of Figures v List of Tables vii Acknowledgments ix Abstract xiv 1 Hybrid Zones and Papio: A Review 1 Introduction . 1 Hybridization . 2 Study animals . 5 Evolution of genus Papio ................................. 7 Hybridization in Papio ................................... 15 Zambian Papio: diversity and distribution . 23 Relevance to Homo ..................................... 35 Study site . 40 Research summary . 44 Overview of upcoming chapters . -
190130 PM Zinner Paviane Ok En
Deutsches Primatenzentrum GmbH (DPZ) Leibniz-Institut für Primatenforschung German Primate Center Kellnerweg 4 D-37077 Göttingen http://dpz.eu Press release EMBARGOED until: 2:00 pm EST (8:00 pm CET), Wednesday, January 30, 2019 How new species emerge International research team reconstructs the evolutionary history of baboons Göttingen, January 30, 2019. Life on earth is complex and diverse. In the course of evolution, more and more new species have emerged that are adapted to constantly changing environments. Using modern genetic analyses, researchers can now fully decipher the genetic information of organisms in order to better understand their evolutionary histories and adaptations. Under the leadership of the Human Genome Sequencing Center at Baylor College of Medicine, USA, an international team of researchers, including scientists from the German Primate Center (DPZ) – Leibniz Institute for Primate Research, has reconstructed the phylogenetic tree of the six African baboon species. The genetic information of baboons also provided clear indications that genes were exchanged between the species, i.e. that the species hybridized. The work sheds new light on the fundamental biological processes that produce new species. Since the baboons evolved at about the same time and in the same habitats as humans, the results of the study also allow conclusions about the evolutionary history of early human species (Science Advances). Baboons are Old World monkeys and the six species are widespread in sub-Saharan Africa. They are well studied for their morphology, behavior and ecology. So far, however, little has been known about their genetic adaptations and evolutionary history. To investigate these questions in detail, the researchers sequenced the complete genomes of the six species. -
Convergent Evolution of Behavior in an Adaptive Radiation of Hawaiian Web-Building Spiders
Convergent evolution of behavior in an adaptive radiation of Hawaiian web-building spiders Todd A. Blackledge† and Rosemary G. Gillespie Department of Environmental Science, Policy, and Management, Division of Insect Biology, 201 Wellman Hall, University of California, Berkeley, CA 94720 Communicated by Thomas W. Schoener, University of California, Davis, CA, October 6, 2004 (received for review March 22, 2004) Species in ecologically similar habitats often display patterns of such that differences in web shape can indicate differences in divergence that are strikingly comparable, suggesting that natural how spiders are using resources (17, 19–21). We assess the selection can lead to predictable evolutionary change in commu- relative predictability of behavioral evolution within the adap- nities. However, the relative importance of selection as an agent tive radiation of Hawaiian orb-weaving Tetragnatha by compar- mediating in situ diversification, versus dispersal between habi- ing the web architectures of species, both within islands and tats, cannot be addressed without knowledge of phylogenetic among communities on different islands, and by examining the history. We used an adaptive radiation of spiders within the historical diversification of those behaviors. Hawaiian Islands to test the prediction that species of spiders on different islands would independently evolve webs with similar Materials and Methods architectures. Tetragnatha spiders are the only nocturnal orb- Focal Localities. We studied spiders in focal localities on three weaving spiders endemic to the Hawaiian archipelago, and mul- different islands, each of which consisted of mature mesic to wet tiple species of orb-weaving Tetragnatha co-occur within mesic forest vegetation but varied in age according to island (22): and wet forest habitats on each of the main islands.