Reproduction Strategies and Distribution of Larvae and Juveniles of Benthic Soft-Bottom Invertebrates in the Kara Sea (Russian Arctic)

Total Page:16

File Type:pdf, Size:1020Kb

Reproduction Strategies and Distribution of Larvae and Juveniles of Benthic Soft-Bottom Invertebrates in the Kara Sea (Russian Arctic) Reproduction strategies and distribution of larvae and juveniles of benthic soft-bottom invertebrates in the Kara Sea (Russian Arctic) The influence of river discharge on the structure of benthic communities: a larval approach Ingo Fetzer Vorgelegt im Fachbereich 2 (Biologie/Chemie) der Universität Bremen als Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) Bremen 2004 1. Reviewer: Prof. Dr. Wolf Arntz Alfred-Wegener-Institute/University of Bremen 2. Reviewer: Ass. Prof. Dr. Sigrid Schiel Alfred-Wegener-Institute/University of Kiel Contents 1 Introduction 11 1.1 Life-history traits in marine invertebrates . 11 1.2 Definition of ’larva’ . 14 1.3 Historical background . 15 1.4 ’Thorson’s rule’ . 17 1.5 Ecological implications of reproduction modes . 19 1.6 Aims of the study and hypotheses . 20 2 Material and Methods 23 2.1 Study area - environmental conditions . 23 2.2 Sampling areas . 27 2.3 Sampling gear and treatment of samples . 27 2.4 Data handling . 29 3 Results and Discussion 33 3.1 Sampling . 33 3.2 Kara Sea ecology . 34 3.2.1 Zoobenthos . 34 3.2.2 Juveniles . 35 3.2.3 Meroplankton . 35 3.3 Influence of river discharge . 42 3.3.1 Influence of river discharge on plankton and benthos . 42 3.3.2 Influence of hydrography on the distribution of larvae . 43 3.4 Reproduction modes and zoogeographic affiliation . 49 4 Conclusion and future perspectives 55 5 Publications 57 5.1 Publication I . 61 5.2 Publication II . 85 5.3 Publication III . 121 5.4 Publication IV . 141 5.5 Publication V . 177 6 Acknowledgements 217 7 Reference List 221 SUMMARY Summary Reproduction strategies strongly influence distribution patterns and abundance of marine benthic invertebrates. Most of them exhibit rather complex and diverse life cycles that are adapted to the environment the species live in. The great diversity of life history patterns found has generated intense debates among ecologists on classification of different development types and their rela- tionship to given biotic and abiotic environments. In the light of new findings from polar seas much interest is given to the potential geographical shift in main life history traits of benthic in- vertebrates. However, until now little is known about the reproduction strategies of the majority of Arctic invertebrates. Most species in temperate areas reproduce with pelagic larvae, which often act as passive drifting particles in the water column. Their distribution is therefore mainly determined by local hydrographic patterns, which can either transport them away or retain them close to their spawning ground, the distribution of their adults (=place of release) and the du- ration of their stays in the water column. Direct development ensures that the offspring stays on approved sites where adults already survived and guarantees sufficient recruitment within the community since larvae are not endangered to be transported away by currents. The main aims of this work are to determine the reproductive patterns of benthic invertebrates in the Kara Sea and to analyse possible adaptations of reproduction strategies to polar conditions. The structuring influence of river discharge and hydrography on the spatial distribution of larvae and settled juveniles in relation to the distribution of their adults is investigated. Given the specific characteristics of the Kara Sea, special emphasis is put on the role of the pycnocline in separating meroplankton communities. The Kara Sea is a shallow shelf sea with an average depth of 50 m located in the Russian Arctic. Besides strong fluctuations in light, temperature and ice coverage, hydrography and ecosystems are strongly affected by the immense freshwater input of the two adjacent rivers Ob and Yenisei. The outflow creates a pronounced bilayered pelagic habitat with a confined pycnocline. Analyses of zooplankton samples from three years revealed a strong structuring effect of river discharge on pelagic communities. River run off varied significantly between years. Benthic communities are clearly shaped by the influence of freshwater input but also by the deposition of imported organic material, which can be utilised as a food source. Pelagic larvae and juveniles of marine benthic invertebrates of the Kara Sea were sampled, identified and their quantity and dispersal patterns in relation to the presence and distribution of their adults analysed. At each sampling station, three plankton samples were taken: one below the pycnocline, one across and one above it. Additionally, sediment samples were collected using a large box corer and a multicorer to monitor adult and juvenile distribution, respectively. During the investigation period in 2000 and 2001, 44 larval and 54 juvenile species were identified. For 23 of the larval species adults were present in benthos samples. For the remaining 21 larval species, adults were reported from the adjacent Barents and Petchora Sea, indicating a strong larval supply from the neighbouring seas. Most larvae were found in all water layers, although highest abundances were present in the upper low salinity layer, revealing a high accli- matisation potential of most larvae to low salinities. Notably, the ophioplutei of the brittle star Ophiocten sericeum, whose adults are very sensitive to lowered salinity, showed high concentra- V SUMMARY tions within low salinity meltwater plumes. No differences in meroplankton densities were found between the surface layer and the pycnocline, but surface and bottom layer differed significantly. The pycnocline seems to act as a physical barrier for most larvae. Meroplankton densities of individual species were generally <1 ind. m-3, but ophioplutei of O. sericeum reached densities of 200 ind. m-3. The hydrographical regime strongly influences larval distribution both verti- cally and horizontally. Generally, lowest concentrations were found in the wake of the rivers, although along a transect out of the Yenisei River local accumulation of larvae in the estuary was found. Retention is most likely caused by circulation patterns created by the strong river run off. Retention of larvae of benthic invertebrates within nursery grounds and/or the return to their parental grounds is challenging for species in areas with strong riverine output. The importance of retention in the study area was demonstrated for five exemplary species. Most benthic species of the study area show an Arctic zoogeographic distribution, but a considerable number of Arctic-boreal, boreal and cosmopolitan species were also found. The river run off may not only foster the survival of euryhaline species but through its thermal input also creates favourable conditions for boreal species. Most invertebrate species in the Kara Sea seem to reproduce directly. This large proportion can be explained in some parts by the high share of peracarid crustaceans (Cumacea, Isopoda and Amphipoda) in the species composition. While other taxa display a huge spectrum of reproduction modes, which vary strongly between species and geographic regions, peracarids show a direct reproduction trait all over the world. Their elimination from the dataset in this study reveals for the Kara Sea a larger share of species reproducing with pelagic larvae. It is assumed that due to its variability in both biotic and abiotic factors, the environment of the Kara Sea shelf often creates unfavourable conditions for benthic species. Species with pelagic larvae or highly mobile species like most peracarid crustaceans may have an advantage in reoccupying defaunated habitats. The numerous larval types found in this study indicate that planktonic development is impor- tant in the Kara Sea ecosystem. There is still a considerable lack of knowledge on reproductive strategies of marine invertebrates, which especially holds true for organisms of the Arctic Ocean. Better knowledge on reproduction traits and dynamics of polar benthic invertebrates is not only a fundamental aspect for understanding Arctic ecosystems, but also a prerequisite for the inter- pretation of their reaction to future global change. VI ZUSAMMENFASSUNG Zusammenfassung Reproduktionsstrategien haben einen starken Einfluss auf Abundanzen und Verbreitungsmuster mariner benthischer Evertebraten. Die meisten Evertebraten zeigen relativ komplexe und diverse Lebenszyklen, die an ihre jeweilige Umwelt angepasst sind. Die große Diversität von Entwick- lungsmustern ist Anlass für rege Diskussionen zwischen Ökologen über mögliche Klassifizie- rungen der unterschiedlichen Entwicklungsstrategien und ihre Beziehungen zu den biotischen und abiotischen Lebensbedingungen. Angeregt durch neue Erkenntnisse aus polaren Gewässern vor allem im Hinblick auf Klimaänderungen ist das Interesse an einer möglichen geographischen Verschiebung der wichtigsten Charakteristika der Lebensgeschichte benthischer Evertebraten in den letzten Jahren gestiegen. Allerdings ist bis heute nur wenig über die Reproduktionsstrategien eines Großteils der arktischen Evertebraten bekannt. Die meisten Arten der gemäßigten Breiten pflanzen sich über pelagische Larven fort. Diese verhalten sich meist wie passiv driftende Partikel in der Wassersäule. Ihre Verbreitung ist deshalb hauptsächlich durch lokale hydrographische Prozesse bestimmt, die sie entweder forttransportie- ren oder in der Nähe ihres Ursprungsgebiets halten. Für die Verbreitung der Larven spielt außer dem Vorkommen und der Verbreitung der Adulten (Ort der Reproduktion) sowie den Strömun- gen die Dauer des Aufenthalts im Wasser eine Rolle. Direktentwicklung
Recommended publications
  • Identification of Associations Between Bacterioplankton and Photosynthetic Picoeukaryotes in Coastal Waters
    fmicb-07-00339 March 22, 2016 Time: 11:12 # 1 ORIGINAL RESEARCH published: 22 March 2016 doi: 10.3389/fmicb.2016.00339 Identification of Associations between Bacterioplankton and Photosynthetic Picoeukaryotes in Coastal Waters Hanna M. Farnelid1,2*, Kendra A. Turk-Kubo1 and Jonathan P. Zehr1 1 Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA, 2 Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden Photosynthetic picoeukaryotes are significant contributors to marine primary productivity. Associations between marine bacterioplankton and picoeukaryotes frequently occur and can have large biogeochemical impacts. We used flow cytometry to sort cells from seawater to identify non-eukaryotic phylotypes that are associated with photosynthetic picoeukaryotes. Samples were collected at the Santa Cruz wharf on Monterey Bay, CA, USA during summer and fall, 2014. The phylogeny of associated microbes was assessed through 16S rRNA gene amplicon clone and Illumina MiSeq libraries. The most frequently detected bacterioplankton phyla Edited by: within the photosynthetic picoeukaryote sorts were Proteobacteria (Alphaproteobacteria Xavier Mayali, and Gammaproteobacteria) and Bacteroidetes. Intriguingly, the presence of free-living Lawrence Livermore National Laboratory, USA bacterial genera in the photosynthetic picoeukaryote sorts could suggest that some Reviewed by: of the photosynthetic picoeukaryotes were mixotrophs. However, the occurrence of Cécile Lepère, bacterial sequences, which were not prevalent in the corresponding bulk seawater Blaise Pascal University, France Manuela Hartmann, samples, indicates that there was also a selection for specific OTUs in association with National Oceanography Centre, UK photosynthetic picoeukaryotes suggesting specific functional associations. The results Michael Morando, show that diverse bacterial phylotypes are found in association with photosynthetic University of Southern California, USA picoeukaryotes.
    [Show full text]
  • Cyanobacteria Blooms in the Baltic Sea: a Review of Models and Facts
    https://doi.org/10.5194/bg-2020-151 Preprint. Discussion started: 19 May 2020 c Author(s) 2020. CC BY 4.0 License. Cyanobacteria Blooms in the Baltic Sea: A Review of Models and Facts Britta Munkes1, Ulrike Löptien1,2, and Heiner Dietze1,2 1GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany. 2Institute of Geosciences, Christian-Albrechts-University of Kiel, Ludewig-Meyn-Str. 10, 24 118 Kiel, Germany Correspondence: Britta Munkes ([email protected]) Abstract. The ecosystem of the Baltic Sea is endangered by eutrophication. This has triggered expensive international man- agement efforts. Some of these efforts are impeded by natural processes such as nitrogen-fixing cyanobacteria blooms that add bioavailable nitrogen to the already over-fertilised system and thereby enhance primary production, export of organic matter to depth and associated oxygen consumption. Controls of cyanobacteria blooms are not comprehensively understood and this 5 adds to the uncertainty of model-based projections into the warming future of the Baltic Sea. Here we review our current un- derstanding of cyanobacteria bloom dynamics. We summarise published field studies, laboratory experiments and dissect the basic principles ingrained in state-of-the-art coupled ocean-circulation biogeochemical models. 1 Introduction 10 The Baltic Sea is a shallow, brackish and semi-enclosed sea in central Northern Europe. It’s drainage basin is densely populated by around 84 million people. Their footprint exerts pressure on the ecosystem (Unger et al., 2013; Hannerz and Destouni, 2006). One, particularly severe, problem is eutrophication. Antropogenic nutrients enter the Baltic Sea via rivers and air-sea fluxes (Helcom, 2018, 2014).
    [Show full text]
  • Stimulated Bacterioplankton Growth and Selection for Certain Bacterial Taxa in the Vicinity of the Ctenophore Mnemiopsis Leidyi
    ORIGINAL RESEARCH ARTICLE published: 16 August 2012 doi: 10.3389/fmicb.2012.00302 Stimulated bacterioplankton growth and selection for certain bacterial taxa in the vicinity of the ctenophore Mnemiopsis leidyi Julie Dinasquet 1,2, Lena Granhag 3,4*andLasse Riemann 2 1 Department of Natural Sciences, Linnaeus University, Kalmar, Sweden 2 Marine Biological Section, University of Copenhagen, Helsingør, Denmark 3 Department of Marine Ecology-Kristineberg, University of Gothenburg, Gothenburg, Sweden 4 Department of Shipping and Marine Technology, Chalmers University of Technology, Gothenburg, Sweden Edited by: Episodic blooms of voracious gelatinous zooplankton, such as the ctenophore Kam W. Tang, Virginia Institute of Mnemiopsis leidyi, affect pools of inorganic nutrients and dissolved organic carbon Marine Science, USA by intensive grazing activities and mucus release. This will potentially influence Reviewed by: bacterioplankton activity and community composition, at least at local scales; however, Hans-Peter Grossart, IGB-Leibniz-Institute of Freshwater available studies on this are scarce. In the present study we examined effects of M. leidyi Ecology and Inland Fisheries, on bacterioplankton growth and composition in incubation experiments. Moreover, we Germany examined community composition of bacteria associated with the surface and gut Samantha L. Bickel, Virginia Institute of M. leidyi. High release of ammonium and high bacterial growth was observed in of Marine Science, USA the treatments with M. leidyi relative to controls. Deep 454 pyrosequencing of 16 S *Correspondence: Lena Granhag, Department of rRNA genes showed specific bacterial communities in treatments with M. leidyi as Marine Ecology-Kristineberg, well as specific communities associated with M. leidyi tissue and gut. In particular, University of Gothenburg, members of Flavobacteriaceae were associated with M.
    [Show full text]
  • Rhythmicity of Coastal Marine Picoeukaryotes, Bacteria and Archaea Despite Irregular Environmental Perturbations
    Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations Stefan Lambert, Margot Tragin, Jean-Claude Lozano, Jean-François Ghiglione, Daniel Vaulot, François-Yves Bouget, Pierre Galand To cite this version: Stefan Lambert, Margot Tragin, Jean-Claude Lozano, Jean-François Ghiglione, Daniel Vaulot, et al.. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME Journal, Nature Publishing Group, 2019, 13 (2), pp.388-401. 10.1038/s41396- 018-0281-z. hal-02326251 HAL Id: hal-02326251 https://hal.archives-ouvertes.fr/hal-02326251 Submitted on 19 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations Stefan Lambert, Margot Tragin, Jean-Claude Lozano, Jean-François Ghiglione, Daniel Vaulot, François-Yves Bouget, Pierre Galand To cite this version: Stefan Lambert, Margot Tragin, Jean-Claude Lozano, Jean-François Ghiglione, Daniel
    [Show full text]
  • Nitrogen Fixation Among Marine Bacterioplankton
    Nitrogen Fixation Among Marine Bacterioplankton Kjärstin H. Boström Department of Biology & Environmental Science University of Kalmar Sweden 2006 AKADEMISK AVHANDLING som för avläggande av Filosofie Doktorsexamen vid Naturvetenskapliga Fakulteten vid högskolan i Kalmar kommer att offentligt försvaras fredagen den 20 januari 2006 Doctoral thesis 2006 University of Kalmar Faculty of Natural Sciences Dissertation series No. 26 Kjärstin H. Boström Department of Biology and Environmental Science University of Kalmar, SE 391 82 Kalmar, Sweden Supervisor: Dr. Lasse Riemann, Assistant Professor Department of Biology and Environmental Science University of Kalmar, SE 391 82 Kalmar, Sweden Opponent: Dr. Grieg Steward, Assistant Professor Department of Oceanography University of Hawaii, Honolulu, HI 96822, USA 2006 Kjärstin H. Boström ISBN: 91-89584-52-X, ISSN: 1650-2779, pp. 1-26 Printed by: Högskolans tryckeri, Kalmar 2 To Frida & Emma 3 TABLE OF CONTENTS TABLE OF CONTENTS.............................................................................................................4 ABSTRACT...................................................................................................................................5 SVENSK SAMMANFATTNING...............................................................................................6 LIST OF PUBLICATIONS.........................................................................................................8 INTRODUCTION ........................................................................................................................9
    [Show full text]
  • Benthic Macrofaunal and Megafaunal Distribution on the Canadian Beaufort Shelf and Slope
    Benthic Macrofaunal and Megafaunal Distribution on the Canadian Beaufort Shelf and Slope by Jessica Nephin B.Sc., University of British Columbia, 2009 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the School of Earth and Ocean Sciences c Jessica Nephin, 2014 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. ii Benthic Macrofaunal and Megafaunal Distribution on the Canadian Beaufort Shelf and Slope by Jessica Nephin B.Sc., University of British Columbia, 2009 Supervisory Committee Dr. S. Kim Juniper School of Earth and Ocean Sciences, Department of Biology Supervisor Dr. Verena Tunnicliffe School of Earth and Ocean Sciences, Department of Biology Departmental Member Dr. Julia Baum Department of Biology Outside Member Dr. Philippe Archambault Université du Québec à Rimouski Additional Member iii Supervisory Committee Dr. S. Kim Juniper (School of Earth and Ocean Sciences, Department of Biology) Supervisor Dr. Verena Tunnicliffe (School of Earth and Ocean Sciences, Department of Biology) Departmental Member Dr. Julia Baum (Department of Biology) Outside Member Dr. Philippe Archambault (Université du Québec à Rimouski) Additional Member ABSTRACT The Arctic region has experienced the largest degree of anthropogenic warming, causing rapid, yet variable sea-ice loss. The effects of this warming on the Canadian Beaufort Shelf have led to a longer ice-free season which has assisted the expansion of northern development, mainly in the oil and gas sector. Both these direct and indirect effects of climate change will likely impact the marine ecosystem of this region, in which benthic fauna play a key ecological role.
    [Show full text]
  • Ocean Iron Fertilization Experiments – Past, Present, and Future Looking to a Future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) Project
    Biogeosciences, 15, 5847–5889, 2018 https://doi.org/10.5194/bg-15-5847-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License. Reviews and syntheses: Ocean iron fertilization experiments – past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project Joo-Eun Yoon1, Kyu-Cheul Yoo2, Alison M. Macdonald3, Ho-Il Yoon2, Ki-Tae Park2, Eun Jin Yang2, Hyun-Cheol Kim2, Jae Il Lee2, Min Kyung Lee2, Jinyoung Jung2, Jisoo Park2, Jiyoung Lee1, Soyeon Kim1, Seong-Su Kim1, Kitae Kim2, and Il-Nam Kim1 1Department of Marine Science, Incheon National University, Incheon 22012, Republic of Korea 2Korea Polar Research Institute, Incheon 21990, Republic of Korea 3Woods Hole Oceanographic Institution, MS 21, 266 Woods Hold Rd., Woods Hole, MA 02543, USA Correspondence: Il-Nam Kim ([email protected]) Received: 2 November 2016 – Discussion started: 15 November 2016 Revised: 16 August 2018 – Accepted: 18 August 2018 – Published: 5 October 2018 Abstract. Since the start of the industrial revolution, hu- providing insight into mechanisms operating in real time and man activities have caused a rapid increase in atmospheric under in situ conditions. To maximize the effectiveness of carbon dioxide (CO2) concentrations, which have, in turn, aOIF experiments under international aOIF regulations in the had an impact on climate leading to global warming and future, we therefore suggest a design that incorporates sev- ocean acidification. Various approaches have been proposed eral components. (1) Experiments conducted in the center of to reduce atmospheric CO2. The Martin (or iron) hypothesis an eddy structure when grazing pressure is low and silicate suggests that ocean iron fertilization (OIF) could be an ef- levels are high (e.g., in the SO south of the polar front during fective method for stimulating oceanic carbon sequestration early summer).
    [Show full text]
  • Factors Controlling the Community Structure of Picoplankton in Contrasting Marine Environments
    Biogeosciences, 15, 6199–6220, 2018 https://doi.org/10.5194/bg-15-6199-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Factors controlling the community structure of picoplankton in contrasting marine environments Jose Luis Otero-Ferrer1, Pedro Cermeño2, Antonio Bode6, Bieito Fernández-Castro1,3, Josep M. Gasol2,5, Xosé Anxelu G. Morán4, Emilio Marañon1, Victor Moreira-Coello1, Marta M. Varela6, Marina Villamaña1, and Beatriz Mouriño-Carballido1 1Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, Spain 2Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain 3Departamento de Oceanografía, Instituto de investigacións Mariñas (IIM-CSIC), Vigo, Spain 4King Abdullah University of Science and Technology (KAUST), Read Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia 5Centre for Marine Ecosystem Research, School of Sciences, Edith Cowan University, WA, Perth, Australia 6Centro Oceanográfico de A Coruña, Instituto Español de Oceanografía (IEO), A Coruña, Spain Correspondence: Jose Luis Otero-Ferrer ([email protected]) Received: 27 April 2018 – Discussion started: 4 June 2018 Revised: 4 October 2018 – Accepted: 10 October 2018 – Published: 26 October 2018 Abstract. The effect of inorganic nutrients on planktonic as- played a significant role. Nitrate supply was the only fac- semblages has traditionally relied on concentrations rather tor that allowed the distinction among the ecological
    [Show full text]
  • Laptev Sea System
    Russian-German Cooperation: Laptev Sea System Edited by Heidemarie Kassens, Dieter Piepenburg, Jör Thiede, Leonid Timokhov, Hans-Wolfgang Hubberten and Sergey M. Priamikov Ber. Polarforsch. 176 (1995) ISSN 01 76 - 5027 Russian-German Cooperation: Laptev Sea System Edited by Heidemarie Kassens GEOMAR Research Center for Marine Geosciences, Kiel, Germany Dieter Piepenburg Institute for Polar Ecology, Kiel, Germany Jör Thiede GEOMAR Research Center for Marine Geosciences, Kiel. Germany Leonid Timokhov Arctic and Antarctic Research Institute, St. Petersburg, Russia Hans-Woifgang Hubberten Alfred-Wegener-Institute for Polar and Marine Research, Potsdam, Germany and Sergey M. Priamikov Arctic and Antarctic Research Institute, St. Petersburg, Russia TABLE OF CONTENTS Preface ....................................................................................................................................i Liste of Authors and Participants ..............................................................................V Modern Environment of the Laptev Sea .................................................................1 J. Afanasyeva, M. Larnakin and V. Tirnachev Investigations of Air-Sea Interactions Carried out During the Transdrift II Expedition ............................................................................................................3 V.P. Shevchenko , A.P. Lisitzin, V.M. Kuptzov, G./. Ivanov, V.N. Lukashin, J.M. Martin, V.Yu. ßusakovS.A. Safarova, V. V. Serova, ßvan Grieken and H. van Malderen The Composition of Aerosols
    [Show full text]
  • Lists of Names of Prokaryotic Candidatus Taxa
    NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code.
    [Show full text]
  • Diatom Modulation of Select Bacteria Through Use of Two Unique Secondary Metabolites
    Diatom modulation of select bacteria through use of two unique secondary metabolites Ahmed A. Shibla, Ashley Isaaca,b, Michael A. Ochsenkühna, Anny Cárdenasc,d, Cong Feia, Gregory Behringera, Marc Arnouxe, Nizar Droue, Miraflor P. Santosa,1, Kristin C. Gunsaluse,f, Christian R. Voolstrac,d, and Shady A. Amina,2 aMarine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates; bInternational Max Planck Research School of Marine Microbiology, University of Bremen, Bremen 28334, Germany; cDepartment of Biology, University of Konstanz, Konstanz 78467, Germany; dRed Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; eCenter for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates; and fCenter for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003 Edited by Edward F. DeLong, University of Hawaii at Manoa, Honolulu, HI, and approved September 10, 2020 (received for review June 12, 2020) Unicellular eukaryotic phytoplankton, such as diatoms, rely on shown to heavily rely on phycosphere DOM to support their microbial communities for survival despite lacking specialized growth (14, 15) and must use motility, chemotaxis, and/or at- compartments to house microbiomes (e.g., animal gut). Microbial tachment to chase and colonize the phycosphere (16). Recent communities have been widely shown to benefit from diatom research has shown that a variety of interactions spanning mu- excretions that accumulate within the microenvironment sur- tualism, commensalism, and parasitism occur between diatoms rounding phytoplankton cells, known as the phycosphere.
    [Show full text]
  • And Phytoplankton Community Compositions Related in Lakes Differing in Their Cyanobacteria Contribution and Physico-Chemical Properties?
    G C A T T A C G G C A T genes Article Are Bacterio- and Phytoplankton Community Compositions Related in Lakes Differing in Their Cyanobacteria Contribution and Physico-Chemical Properties? Mikołaj Kokoci ´nski 1,*, Dariusz Dziga 2 , Adam Antosiak 2 and Janne Soininen 3 1 Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Pozna´nskiego 6, 61-614 Pozna´n,Poland 2 Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; [email protected] (D.D.); [email protected] (A.A.) 3 Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland; janne.soininen@helsinki.fi * Correspondence: [email protected] Abstract: Bacterioplankton community composition has become the center of research attention in recent years. Bacteria associated with toxic cyanobacteria blooms have attracted considerable interest. However, little is known about the environmental factors driving the bacteria community, including the impact of invasive cyanobacteria. Therefore, our aim has been to determine the relationships be- tween heterotrophic bacteria and phytoplankton community composition across 24 Polish lakes with different contributions of cyanobacteria including the invasive species Raphidiopsis raciborskii. This Citation: Kokoci´nski,M.; Dziga, D.; analysis revealed that cyanobacteria were present in 16 lakes, while R. raciborskii occurred in 14 lakes. Antosiak, A.; Soininen, J. Are Bacterio- Our results show that bacteria communities differed between lakes dominated by cyanobacteria and and Phytoplankton Community lakes with minor contributions of cyanobacteria but did not differ between lakes with R. raciborskii Compositions Related in Lakes and other lakes.
    [Show full text]