Neutral Nuclear Variation in Baboons (Genus Papio) Provides Insights Into Their Evolutionary and Demographic Histories

Total Page:16

File Type:pdf, Size:1020Kb

Neutral Nuclear Variation in Baboons (Genus Papio) Provides Insights Into Their Evolutionary and Demographic Histories AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 00:00–00 (2014) Neutral Nuclear Variation in Baboons (Genus Papio) Provides Insights into Their Evolutionary and Demographic Histories Stephane Boissinot,1,2* Lauren Alvarez,1 Juliana Giraldo-Ramirez,1 and Marc Tollis1,2,3 1Department of Biology, Queens College, the City University of New York, Queens, NY 2Ecology, Evolutionary Biology and Behavior, Graduate Center, the City University of New York, New York, NY 3School of Life Sciences, Arizona State University, Tempe, AZ KEY WORDS neutral variation; retrotransposon; species tree ABSTRACT Baboons (genus Papio) are distributed variation in baboons. We sequenced 13 noncoding, puta- over most of sub-Saharan Africa and in the southern por- tively neutral, nuclear regions, and scored the presence/ tion of the Arabian Peninsula. Six distinct morphotypes, absence of 18 polymorphic transposable elements in a with clearly defined geographic distributions, are recog- sample of 45 baboons belonging to five of the six recog- nized (the olive, chacma, yellow, Guinea, Kinda, and ham- nized baboon forms. We found that the chacma baboon is adryas baboons). The evolutionary relationships among the sister-taxon to all other baboons and the yellow baboon forms have long been a controversial issue. Phylo- baboon is the sister-taxon to an unresolved northern genetic analyses based on mitochondrial DNA sequences clade containing the olive, Guinea, and hamadryas revealed that the modern baboon morphotypes are mito- baboons. We estimated that the diversification of baboons chondrially paraphyletic or polyphyletic. The discordance occurred entirely in the Pleistocene, the earliest split dat- between mitochondrial lineages and morphology is indica- ing 1.5 million years ago, and that baboons have experi- tive of extensive introgressive hybridization between enced relatively large and constant effective population ancestral baboon populations. To gain insights into the sizes for most of their evolutionary history (30,000 to evolutionary relationships among morphotypes and their 95,000 individuals). Am J Phys Anthropol 000:000–000, demographic history, we performed an analysis of nuclear 2014. VC 2014 Wiley Periodicals, Inc. The genus Papio (the baboons) is one of the most of the genus Homo, it has been proposed that baboons widespread and ecologically successful primate genera. constitute a useful model to understand the evolution of Baboons are found across sub-Saharan Africa, only the human lineage over the last 2 million years (Jolly, avoiding the tropical humid forests of Central Africa, 2001). In addition, the past and current hybridization and in the southern portion of the Arabian Peninsula. between baboon morphotypes could help elucidate the Historically, six distinct forms of baboons have been rec- genetic exchanges that have occurred between ancestral ognized based on morphology (Jolly, 1993; Frost et al., human populations and Neandertals (Green et al., 2010; 2003): the chacma baboon (P. ursinus) found in the Sankararaman et al., 2012, 2014; Prufer et al., 2014) or Southern part of the African continent, the yellow Denisovans (Reich et al., 2010). Finally, the transition baboon (P. cynocephalus) from Eastern Africa, the olive from savanna-dwelling baboons to the multilevel social baboon (Papio anubis) which distribution extends from structure of the hamadryas baboon constitutes a useful western Kenya and south Ethiopia to Guinea and South- model to understand the evolution of hominin social ern Mali, the Guinea baboon (P. papio) which is limited behavior (Swedell and Plummer, 2012). to Senegal and western Guinea, the hamadryas baboon (Papio hamadryas) which inhabits semi-desert habitats in Ethiopia, Eritrea, and the Arabian peninsula, and the Kinda baboon (P. kindae) from Zambia. Depending on Lauren Alvarez and Juliana Giraldo-Ramirez contributed equally the authors, these forms have been considered either to this work. sub-species of P. hamadryas or separate species, but there is currently no consensus on the taxonomic status Grant sponsor: National Science Foundation Undergraduate of the different baboon morphotypes (Jolly, 1993; Frost Research Mentoring Program at Queens College; Grant number: et al., 2003). Although these six forms are morphologi- 0731613. cally and geographically distinct, they do hybridize in nature showing little reproductive isolation (Jolly, 1993; *Correspondence to: Stephane Boissinot, Department of Biology, Queens College, the City University of New York, Queens, NY Alberts and Altmann, 2001; Bergman et al., 2008; Tung 11367, USA. E-mail: [email protected] et al., 2008; Jolly et al., 2011). Mitochondrial analyses suggest that baboons diversified during the last 2 million Received 11 April 2014; revised 20 August 2014; accepted 8 years and that their differentiation could have been September 2014 driven by glacial and inter-glacial cycles during the late Pliocene and Pleistocene (Newman et al., 2004; Zinner DOI: 10.1002/ajpa.22618 et al., 2009). Because the geography and time scale of Published online 00 Month 2014 in Wiley Online Library the diversification of baboons mirrors the diversification (wileyonlinelibrary.com). Ó 2014 WILEY PERIODICALS, INC. 2 S. BOISSINOT ET AL. baboon that was the sister to all other forms (Williams- Blangero et al., 1990). More recently, a north/south model was proposed (Jolly, 1993) with the yellow and chacma baboons as sister taxa and a northern monophy- letic group composed of the olive, hamadryas, and Guinea baboons. In the past decade, several groups have attempted to resolve the evolutionary relationships among baboons using mitochondrial DNA sequences (Newman et al., 2004; Wildman et al., 2004; Sithaldeen et al., 2009; Zin- ner et al., 2009, 2013). All these studies support the existence of two clades (Fig. 1): a southern clade consist- ing of the chacma baboon, Kinda baboon, and yellow baboons from Zambia, Malawi, and southern Tanzania, and a northern clade consisting of the hamadryas baboon, Guinea baboon, olive baboon, and yellow baboons from Kenya and northern Tanzania. Depending on the study, the split between the northern and south- ern mitochondrial lineages occurred between 1.79 and 2.09 million years (my) ago. Within the northern clade, there is a clear break dated around 1.34–1.89 my between western baboons (Guinea baboon and olive baboons from Nigeria, Cameroon, and Ivory Coast) and eastern baboons (hamadryas, olive baboons from Kenya, Eritrea, and Ethiopia, and yellow baboons from Kenya and Tanzania). In the southern clade (which might be paraphyletic based on complete mitochondrial genome analyses; (Zinner et al., 2013)), there is a distinct south/ north split around 1.80 my between south chacma (South Africa and coastal Namibia) and a group com- posed of Kinda, northern chacma (Zimbabwe, south Zambia, Mozambique, and eastern Namibia), and south- ern yellow baboons. The different clades and sub-clades recovered by anal- ysis of the mitochondrial genome have clearly defined geographic distributions, possibly reflecting ancient frag- mentation and lineage divergence in the late Pliocene and Pleistocene (Zinner et al., 2009, 2011). However, the discordance between mitochondrial lineages and the dis- tribution of morphotypes suggests that introgressive hybridization has occurred frequently (Newman et al., 2004; Wildman et al., 2004; Zinner et al. 2009, 2011; Kel- ler et al., 2010). For instance, southern and northern Fig. 1. Phylogeny of mitochondrial sequences. We used a yellow baboons carry two highly divergent mitochondrial representative subset of the sequences used by Zinner et al. lineages while western and eastern olive baboons carry (2009) and we named the clades following the nomenclature mitochondrion that diverged approximately 1.4–1.9 my proposed by these authors. The samples used in this study are (Zinner et al. 2009, 2011). In contrast, northern yellow, indicated with letters. The tree was built using the maximum eastern olive, and hamadryas baboons share a 0.6 my likelihood method implemented in MEGA 5.0 (Tamura et al., 2011) using the HKY1G model of substitution. The tree was old mitochondrial lineage, although they have main- rooted using sequences from Theropithecus gelada. Numbers at tained their morphological distinctiveness (Zinner et al., the nodes indicate the robustness of each node assessed using 2009, 2011). This pattern is best explained by extensive 1,000 bootstrap replicates. Only bootstrap values >80% are and asymmetric gene flow. The proposed model, called shown. “nuclear swamping,” posits that hybridization followed by repeated asymmetric backcrossing between hybrid The evolutionary relationships between the different females and males of one of the parental morphotypes baboon forms have long been a subject of controversy. will result in individuals with the mitochondrion of one Based on morphological similarity, it has been proposed form and the nuclear genome of another form. For that the olive and chacma baboons are sister taxa (Eller- instance, when olive baboons expanded their distribution man et al., 1953; Kingdon, 1997). Other authors have into Ethiopian hamadryas territory (Wildman et al., suggested that Guinea and hamadryas baboons are 2004), hybrid females mated preferentially with olive sister-taxa due to their phenotypic and behavioral simi- males while the hybrid males had a lower reproductive larity and that the yellow baboon branches with the success (Phillips-Conroy and Jolly, 2004; Wildman et al., chacma and olive baboons
Recommended publications
  • Targets, Tactics, and Cooperation in the Play Fighting of Two Genera of Old World Monkeys (Mandrillus and Papio): Accounting for Similarities and Differences
    2019, 32 Heather M. Hill Editor Peer-reviewed Targets, Tactics, and Cooperation in the Play Fighting of Two Genera of Old World Monkeys (Mandrillus and Papio): Accounting for Similarities and Differences Kelly L. Kraus1, Vivien C. Pellis1, and Sergio M. Pellis1 1 Department of Neuroscience, University of Lethbridge, Canada Play fighting in many species involves partners competing to bite one another while avoiding being bitten. Species can differ in the body targets that are bitten and the tactics used to attack and defend those targets. However, even closely related species that attack and defend the same body target using the same tactics can differ markedly in how much the competitiveness of such interactions is mitigated by cooperation. A degree of cooperation is necessary to ensure that some turn-taking between the roles of attacker and defender occurs, as this is critical in preventing play fighting from escalating into serious fighting. In the present study, the dyadic play fighting of captive troops of 4 closely related species of Old World monkeys, 2 each from 2 genera of Papio and Mandrillus, was analyzed. All 4 species have a comparable social organization, are large bodied with considerable sexual dimorphism, and are mostly terrestrial. In all species, the target of biting is the same – the area encompassing the upper arm, shoulder, and side of the neck – and they have the same tactics of attack and defense. However, the Papio species exhibit more cooperation in their play than do the Mandrillus species, with the former using tactics that make biting easier to attain and that facilitate close bodily contact.
    [Show full text]
  • The Taxonomy of Primates in the Laboratory Context
    P0800261_01 7/14/05 8:00 AM Page 3 C HAPTER 1 The Taxonomy of Primates T HE T in the Laboratory Context AXONOMY OF P Colin Groves RIMATES School of Archaeology and Anthropology, Australian National University, Canberra, ACT 0200, Australia 3 What are species? D Taxonomy: EFINITION OF THE The biological Organizing nature species concept Taxonomy means classifying organisms. It is nowadays commonly used as a synonym for systematics, though Disagreement as to what precisely constitutes a species P strictly speaking systematics is a much broader sphere is to be expected, given that the concept serves so many RIMATE of interest – interrelationships, and biodiversity. At the functions (Vane-Wright, 1992). We may be interested basis of taxonomy lies that much-debated concept, the in classification as such, or in the evolutionary implica- species. tions of species; in the theory of species, or in simply M ODEL Because there is so much misunderstanding about how to recognize them; or in their reproductive, phys- what a species is, it is necessary to give some space to iological, or husbandry status. discussion of the concept. The importance of what we Most non-specialists probably have some vague mean by the word “species” goes way beyond taxonomy idea that species are defined by not interbreeding with as such: it affects such diverse fields as genetics, biogeog- each other; usually, that hybrids between different species raphy, population biology, ecology, ethology, and bio- are sterile, or that they are incapable of hybridizing at diversity; in an era in which threats to the natural all. Such an impression ultimately derives from the def- world and its biodiversity are accelerating, it affects inition by Mayr (1940), whereby species are “groups of conservation strategies (Rojas, 1992).
    [Show full text]
  • The Evolution of the Lepilemuridae-Cheirogaleidae Clade
    The evolution of the Lepilemuridae-Cheirogaleidae clade By Curswan Allan Andrews Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY In the Faculty of SCIENCE at the NELSON MANDELA UNIVERSITY Promoters Prof. Judith C. Masters Dr. Fabien G.S. Génin Prof. Graham I.H. Kerley April 2019 1 i Dedication To my mothers’ Cecelia Andrews & Johanna Cloete ii DECLARATION FULL NAME: Curswan Allan Andrews STUDENT NUMBER: 214372952 QUALIFICATION: Doctor of Philosophy DECLARATION: In accordance with Rule G5.6.3, I hereby declare that the above-mentioned thesis is my own work and that it has not previously been submitted for assessment to another University or for another qualification. Signature ________________ Curswan Andrews iii ABSTRACT The Lepilemuridae and the Cheirogaleidae, according to recent molecular reconstructions, share a more recent common ancestor than previously thought. Further phylogenetic reconstructions have indicated that body size evolution in this clade was marked by repeated dwarfing events that coincided with changes in the environment. I aimed to investigate the morphological implications of changes in body size within the Lepilemur-cheirogaleid clade, testing four predictions. Together with Dr. Couette, I collected data on the overall palate shape and predicted that shape is likely to be influenced by several factors including phylogeny, body size and diet. Geometric morphometric analyses revealed that, although a strong phylogenetic signal was detected, diet had the major effect on palate shape. In a similar vein, when examining the arterial circulation patterns in these taxa, I predicted that changes in body size would result in changes and possible reductions in arterial size, particularly the internal carotid artery (ICA) and stapedial artery (SA).
    [Show full text]
  • Eidesstattliche Erklärung
    ZENTRUM FÜR BIODIVERSITÄT UND NACHHALTIGE LANDNUTZUNG SEKTION BIODIVERSITÄT, ÖKOLOGIE UND NATURSCHUTZ CENTRE OF BIODIVERSITY AND SUSTAINABLE LAND USE SECTION: BIODIVERSITY, ECOLOGY AND NATURE CONSERVATION Mitochondrial genomes and the complex evolutionary history of the cercopithecine tribe Papionini Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen vorgelegt von Dipl. Biol. Rasmus Liedigk aus Westerstede Göttingen, September 2014 Referent: PD Dr. Christian Roos Korreferent: Prof. Dr. Eckhard Heymann Tag der mündlichen Prüfung: 19.9.2014 Table of content 1 General introduction .............................................................................................. 1 1.1 An introduction to phylogenetics ....................................................................... 1 1.2 Tribe Papionini – subfamily Cercopithecinae ..................................................... 3 1.2.1 Subtribe Papionina.................................................................................... 4 1.2.2 Subtribe Macacina, genus Macaca ........................................................... 5 1.3 Papionin fossils in Europe and Asia................................................................... 7 1.3.1 Fossils of Macaca ..................................................................................... 8 1.3.2 Fossils of Theropithecus ........................................................................... 9 1.4 The mitochondrial genome and its
    [Show full text]
  • HAMADRYAS BABOON (Papio Hamadryas) CARE MANUAL
    HAMADRYAS BABOON (Papio hamadryas) CARE MANUAL CREATED BY THE AZA Hamadryas Baboon Species Survival Plan® Program IN ASSOCIATION WITH THE AZA Old World Monkey Taxon Advisory Group Hamadryas Baboon (Papio hamadryas) Care Manual Hamadryas Baboon (Papio hamadryas) Care Manual Published by the Association of Zoos and Aquariums in collaboration with the AZA Animal Welfare Committee Formal Citation: AZA Baboon Species Survival Plan®. (2020). Hamadryas Baboon Care Manual. Silver Spring, MD: Association of Zoos and Aquariums. Original Completion Date: July 2020 Authors and Significant Contributors: Jodi Neely Wiley, AZA Hamadryas Baboon SSP Coordinator and Studbook Keeper, North Carolina Zoo Margaret Rousser, Oakland Zoo Terry Webb, Toledo Zoo Ryan Devoe, Disney Animal Kingdom Katie Delk, North Carolina Zoo Michael Maslanka, Smithsonian National Zoological Park and Conservation Biology Institute Reviewers: Joe Knobbe, San Francisco Zoological Gardens, former Old World Monkey TAG Chair, SSP Vice Coordinator Hamadryas Baboon AZA Staff Editors: Felicia Spector, Animal Care Manual Editor Consultant Candice Dorsey, PhD, Senior Vice President, Conservation, Management, & Welfare Sciences Rebecca Greenberg, Animal Programs Director Emily Wagner, Conservation Science & Education Intern Raven Spencer, Conservation, Management, & Welfare Sciences Intern Hana Johnstone, Conservation, Management, & Welfare Sciences Intern Cover Photo Credits: Jodi Neely Wiley, North Carolina Zoo Disclaimer: This manual presents a compilation of knowledge provided by recognized animal experts based on the current science, practice, and technology of animal management. The manual assembles basic requirements, best practices, and animal care recommendations to maximize capacity for excellence in animal care and welfare. The manual should be considered a work in progress, since practices continue to evolve through advances in scientific knowledge.
    [Show full text]
  • The Consequences of Habitat Loss and Fragmentation on the Distribution, Population Size, Habitat Preferences, Feeding and Rangin
    The consequences of habitat loss and fragmentation on the distribution, population size, habitat preferences, feeding and ranging Ecology of grivet monkey (Cercopithecus aethiopes aethiops) on the human dominated habitats of north Shoa, Amhara, Ethiopia: A Study of human-grivet monkey conflict 1 Table of contents Page 1. Introduction 1 1.1. Background And Justifications 3 1.2. Statement Of The Problem 6 1.3. Objectives 7 1.3.1. General Objective 7 1.3.2. Specific Objectives 8 1.4. Research Hypotheses Under Investigation 8 2. Description Of The Study Area 8 3. Methodology 11 3.1. Habitat Stratification, Vegetation Mapping And Land Use Cover 11 Change 3.2. Distribution Pattern And Population Estimate Of Grivet Monkey 11 3.3. Behavioral Data 12 3.4. Human Grivet Monkey Conflict 15 3.5. Habitat Loss And Fragmentation 15 4. Expected Output 16 5. Challenges Of The Project 16 6. References 17 i 1. Introduction World mammals status analysis on global scale shows that primates are the most threatened mammals (Schipper et al., 2008) making them indicators for investigating vulnerability to threats. Habitat loss and destruction are often considered to be the most serious threat to many tropical primate populations because of agricultural expansion, livestock grazing, logging, and human settlement (Cowlishaw and Dunbar, 2000). Deforestation and forest fragmentation have marched together with the expansion of agricultural frontiers, resulting in both habitat loss and subdivision of the remaining habitat (Michalski and Peres, 2005). This forest degradation results in reduction in size or fragmentation of the original forest habitat (Fahrig, 2003). Habitat fragmentation is often defined as a process during which “a large expanse of habitat is transformed into a number of smaller patches of smaller total area, isolated from each other by a matrix of habitats unlike the original”.
    [Show full text]
  • Associations Between Nutrition, Gut Microbial Communities, and Health in Nonhuman Primates
    Associations Between Nutrition, Gut Microbial Communities, and Health in Nonhuman Primates A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Jonathan Brent Clayton IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Advised by Drs. Timothy J. Johnson and Michael P. Murtaugh December 2015 © Jonathan Brent Clayton 2015 Acknowledgements I would like to thank my advisors, Drs. Timothy Johnson and Michael Murtaugh, for believing in my abilities from day one, and helping me to design a thesis project based on my research interests and passion for nonhuman primate health. I would like to thank my aforementioned advisors and remaining committee members, Drs. Ken Glander, Herbert Covert and Dominic Travis for their daily guidance, unwavering support, and embarking on this journey with me. I would also like to thank Dr. Mark Rutherford, Lisa Hubinger, and Kate Barry for taking care of administrative matters. I am thankful for the incredible group of colleagues in the Johnson lab for their support, helpfulness, and friendship; Jessica Danzeisen, Kyle Case, Dr. Bonnie Youmans, Dr. Elicia Grace, and Dr. Kevin Lang. I am also thankful to the members of the Knights lab, Pajau Vangay and Tonya Ward for their help with data analysis and copious constructive feedback. I would like to thank Dr. Steve Ross and the Lester E. Fisher Center for the Study and Conservation of Apes staff for training me on behavioral data collection methodology, which was a critical step in preparation for data collection in Vietnam. I am also thankful to Francis Cabana for helping to analyze the feeding ecology and nutritional analysis data.
    [Show full text]
  • Papio Hamadryas Hamadryas) Melissa C
    Bucknell University Bucknell Digital Commons Master’s Theses Student Theses Spring 2018 Social Relationships and Self-Directed Behavior in Hamadryas Baboons (Papio hamadryas hamadryas) Melissa C. Painter Bucknell University, [email protected] Follow this and additional works at: https://digitalcommons.bucknell.edu/masters_theses Part of the Animal Studies Commons, and the Comparative Psychology Commons Recommended Citation Painter, Melissa C., "Social Relationships and Self-Directed Behavior in Hamadryas Baboons (Papio hamadryas hamadryas)" (2018). Master’s Theses. 200. https://digitalcommons.bucknell.edu/masters_theses/200 This Masters Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in Master’s Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact [email protected]. I, Melissa Painter, do grant permission for my thesis to be copied. ii Acknowledgments I would like to thank my committee members, Dr. Z Morgan Benowitz-Fredericks and Dr. Regina Gazes, for their time, advice and support throughout the planning and execution of this project. I would also like to thank Meredith Lutz and Corinne Leard, both recent B.S. graduates from the Animal Behavior Program, for their assistance in navigating R to standardize my data and calculate the baboons’ dominance hierarchy. Thank you also to the caretakers at Bucknell’s Animal Behavior Laboratory, Mary Gavitt, Amber Hackenberg and Gretchen Long, for taking such great care of my study group and for being so accommodating when I asked to spend hours of undisturbed time with the baboons. Of course, I must also thank my fellow graduate students for enduring my multiple proposal and defense presentation rehearsals.
    [Show full text]
  • Conference Program
    AAPA AAPA Physically Distanced but Intellectually Connected 90th Annual Meeting of the American Association of Physical Anthropologists April 7-28, 2021 • physanth.org CONFERENCE PROGRAM PROGRAM OF THE 90TH ANNUAL MEETING OF THE AMERICAN ASSOCIATION OF PHYSICAL ANTHROPOLOGISTS APRIL 7 – 28, 2021 To be held at the ONLINE on the Pathable Platform AAPA Scientific Program Committee Leslea J. Hlusko, Chair C. Eduardo Guerra Amorim Erin Kane Krithivasan Sankaranarayanan Ben Auerbach Saige Kelmelis Lauren Schroeder Heather Battles Kristina Killgrove Eric Shattuck Jonathan Bethard Marc Kissel Tanya Smith Michelle Bezanson Susan Kuzminsky Katie Starkweather Sarah Amugongo Brown Myra Laird Bethany Usher Francisca Alves Cardoso Nathan Lents Caroline VanSickle Susanne Cote Christopher Lynn Catalina Villamil Elisabeth Cuerrier-Richer Alison Murray Cara Wall-Scheffler Victoria M Dominguez Cara Ocobock Kerryn Warren Rebecca Gilmour Thomas Rein Karen Weinstein Jesse Goliath Terrence Ritzman Julie Wieczkowski Lauren Halenar-Price Michael Rivera Teresa Wilson Jennifer Hotzman Gwen Robbins Schug Xinjun Zhang Kent Johnson Julienne Rutherford Printed on 30% recycled content paper with soy based inks AAPA Conference Program 3 AAPA Meetings Director 2020-2021 Lori Strong, Burk & Associates, Inc. AAPA Executive Committee Anne L. Grauer Contributed Sessions President Planning Committee Steven R. Leigh C. Eduardo Guerra Amorim President-Elect Heather Battles Leslea J. Hlusko Michelle Bezanson Vice President and Program Chair Susanne Cote Rachel Caspari Elisabeth
    [Show full text]
  • NATIONAL STUDBOOK Pig Tailed Macaque (Macaca Leonina)
    NATIONAL STUDBOOK Pig Tailed Macaque (Macaca leonina) Published as a part of the Central Zoo Authority sponsored project titled “Development and maintenance of studbooks for selected endangered species in Indian zoos” Data: Till December 2013 Published: March 2014 NATIONAL STUDBOOK Pig Tailed Macaque (Macaca leonine) Published as a part of the Central Zoo Authority sponsored project titled “Development and maintenance of studbooks for selected endangered species in Indian zoos” Compiled and analyzed by Ms. Nilofer Begum Junior Research Fellow Project Consultant Dr. Anupam Srivastav, Ph.D. Supervisors Dr. Parag Nigam Shri. P.C. Tyagi Copyright © WII, Dehradun, and CZA, New Delhi, 2014 This report may be quoted freely but the source must be acknowledged and cited as: Nigam P., Nilofer B., Srivastav A. & Tyagi P.C. (2014) National Studbook of Pig-tailed Macaque (Macaca leonina), Wildlife Institute of India, Dehradun and Central Zoo Authority, New Delhi. FOREWORD For species threatened with extinction in their natural habitats ex-situ conservation offers an opportunity for ensuring their long-term survival. This can be ensured by scientific management to ensure their long term genetic viability and demographic stability. Pedigree information contained in studbooks forms the basis for this management. The Central Zoo Authority (CZA) in collaboration with zoos in India has initiated a conservation breeding program for threatened species in Indian zoos. As a part of this endeavor a Memorandum of Understanding has been signed with the Wildlife Institute of India for compilation and update of studbooks of identified species in Indian zoos. As part of the project outcomes the WII has compiled the studbook for Pig tailed macaque (Macaca leonina) in Indian zoos.
    [Show full text]
  • The Genome of the Vervet (Chlorocebus Aethiops Sabaeus)
    Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Resource The genome of the vervet (Chlorocebus aethiops sabaeus) Wesley C. Warren,1 Anna J. Jasinska,2,3 Raquel García-Pérez,4 Hannes Svardal,5 Chad Tomlinson,1 Mariano Rocchi,6 Nicoletta Archidiacono,6 Oronzo Capozzi,6 Patrick Minx,1 Michael J. Montague,1 Kim Kyung,1 LaDeana W. Hillier,1 Milinn Kremitzki,1 Tina Graves,1 Colby Chiang,1 Jennifer Hughes,7 Nam Tran,2 Yu Huang,2 Vasily Ramensky,2 Oi-wa Choi,2 Yoon J. Jung,2 Christopher A. Schmitt,2 Nikoleta Juretic,8 Jessica Wasserscheid,8 Trudy R. Turner,9,10 Roger W. Wiseman,11 Jennifer J. Tuscher,11 Julie A. Karl,11 Jörn E. Schmitz,12 Roland Zahn,13 David H. O’Connor,11 Eugene Redmond,14 Alex Nisbett,14 Béatrice Jacquelin,15 Michaela C. Müller-Trutwin,15 Jason M. Brenchley,16 Michel Dione,17 Martin Antonio,17 Gary P. Schroth,18 Jay R. Kaplan,19 Matthew J. Jorgensen,19 Gregg W.C. Thomas,20 Matthew W. Hahn,20 Brian J. Raney,21 Bronwen Aken,22 Rishi Nag,22 Juergen Schmitz,23 Gennady Churakov,23,24 Angela Noll,23 Roscoe Stanyon,25 David Webb,26 Francoise Thibaud-Nissen,26 Magnus Nordborg,5 Tomas Marques-Bonet,4 Ken Dewar,8 George M. Weinstock,27 Richard K. Wilson,1 and Nelson B. Freimer2 1The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA; 2Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA; 3Institute of Bioorganic Chemistry, Polish Academy
    [Show full text]
  • Female Reproductive Strategies and the Ovarian Cycle in Hamadryas
    Femalereproductivestrategiesandtheovarian cycleinhamadryasbaboons AthesissubmittedinpartialrequirementoftheMaster’sDegreeof ScienceinConservationBiologyatVictoriaUniversityofWellington by R.E.Tobler ABSTRACT: Thisthesisexaminestherelationshipbetweensexualbehaviourandthe ovarian cycle in a group-living primate, Papio h. hamadryas . Of particular interest is whetherfemalesmodifytheirovariancycleinamannerthatisexpectedincreasetheir reproductivesuccess.Thestudywasconductedonacaptivecolonywheretheresident males (RM) had been vasectomised prior to start of the study resulting in all mature femalesundergoingrepeatedovariancyclingthroughoutthestudyperiod.Thismadethe analysisofsexualbehaviourrelativetofinescalechangesintheovariancyclepossible. One year of ovarian cycle data and 280 hours of behavioural data was collected via observationalsamplingduringthestudy.RMvasectomisationdidnotalterthearchetypal one male unit social structure nor the typical socio-spatial organisation of wild hamadryas populations. Females were found to be more promiscuous than in wild populations, however, presumably because of the confounding effect that the high number of simultaneously cycling females had on RM herding (Chapter 1). RMs dominatedcopulationsovertheoptimalconceptiveperiodoftheovariancycle,whilethe majorityofextra-OMUcopulationsoccurredoutsidethisperiodandwererarelysolicited by females. This pattern supports a dual paternity concentration/paternity confusion strategy,andnotfemalechoiceorfertilityinsurancestrategies(Chapter2).Femaleswere not found to synchronise
    [Show full text]