Ingestion of Phytoplankton and Bacterioplankton by Polar and Temperate Echinoderm Larvae

Total Page:16

File Type:pdf, Size:1020Kb

Ingestion of Phytoplankton and Bacterioplankton by Polar and Temperate Echinoderm Larvae Differences in respiration rates among samples (not meas- References ured) could account partly for the unexplained variance, al- though rates at 0 °C are expected to be lower than the 12 percent Cullen, J. 1990. On models of growth and photosynthesis in phyto- assumed for 20 °C (Sakshaug, Kiefer, Andresen 1989). plankton. Deep-Sea Research, 37, 667-683. In conclusion, phytoplankton growth rates at the mixed layer Eppley, R.W. 1972. Temperature and phytoplankton growth in the sea. were on the average 53+22 percent of the maximal rates ex- Fishery Bulletin, 70, 1063-1085. Holm-Hansen, 0., and M. Vernet. pected (0.58 per day) for the ambient temperature (Eppley 1972; 1990. RACER: Phytoplankton dis- tribution and rates of primary production during the austral spring Spies 1987). Maximum growth rates were observed in a non- bloom. Antarctic Journal of the U.S., 25(5), 141-144. bloom assemblage, and lowest growth rates were associated Kocmur, S., M. Vernet, and 0. Holm-Hansen. 1990. RACER: Nutrient with low nitrate concentrations at the surface. Growth rates depletion by phytoplankton during the 1989 austral spring bloom. can be modeled as a function of irradiance, but at saturated Antarctic Journal of the U.S., 25(5), 138-141. irradiance, they are mainly dependent on the chlorophyll-to- Laws, E.A., and IT. Bannister. 1980. Nutrient- and light-limited carbon ratios. growth of Thalassiosira fluviatilis in continuous culture, with implica- We would like to thank the captain and crew of the RIV Polar tions for phytoplankton growth in the ocean. Linnology and Ocean- Duke for their help, C. Fair for technical assistance, and E. ography, 25, 457-473. Brody for graphics. This project was funded by National Sci- Redalje, D., and E. Laws. 1981. A new method for estimating phyto- plankton growth rates and carbon biomass. Marine Biology, 62, 73- ence Foundation grants DPP 88-17635 to 0. Holm-Hansen and 79. M. Vernet and DPP 88-18899 to D. Karl. Sakshaug, E., D. Kiefer, and K. Andresen. 1989. A steady state descrip- tion of growth and light absorption in the marine planktonic diatom Skeletonema costatum. Limnology and Oceanography, 34, 198-205. Sommer, U. 1989. Maximal growth rates of Antarctic phytoplankton: Only weak dependence on cell size. Limnology and Oceanography, 34, 1109-1112. Spies, A. 1987 Growth rates of Antarctic marine phytoplankton in the Weddell Sea. Marine Ecology Progress Series, 41, 267-274. Ingestion of phytoplankton here the rates of particle ingestion for representative field and and bacterioplankton by laboratory experiments with morphologically similar echino- derm larvae from polar (Odontaster validus) and temperate (As- polar and temperate terina miniata) environments. echinoderm larvae Natural microbial populations collected at the ice edge in McMurdo Sound, Antarctica, and approximately 2 kilometers offshore of Santa Cruz, California, in Monterey Bay were seri- RICHARD B. RIvKIN, M. ROBIN ANDERSON, ally size fractionated through 64-micrometer and 10-micrometer and DANIEL E. Gu5TAF50N, JR. Nitex mesh and a 1.0-micrometer Nuclepore filters (designated the <64-micrometer, <10-micrometer, and <1.0-micrometer Horn Point Environmental Laboratory size fractions, respectively). We are assuming that only algae University of Maryland assimilated the carbon-14 sodium bicarbonate in the <64-mi- Cambridge, Maryland 21613 crometer and <10-micrometer size fractions and that primarily bacteria incorporated methyl, tritiated thymidine in the <1.0- micrometer size fraction. The <64-micrometer and <10-mi- Echinoderm larvae are widely distributed in the plankton of crometer fractions were incubated with carbon-14 sodium bi- polar and temperate oceans (Mileikovsky 1971). Although phy- carbonate (1-2 microcuries per milliliter final activity) for 6 to toplankton are considered to be their primary food source, 36 hours and the <1.0-micrometer fraction was incubated with recent studies suggest that echinoderm larvae may be nutri- methyl, tritiated thymidine (approximately 7-10 nanomolar tionally quite opportunistic. They may assimilate a variety of TdR per liter) for 6 to 12 hours. Laboratory cultures of the dissolved substrates and ingest both autotrophic and hetero- chlorophyte Dunaliella tertiolecta were labeled with carbon-14 trophic microbiota (Manahan, Davis, and Stephens 1983; Riv- sodium bicarbonate (1-2 microcuries per milliliter final activity) kin et al. 1986; Strathmann 1987; Manahan et al. 1990). The for at least 12 hours. Mid- to late-stage bipinnaria larvae were seawater concentration of both dissolved and particulate ma- added to the radiolabelled prey, and after incubating replicate terial is spatially and temporally variable, hence the nutritional bottles (n = 3 or 4) for 2 to 6 hours at ambient temperatures in modes may differ for larvae in distinct geographic regions or the dark, the larvae were gently collected onto 73-micrometer for larvae from the same region during different times of the Nitex screening, rinsed several times with ambient tempera- year. As part of a collaborative study to evaluate the nutritional ture seawater to removing adhering particles and backwashed importance of dissolved and particulate resources, we report into isolation dishes. Using micromanipulation, 8 to 10 larvae were isolated into replicate (n = 5) scintillation vials, and their radioactivity was counted using liquid scintillation spectrome- try (Rivkin, Anderson, and Gustafson in preparation). All sam- present address: Ocean Sciences Centre, Memorial University of Newfound- ples were corrected for quench by the external standards land, St. Johns, Newfoundland, A1C 5S7 Canada. method and for background radiation. The data were tested for 156 ANTARCTIC JOURNAL significance (among replicate bottles within a treatment and 15 among treatments) using nested and two-way analysis of vari- ance. 12 The ingestion of radiolabeled prey has been widely used to study the dynamics of grazing by crustacean and protozoan .c zooplankton; however, it had not been used to measure grazing in echinoderm larvae. The rates of clearance and ingestion of a D. tertiolecta, common food source, by 0. validus and A. miniata . 6 were compared (figure 1). There were no significant differences -j among replicate bottles within a treatment however clearance 3 and ingestion rates were significantly (p<O.00l) faster by the temperate than polar larva. Figure 2 shows the clearance and ingestion rates of naturally 0 occurring particulate prey by 0. validus and A. miniata. There (10 jm (64 Am (1.0 ,tsm were usually no significant differences among replicate bottles 60 within a treatment. The clearance rates of 0. va/idus for <64- micrometer and <10-micrometer algae were not significantly (p=O.l05) different (figure 2A). In contrast, the clearance rates of A. miniata on <10-micrometer algae were significantly 40 greater (p<O.00l) than for <64-micrometer algae (figure 2A). a validus a The rates of clearance of the <64-micrometer algae by 0. -J and A. miniata were not significantly different (p=0.477) 0C .0 whereas A. miniata cleared <10-micrometer algae significantly a 20 (p<0.001) faster than 0. validus. 0 The rates of algal ingestion by 0. validus, calculated as the 0. product of clearance rates and prey carbon per microliter, was significantly greater (p<O.00l) for <64-micrometer than the <10-micrometer algal size fraction. In contrast, the rate of (10 Am (64/hm <1.0 um ingestion of <64-micrometer and <10-micrometer algae by A. miniata was not significantly (p = 0.101) different. Phytoplankton Bacteria Odontaster validus readily ingested <1.0-micrometer bacteria and the clearance rates were significantly (p<0.05) greater than Figure 2. Rates of (A) clearance (in microliters per larva per hour, for the <64-micrometer and <10-micrometer algae (figure 2A). 1iL larva- 1 h) and (B) ingestion (in picograms of carbon per larva At this time of year, the biomass of phytoplankton is greater per hour, pg Carbon larva- 1 11- 1 ) of the <64-micrometer, <10-mi- than bacteria in McMurdo Sound (however see Rivkin 1991); crometer, and <1.0 size fractions of natural planktonic populations hence, the ingestion rate of bacterial carbon was significantly by Odontaster validus in McMurdo Sound, Antarctic, (darkened (p<0.05) lower than that for phytoplankton carbon. In contrast, bars) and Asterina miniata in Monterey Bay, California (cross- did not appear to ingest bacteria. hatched bars). The experiments were carried out in mid-August A. miniata 1990 (Monterey Bay) and late December (McMurdo Sound). On the The rates of ingestion of prey carbon, measured during the dates of these experiments, the ambient chlorophyll a concentra- field experiments, were compared with the rates of metabolism tions (in micrograms per liter) were: in Monterey Bay, <64-microm- eter = 2.03 and <10-micrometer = 0.33 and in McMurdo Sound, <64-micrometer 1.88 and = 10-micrometer = 0.47. Bacterial abundances in McMurdo Sound were 2.8 x 108 cells per liter. The error bars are one standard deviation. 15.0 5.0 12.0 4.0 - -c (Manahan et al. 1990) and the metabolic carbon demand (table). 9.0 3.0 Grazing on the natural microbial populations could satisfy 100 a percent of the carbon demand of 0. validus but <1 percent of it C . 6.0 0 the metabolic requirements of A. miniata. The metabolic carbon a demands were satisfied when the algal biomass was higher 0 3.0 1.0 g such as in the experiments where A. miniata ingested D. Tertio- lecta (compare the table and figure 1). These results suggest that temperate larvae may have a much higher particulate food 0.0 0.0 Clearance Ingestion requirement and threshold for clearance than polar larvae. Rate Rate This project was supported by National Science Foundation grants DPP 88-18354 and 88-20132 to J.S. Pearse and R.B. Riv- Figure 1. Rates of clearance (in microliters per larva per hour, jiL kin, respectively.
Recommended publications
  • Identification of Associations Between Bacterioplankton and Photosynthetic Picoeukaryotes in Coastal Waters
    fmicb-07-00339 March 22, 2016 Time: 11:12 # 1 ORIGINAL RESEARCH published: 22 March 2016 doi: 10.3389/fmicb.2016.00339 Identification of Associations between Bacterioplankton and Photosynthetic Picoeukaryotes in Coastal Waters Hanna M. Farnelid1,2*, Kendra A. Turk-Kubo1 and Jonathan P. Zehr1 1 Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA, 2 Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden Photosynthetic picoeukaryotes are significant contributors to marine primary productivity. Associations between marine bacterioplankton and picoeukaryotes frequently occur and can have large biogeochemical impacts. We used flow cytometry to sort cells from seawater to identify non-eukaryotic phylotypes that are associated with photosynthetic picoeukaryotes. Samples were collected at the Santa Cruz wharf on Monterey Bay, CA, USA during summer and fall, 2014. The phylogeny of associated microbes was assessed through 16S rRNA gene amplicon clone and Illumina MiSeq libraries. The most frequently detected bacterioplankton phyla Edited by: within the photosynthetic picoeukaryote sorts were Proteobacteria (Alphaproteobacteria Xavier Mayali, and Gammaproteobacteria) and Bacteroidetes. Intriguingly, the presence of free-living Lawrence Livermore National Laboratory, USA bacterial genera in the photosynthetic picoeukaryote sorts could suggest that some Reviewed by: of the photosynthetic picoeukaryotes were mixotrophs. However, the occurrence of Cécile Lepère, bacterial sequences, which were not prevalent in the corresponding bulk seawater Blaise Pascal University, France Manuela Hartmann, samples, indicates that there was also a selection for specific OTUs in association with National Oceanography Centre, UK photosynthetic picoeukaryotes suggesting specific functional associations. The results Michael Morando, show that diverse bacterial phylotypes are found in association with photosynthetic University of Southern California, USA picoeukaryotes.
    [Show full text]
  • Cyanobacteria Blooms in the Baltic Sea: a Review of Models and Facts
    https://doi.org/10.5194/bg-2020-151 Preprint. Discussion started: 19 May 2020 c Author(s) 2020. CC BY 4.0 License. Cyanobacteria Blooms in the Baltic Sea: A Review of Models and Facts Britta Munkes1, Ulrike Löptien1,2, and Heiner Dietze1,2 1GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany. 2Institute of Geosciences, Christian-Albrechts-University of Kiel, Ludewig-Meyn-Str. 10, 24 118 Kiel, Germany Correspondence: Britta Munkes ([email protected]) Abstract. The ecosystem of the Baltic Sea is endangered by eutrophication. This has triggered expensive international man- agement efforts. Some of these efforts are impeded by natural processes such as nitrogen-fixing cyanobacteria blooms that add bioavailable nitrogen to the already over-fertilised system and thereby enhance primary production, export of organic matter to depth and associated oxygen consumption. Controls of cyanobacteria blooms are not comprehensively understood and this 5 adds to the uncertainty of model-based projections into the warming future of the Baltic Sea. Here we review our current un- derstanding of cyanobacteria bloom dynamics. We summarise published field studies, laboratory experiments and dissect the basic principles ingrained in state-of-the-art coupled ocean-circulation biogeochemical models. 1 Introduction 10 The Baltic Sea is a shallow, brackish and semi-enclosed sea in central Northern Europe. It’s drainage basin is densely populated by around 84 million people. Their footprint exerts pressure on the ecosystem (Unger et al., 2013; Hannerz and Destouni, 2006). One, particularly severe, problem is eutrophication. Antropogenic nutrients enter the Baltic Sea via rivers and air-sea fluxes (Helcom, 2018, 2014).
    [Show full text]
  • Marine Ecology Progress Series 371:297
    Vol. 371: 297–300, 2008 MARINE ECOLOGY PROGRESS SERIES Published November 19 doi: 10.3354/meps07710 Mar Ecol Prog Ser NOTE Intraspecific agonistic arm-fencing behavior in the Antarctic keystone sea star Odontaster validus influences prey acquisition James B. McClintock1,*, Robert A. Angus1, Christina P. Ho1, Charles D. Amsler1, Bill J. Baker2 1Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA 2Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA ABSTRACT: The importance of intraspecific social behaviors in mediating foraging behaviors of marine invertebrate keystone predators has received little attention. In laboratory investigations employing time-lapse video, we observed that the keystone Antarctic sea star Odontaster validus dis- plays frequent agonistic arm-fencing bouts with conspecifics when near prey (injured sea urchin). Arm-fencing bouts consisted of 2 individuals elevating the distal portion of an arm until positioned arm tip to arm tip. This was followed by intermittent or continuous arm to arm contact, carried out in attempts to place an arm onto the aboral (upper) surface of the opponent. Fifteen (79%) of the 19 bouts observed occurred near prey (mean ± 1 SE, 13 ± 1.6 cm distance to prey; n = 13). These bouts lasted 21.05 ± 2.53 min (n = 15). In all 5 bouts that involved a large individual (radius, R: distance from the tip of an arm to the center of the oral disk; 45 to 53 mm) competing with either a medium (R = 35 to 42 mm) or small (R = 25 to 32 mm) individual, the large sea star prevailed. The only exception occurred in 2 instances where a medium-sized sea star had settled onto prey and was subsequently challenged by a larger individual.
    [Show full text]
  • Stimulated Bacterioplankton Growth and Selection for Certain Bacterial Taxa in the Vicinity of the Ctenophore Mnemiopsis Leidyi
    ORIGINAL RESEARCH ARTICLE published: 16 August 2012 doi: 10.3389/fmicb.2012.00302 Stimulated bacterioplankton growth and selection for certain bacterial taxa in the vicinity of the ctenophore Mnemiopsis leidyi Julie Dinasquet 1,2, Lena Granhag 3,4*andLasse Riemann 2 1 Department of Natural Sciences, Linnaeus University, Kalmar, Sweden 2 Marine Biological Section, University of Copenhagen, Helsingør, Denmark 3 Department of Marine Ecology-Kristineberg, University of Gothenburg, Gothenburg, Sweden 4 Department of Shipping and Marine Technology, Chalmers University of Technology, Gothenburg, Sweden Edited by: Episodic blooms of voracious gelatinous zooplankton, such as the ctenophore Kam W. Tang, Virginia Institute of Mnemiopsis leidyi, affect pools of inorganic nutrients and dissolved organic carbon Marine Science, USA by intensive grazing activities and mucus release. This will potentially influence Reviewed by: bacterioplankton activity and community composition, at least at local scales; however, Hans-Peter Grossart, IGB-Leibniz-Institute of Freshwater available studies on this are scarce. In the present study we examined effects of M. leidyi Ecology and Inland Fisheries, on bacterioplankton growth and composition in incubation experiments. Moreover, we Germany examined community composition of bacteria associated with the surface and gut Samantha L. Bickel, Virginia Institute of M. leidyi. High release of ammonium and high bacterial growth was observed in of Marine Science, USA the treatments with M. leidyi relative to controls. Deep 454 pyrosequencing of 16 S *Correspondence: Lena Granhag, Department of rRNA genes showed specific bacterial communities in treatments with M. leidyi as Marine Ecology-Kristineberg, well as specific communities associated with M. leidyi tissue and gut. In particular, University of Gothenburg, members of Flavobacteriaceae were associated with M.
    [Show full text]
  • Rhythmicity of Coastal Marine Picoeukaryotes, Bacteria and Archaea Despite Irregular Environmental Perturbations
    Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations Stefan Lambert, Margot Tragin, Jean-Claude Lozano, Jean-François Ghiglione, Daniel Vaulot, François-Yves Bouget, Pierre Galand To cite this version: Stefan Lambert, Margot Tragin, Jean-Claude Lozano, Jean-François Ghiglione, Daniel Vaulot, et al.. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME Journal, Nature Publishing Group, 2019, 13 (2), pp.388-401. 10.1038/s41396- 018-0281-z. hal-02326251 HAL Id: hal-02326251 https://hal.archives-ouvertes.fr/hal-02326251 Submitted on 19 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations Stefan Lambert, Margot Tragin, Jean-Claude Lozano, Jean-François Ghiglione, Daniel Vaulot, François-Yves Bouget, Pierre Galand To cite this version: Stefan Lambert, Margot Tragin, Jean-Claude Lozano, Jean-François Ghiglione, Daniel
    [Show full text]
  • Nitrogen Fixation Among Marine Bacterioplankton
    Nitrogen Fixation Among Marine Bacterioplankton Kjärstin H. Boström Department of Biology & Environmental Science University of Kalmar Sweden 2006 AKADEMISK AVHANDLING som för avläggande av Filosofie Doktorsexamen vid Naturvetenskapliga Fakulteten vid högskolan i Kalmar kommer att offentligt försvaras fredagen den 20 januari 2006 Doctoral thesis 2006 University of Kalmar Faculty of Natural Sciences Dissertation series No. 26 Kjärstin H. Boström Department of Biology and Environmental Science University of Kalmar, SE 391 82 Kalmar, Sweden Supervisor: Dr. Lasse Riemann, Assistant Professor Department of Biology and Environmental Science University of Kalmar, SE 391 82 Kalmar, Sweden Opponent: Dr. Grieg Steward, Assistant Professor Department of Oceanography University of Hawaii, Honolulu, HI 96822, USA 2006 Kjärstin H. Boström ISBN: 91-89584-52-X, ISSN: 1650-2779, pp. 1-26 Printed by: Högskolans tryckeri, Kalmar 2 To Frida & Emma 3 TABLE OF CONTENTS TABLE OF CONTENTS.............................................................................................................4 ABSTRACT...................................................................................................................................5 SVENSK SAMMANFATTNING...............................................................................................6 LIST OF PUBLICATIONS.........................................................................................................8 INTRODUCTION ........................................................................................................................9
    [Show full text]
  • Marine Ecology Progress Series 385:77
    Vol. 385: 77–85, 2009 MARINE ECOLOGY PROGRESS SERIES Published June 18 doi: 10.3354/meps08026 Mar Ecol Prog Ser OPENPEN ACCESSCCESS Palatability and chemical defenses of sponges from the western Antarctic Peninsula Kevin J. Peters1,*, Charles D. Amsler1, James B. McClintock1, Rob W. M. van Soest2, Bill J. Baker3 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, Alabama 35294-1170, USA 2Zoological Museum of the University of Amsterdam, PO Box 94766, 1090 GT Amsterdam, The Netherlands 3Department of Chemistry, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620-5240, USA ABSTRACT: The present study surveyed the palatability of all sponge species that could be collected in sufficient quantities in a shallow-water area along the western Antarctic Peninsula. Of 27 species assayed, 78% had outermost tissues that were significantly unpalatable to the sympatric, omnivorous sea star Odontaster validus. Of those species with unpalatable outer tissues, 62% had inner tissues that were also unpalatable to the sea stars. Sea stars have often been considered as the primary predators of sponges in other regions of Antarctica, and their extra-oral mode of feeding threatens only the outermost sponge tissues. The observation that many of the sponges allocate defenses to inner tissues suggests the possibility that biting predators such as mesograzers, which could access inner sponge layers, may also be important in communities along the Antarctic Peninsula. In feeding bioassays with extracts from 12 of the unpalatable species in artificial foods, either lipophilic or hydrophilic extracts were deterrent in each species. These data indicate an overall level of chemical defenses in these Antarctic sponges that is comparable to, and slightly greater than, that found in a previous survey of tropical species.
    [Show full text]
  • Ocean Iron Fertilization Experiments – Past, Present, and Future Looking to a Future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) Project
    Biogeosciences, 15, 5847–5889, 2018 https://doi.org/10.5194/bg-15-5847-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License. Reviews and syntheses: Ocean iron fertilization experiments – past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project Joo-Eun Yoon1, Kyu-Cheul Yoo2, Alison M. Macdonald3, Ho-Il Yoon2, Ki-Tae Park2, Eun Jin Yang2, Hyun-Cheol Kim2, Jae Il Lee2, Min Kyung Lee2, Jinyoung Jung2, Jisoo Park2, Jiyoung Lee1, Soyeon Kim1, Seong-Su Kim1, Kitae Kim2, and Il-Nam Kim1 1Department of Marine Science, Incheon National University, Incheon 22012, Republic of Korea 2Korea Polar Research Institute, Incheon 21990, Republic of Korea 3Woods Hole Oceanographic Institution, MS 21, 266 Woods Hold Rd., Woods Hole, MA 02543, USA Correspondence: Il-Nam Kim ([email protected]) Received: 2 November 2016 – Discussion started: 15 November 2016 Revised: 16 August 2018 – Accepted: 18 August 2018 – Published: 5 October 2018 Abstract. Since the start of the industrial revolution, hu- providing insight into mechanisms operating in real time and man activities have caused a rapid increase in atmospheric under in situ conditions. To maximize the effectiveness of carbon dioxide (CO2) concentrations, which have, in turn, aOIF experiments under international aOIF regulations in the had an impact on climate leading to global warming and future, we therefore suggest a design that incorporates sev- ocean acidification. Various approaches have been proposed eral components. (1) Experiments conducted in the center of to reduce atmospheric CO2. The Martin (or iron) hypothesis an eddy structure when grazing pressure is low and silicate suggests that ocean iron fertilization (OIF) could be an ef- levels are high (e.g., in the SO south of the polar front during fective method for stimulating oceanic carbon sequestration early summer).
    [Show full text]
  • Factors Controlling the Community Structure of Picoplankton in Contrasting Marine Environments
    Biogeosciences, 15, 6199–6220, 2018 https://doi.org/10.5194/bg-15-6199-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Factors controlling the community structure of picoplankton in contrasting marine environments Jose Luis Otero-Ferrer1, Pedro Cermeño2, Antonio Bode6, Bieito Fernández-Castro1,3, Josep M. Gasol2,5, Xosé Anxelu G. Morán4, Emilio Marañon1, Victor Moreira-Coello1, Marta M. Varela6, Marina Villamaña1, and Beatriz Mouriño-Carballido1 1Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, Spain 2Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain 3Departamento de Oceanografía, Instituto de investigacións Mariñas (IIM-CSIC), Vigo, Spain 4King Abdullah University of Science and Technology (KAUST), Read Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia 5Centre for Marine Ecosystem Research, School of Sciences, Edith Cowan University, WA, Perth, Australia 6Centro Oceanográfico de A Coruña, Instituto Español de Oceanografía (IEO), A Coruña, Spain Correspondence: Jose Luis Otero-Ferrer ([email protected]) Received: 27 April 2018 – Discussion started: 4 June 2018 Revised: 4 October 2018 – Accepted: 10 October 2018 – Published: 26 October 2018 Abstract. The effect of inorganic nutrients on planktonic as- played a significant role. Nitrate supply was the only fac- semblages has traditionally relied on concentrations rather tor that allowed the distinction among the ecological
    [Show full text]
  • Inferred from Stable Isotopes Ratios Baptiste LE Bourga, Alice Blancharda, Bruno Danisb, Gilles Lepointa, Camille Moreaub, Quentin Jossartb, Loïc N
    Feeding ecology of Southern Ocean seastars inferred from stable isotopes ratios Baptiste LE BOURGa, Alice BLANCHARDa, Bruno DANISb, Gilles LEPOINTa, Camille MOREAUb, Quentin JOSSARTb, Loïc N. MICHELa. Contact: [email protected] a: Laboratory of Oceanology, University of Liège, 4000 Liège Belgium, b: Marine Biology Lab, Université Libre de Bruxelles, 1050 Brussels Antarctic continent and Southern Ocean subjected to strong and 213 seastars (16 species) were sampled in western Antarctic contrasted impacts of climate change => Impacts on marine (South Shetland Islands, Coronation Islands, Western Antarctic food webs? Peninsula) and near subantarctic islands (South Georgia, South Sandwich Islands, Falkland Islands) during the summer Sea stars will be subjected to new stress and environmental constraints due to climate change Stable isotope ratios of C (δ13C), N (δ15N) and S (δ34S) in tegument were measured by CF-EA-IRMS Objective: Investigating trophic ecology of antarctic seastars Examples of sampled seastar species Examples of sampled seastar species Falkland (pictures: Dirk Schories and Norbert Wu) Islands (pictures: Shawn Harper and Dirk Schories) South Shetland Islands Coronation Island Western Antarctic South Peninsula Georgia Sandwich Islands Lophaster sp. Odontaster validus Glabraster Labidiaster and Acodontaster sp. antarctica annulatus Analyses of variance and post-hoc tests show differences in stable isotope ratios between the South Shetland Islands and South Georgia South Shetland Islands Number of individuals ≥ 5:
    [Show full text]
  • Lists of Names of Prokaryotic Candidatus Taxa
    NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code.
    [Show full text]
  • Feeding Repellence in Antarctic Bryozoans
    Naturwissenschaften (2013) 100:1069–1081 DOI 10.1007/s00114-013-1112-8 ORIGINAL PAPER Feeding repellence in Antarctic bryozoans Blanca Figuerola & Laura Núñez-Pons & Juan Moles & Conxita Avila Received: 3 September 2013 /Revised: 16 October 2013 /Accepted: 20 October 2013 /Published online: 13 November 2013 # Springer-Verlag Berlin Heidelberg 2013 Abstract The Antarctic sea star Odontaster validus and the an important role in Antarctic bryozoans as defenses against amphipod Cheirimedon femoratus are important predators in predators. benthic communities. Some bryozoans are part of the diet of the asteroid and represent both potential host biosubstrata and Keywords Odontaster validus . Cheirimedon femoratus . prey for this omnivorous lysianassid amphipod. In response to Chemical ecology . Chemical defense . Deception Island such ecological pressure, bryozoans are expected to develop strategies to deter potential predators, ranging from physical to chemical mechanisms. However, the chemical ecology of Introduction Antarctic bryozoans has been scarcely studied. In this study we evaluated the presence of defenses against predation in The continental shelf of the eastern Weddell Sea and other selected species of Antarctic bryozoans. The sympatric om- Antarctic regions are characterized by presence of diverse, nivorous consumers O. validus and C. femoratus were select- well-structured benthic communities, dominated by eurybath- ed to perform feeding assays with 16 ether extracts (EE) and ic suspension feeders such as sponges, gorgonians, bryozoans, 16 butanol extracts (BE) obtained from 16 samples that and ascidians (Dayton et al. 1974; Teixidó et al. 2002; belonged to 13 different bryozoan species. Most species (9) Figuerola et al. 2012a). The establishment of the Antarctic were active (12 EE and 1 BE) in sea star bioassays.
    [Show full text]