<<

Protected Triazabutadienes in Chemical Biology

Item Type text; Electronic Dissertation

Authors Guzman, Lindsay Eileen

Citation Guzman, Lindsay Eileen. (2021). Protected Triazabutadienes in Chemical Biology (Doctoral dissertation, University of Arizona, Tucson, USA).

Publisher The University of Arizona.

Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Download date 10/10/2021 17:58:48

Link to Item http://hdl.handle.net/10150/657769 PROTECTED TRIAZABUTADIENES IN CHEMICAL BIOLOGY

by

Lindsay E. Guzman

Copyright © Lindsay E. Guzman 2021

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

WITH A MAJOR IN CHEMISTRY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2021

THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE

As members of the Disse1iation Committee, we certifythat we have read the disse1tation prepared by: Lindsay E. Guzman titled: Protected Triazabutadienes in Chemical Biology and recommend that it be accepted as fulfilling the disse1tation requirement for the Degree of Doctor of Philosophy.

Date: Mar 2, 2021 John C Jewett

Date: Mar 5, 2021 lndraneel Ghosh

Date: Mar 4, 2021 Richard Glass

Date: Mar 2, 2021 William R Montfort

Date: Mar 2, 2021 Michael A Riehle

Final approval and acceptance of this disse1tation is contingent upon the candidate's submission of the final copies of the disse1tation to the Graduate College.

I hereby ce1tifythat I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.

Date: Mar 2, 2021 John C Jewett Chemistry and Biochemistry Acknowledgements

I am so thankful for many people that have helped me. I did not complete this PhD by myself. Many people contributed along the way. I will try my best to name all of the people who helped me along the way. But inevitably I will leave someone out.

I’d like to thank my PhD adviser, Dr. John Jewett. Dr. Jewett runs an inclusive and positive research program, in which students are motivated to work through positive mentorship. I’d like to thank my friend and mentor, Dr. Flora Kimani. Flora trained me how to be an organic chemist and taught me everything I know about triazabutadiene chemistry. I appreciate Flora’s patience in me as a mentee, as I was constantly asking her questions and following her around lab. I also want to thank Flora for her friendship and support. I would like to thank Garrett Davis for teaching me how to work with proteins and run gels. Garrett contributed early work in the mosquito project as well. I would like to thank undergraduate students Anjali Patel and Yannick Schreiber. Yannick and Anjali were excellent undergraduate researchers and were willing to work and think critically about science. I would like to thank Anjalee Wijetunge for synthesizing compounds and for her willingness to learn new biochemical techniques. I’d like to thank Natasha Cornejo for synthesizing the alkyne protected triazabutadiene. I would like to thank all previous and current members of the Jewett lab: Abigail Shepard, Holly Sofka, Danielle Johnson, Dr. Jie He, Dr. Bereketab Mehari, Dr. Mehrdad Shadmehr, Dr. Diana Knyazeva Dr. Stephanie Monson, Dr. Ali Ahad, Brandon Cornali, Christy McDevitt, Jean Laurent-Blanche, Sam Garn, Jason Ha, Maddie Morrow, Nevan Madrid, and Mohamed Hamie.

I would like to thank Dr. Mike Riehle for teaching me about mosquitoes and training me on biological techniques. I would like to thank Jenet Soto-Schoumaker for hatching all the eggs and prepping mosquito larvae for me every week. I’d like to thank Riehle lab members Dr. Frank Ramberg, Dr. Jun Isoe, Dr. Neha Thakare, Dr. Chioma Origanje Oparah, Teresa Joy, Minhao Chen, and Brendan Riske. I’d like to thank the Marley Imaging facility and Patty Jansma.

I’d like to thank my committee members Dr. Neel Ghosh, Dr. Bill Montfort, and Dr. Mike Riehle for challenging me and guidance over the years.

I would like to thank Lori Boyd for being the best graduate coordinator possible. I would like to thank the CBC department, the BCP program, Graduate College and the Dr. Maria Teresa Velez fellowship for their support. I’d like to thank the NMR and mass spectrometry facilities.

I’d also like to thank my friends and family for their continuous support.

3 Dedication

This dissertation is dedicated to mi familia.

4 Table of Contents

Abstract...... 13

Chapter 1 Benzene diazonium ions and proteins ...... 14

1.1 Introduction ...... 14

1.2 Naturally occurring BDz ions ...... 15

1.3 Chemistry of BDz ions ...... 16

1.4 BDz ion reactivity with amino acids ...... 18

Coupling reactions with histidine ...... 18

Coupling reactions with tyrosine ...... 19

Reactions with -amino groups and lysine ...... 20

Reactions with cysteine ...... 21

Reactions with tryptophan ...... 22

Reactivity with other biological moieties ...... 23

1.5 Amino acid selectivity ...... 23

1.6 Azoproteins ...... 24

1.7 Summary and Outlook ...... 25

Chapter 2 Design, synthesis, and reactivity of protected triazabutadienes ...... 26

2.1 Introduction ...... 26

2.2 Triazabutadienes as triggered chemical probes for BDz ion generation ...... 26

2.3 Attempts to protect the triazabutadiene ...... 28

2.4 Initial stability experiments with the protected triazabutadiene ...... 32

2.5 Deprotection mechanism of the carbamate protecting group ...... 33

2.6 Ethyl carbamate stability in various contexts ...... 40

5 2.7 Future Directions...... 41

2.8 Conclusion ...... 41

Chapter 3 Design and synthesis of functionalized protected triazabutadienes ...... 42

3.1 Introduction ...... 42

3.2 Design of the protected triazabutadiene chemical probe ...... 43

3.3 Synthesis of the protected triazabutadiene chemical probe ...... 44

3.4 Issues with the synthesis of the biotinylated probe ...... 48

3.5 Synthesis of the biotinylated probe using Cu-free click chemistry ...... 51

3.6 Synthesis of functionalized protected triazabutadienes using Cu-click chemistry in water..52

3.7 Future Directions...... 53

3.8 Conclusion ...... 53

Chapter 4 Identifying drug targets for mosquito population control ...... 54

4.1 Introduction ...... 54

4.2 Targeting adult mosquitoes for population control ...... 56

4.3 Targeting mosquito larvae for population control ...... 60

4.4 Identifying new drug targets by understanding the mosquito gut ...... 61

4.5 In vivo chemical modification of proteins in the alimentary canal...... 63

4.6 Initial experiments on feeding the larvae with protected triazabutadienes...... 67

4.7 1H NMR experiments of larval media post compound treatment ...... 71

4.8 Protein labeling of model protein BSA is dependent on pH ...... 72

4.9 In-lysate Cu-click reaction suggests in vivo labeling of mosquito larvae ...... 73

4.10 Solving poor protein resolution in SDS-PAGE ...... 77

6 4.11 Prevention of enzymatic degradation ...... 79

4.12 Proteomics of A. aegypti 4th-instar mosquito larvae ...... 81

4.13 Future directions ...... 84

4.14 Conclusion ...... 85

Experimental section ...... 86

Appendix A: spectra, graphs, gels ...... 93

Appendix B: List of proteins...... 126

References ...... 180

7 List of abbreviations

Abbreviation Meaning A. bisporus Agaricus bisporus ADC Antibody-drug conjugate Ae. aegypti Aedes aegypti BDz Benzene diazonium BME -mercaptoethanol BSA Bovine serum albumin Bti Bacillus thuringiensis serotype israelensis CDI N,N-Carbonyldiimidazole Cys Cysteine DCM Dichloromethane DENV Dengue virus DMF Dimethyl formamide DMSO Dimethylsulfoxide DNA Deoxyriobonucleic acid EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide EDG Electron donating group EDTA Ethylenediaminetetraacetic acid EWG Electron withdrawing group Fmoc Fluorenemethyloxycarbonyl h Hour HATU Hexafluorophosphate Azabenzotriazole Tetramethyl Uronium HBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate HRP Horseradish peroxidase kDa Kilodalton KOtBu Potassium tert-butoxide LN2 Liquid nitrogen LRMS Low-res mass spectrometry Lys Lysine M Molar Me Methyl MeOH Methanol Mes Mesityl MHz Megahertz Min Minute min Minute mL Milliliter mM Millimolar mmol Millimole NHS N-Hydroxysuccinimide NMR Nuclear magnetic resonance PBS Phosphate buffer solution

8 PEG Polyethylene glycol Ph Phenyl THPTA tris-hydroxypropyltriazolylmethylamine PMSF Phenylmethylsulfonyl fluoride PyBOP benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate Rf Retention factor RNA Ribonucleic acid rt Room temperature SDS PAGE Sodium dodecyl sulfate polyacrilimide gel electrophoresis Sec, s Second

SN1 Unimolecular Nucleophilic Substitution SN2 Bimolecular Nucleophilic Substitution SPPS Solid phase peptide synthesis t-Bu, t-butyl tert-butyl TBAF Tetra-n-butylammonium fluoride TBD Triazabutadiene TBST Tris-buffered saline tween TEA Triethylamine Temp Temperature TFA Trifluoroacetic acid THF TLC Thin layer chromatography TLCK Tosyl-L-lysyl-chloromethane hydrochloride Tyr Tyrosine UV/Vis Ultraviolet/Visible µL microliter µM micromolar

9 List of figures

Figure 1.1 Histidine and azo conjugate ...... 18.

Figure 1.2 Tyrosine and azo conjugate ...... 19.

Figure 1.3 Glycine and -amino group ...... 20.

Figure 1.4 Cysteine and azo conjugate ...... 21.

Figure 1.5 Tryptophan and azo conjugate ...... 22.

Figure 2.1 Unprotected vs. protected absorbance traces ...... 35.

Figure 2.2 Deprotection experiments ...... 36.

Figure 2.3 Varying the steric bulk at the protecting group ...... 37.

Figure 2.4 Electronics hypothesis...... 38.

Figure 2.5 EWG or EDG effect on rate ...... 39.

Figure 3.1 Properties of the functionalized protected triazabutadiene ...... 43.

Figure 4.1 Mosquito life cycle ...... 56.

Figure 4.2 Mosquito alimentary canal ...... 62.

Figure 4.3 Properties of the functionalized protected triazabutadiene ...... 63.

Figure 4.4 Reactions inside mosquito gut ...... 65.

Figure 4.5 Mosquito experiments ...... 66.

Figure 4.6 Initial mosquito larvae experiment ...... 67.

Figure 4.7 Biotin probes ...... 69.

Figure 4.8 Images of mosquito gut ...... 70.

Figure 4.9 1H NMR experiment on larval media ...... 71.

Figure 4.10 BSA as a model protein for labeling ...... 72.

Figure 4.11 Cu-click in larval lysate ...... 73.

Figure 4.12 Example of larval gut proteins ...... 76.

10 Figure 4.13 Prevention of protein degradation using acidic dissection media ...... 80.

Figure 4.14 Workflow ...... 83.

Figure 4.15 Venn diagram of proteins ...... 84.

11 List of schemes

Scheme 1.1 and BDz ions ...... 15.

Scheme 1.2 Diazotization ...... 16.

Scheme 1.3 Dediazotization ...... 16.

Scheme 1.4 Sandmeyer reaction ...... 17.

Scheme 2.1 Triazabutadiene mechanism ...... 26.

Scheme 2.2 Benzothiazolidine triazabutadienes ...... 27.

Scheme 2.3 Protected triazabutadienes ...... 28.

Scheme 2.4 Acyl chloride triazabutadiene ...... 29.

Scheme 2.5 Other potential intermediates ...... 30.

Scheme 2.6 Reaction of triazabutadiene with ethyl chloroformate...... 31.

Scheme 2.7 Initial stability experiments ...... 32.

Scheme 2.8 BAC2 ester hydrolysis mechanism ...... 34.

Scheme 2.9 Other potential mechanisms ...... 34.

Scheme 3.1 Synthesis of alkyne protected triazabutadiene ...... 45.

Scheme 3.2 Biotin triazabutadiene ...... 48.

Scheme 3.3 Biotin and ethyl chloroformate ...... 49.

Scheme 3.4 Attempt to use Cu-click on protected triazabutadiene ...... 50.

Scheme 3.5 Synthesis of biotin triazabutadiene using Cu-free click chemistry ...... 51.

12 Abstract

Benzene diazonium (BDz) ions are reactive to aromatic amino acids such as tyrosine and histidine. Protected triazabutadienes are chemical probes that generate BDz ions for selective protein labeling. This dissertation summarizes the design and synthesis of protected triazabutadiene molecules. The reactivity of protected triazabutadienes was explored. A functionalized protected triazabutadiene was synthesized. Experiments were performed to determine in vivo reactivity of the protected triazabutadiene in mosquito larvae, Ae. aegypti.

13

Chapter 1 Benzene diazonium ions and proteins

1.1 Introduction

Bioconjugate chemistry, also known as bioconjugation, is a method using a chemical probe to covalently link biomolecules such as deoxyribonucleic acid (DNA), ribonucleic acid

(RNA), proteins, lipids, and amino acids. Chemical probes are the small molecules that react with biomolecules. Chemical probes can carry cargo, such as drugs, fluorophores, or reactive handles for additional functionality. Moreover, bioconjugation can be used to covalently link two (or more) biomolecules together. The field of bioconjugation has led to many advances to medical research.

The study of protein-protein interactions has benefited significantly from bioconjugate chemistry.

Antibody-drug conjugates (ADCs) are examples of successful therapeutic strategies developed through bioconjugation.

One of the earliest records of bioconjugation was spearheaded in the early 1900s by chemist Dr. Hermann Pauly using benzene diazonium (BDz) ions and amino acids.1,2

Additionally, the work by Pauly was one of the first reports on the chemical modification of amino acids. Pauly1–4 and others5 studied the complex interaction between BDz ions and individual amino acids, as well as the interaction of BDz ions and full proteins. It was found that coupling reactions occur with BDz ions on the aromatic side chains of tyrosine and histidine. Other amino acids can interact with BDz ions but generally do not form a covalent bond. However, these transient interactions with amino acids can be exploited6, as well as give insight into side reactivity that may occur. Although an underutilized chemical tool, BDz ions have set the foundation of protein chemical modification and continue to advance the field of bioconjugation.

14

1.2 Naturally occurring BDz ions

Agaricus bisporus (A. bisporus) is a white or brown native to North America and Europe. A. bisporus is also known as the cremini mushroom and is commonly used for cooking. These were known to contain a number of aromatic hydrazines. While studying the relative levels of agaritine (1.1, Scheme 1.1a) an acyl found in the mushroom, Levenberg found that acidic solutions of b-N-acyl- (1.2, Scheme

1.1b) would slowly form typical azo chromopohores with N-1-acyl-phenylenediamine.7 Levenberg speculated that a BDz ion (1.3, Scheme 1.1b) could be forming in situ. Levenberg then examined extracts from sections of the mushroom, in which BDz ions were found in the basal portion of the stipe, not actually in the mushroom cap. Levenberg was able to identify the structure to be 4-

O O hydroxy-methyl BDz ion (1.4, Scheme 1.1c) using a. H N 8 N OH common coupling which was analyzed by H HO NH2 thin layer chromatography (TLC).7 Later, researchers 1.1

b. O N studied the effect of BDz ions in vivo using mice. A H H N N N series of sub cutaneous injections of the small H 1.2 1.3 molecule, 4-hydroxy-methyl BDz tetrafluoroborate, N was administered to mice.9 The mice subsequently c. N HO formed tumors. Researchers discovered that agaritine 1.4 and other hydrazines were not the source of Scheme 1.1 Hydrazines and BDz ions carcinogenicity, but the BDz ion was.10 Mice were then (a) Structure of agaratine, an acyl fed the uncooked mushroom over a few days which hydrazine found in raw cremini mushrooms. (b) An acyl produced statistically significant tumorigenesis in the hydrazine, 1.2, forming a BDz ion in acidic conditions. (c) BDz ion bone, stomach, liver, and lungs.11 The carcinogenic found in A. bisporous. mechanism of action of the BDz ion is not well

15 understood, but researchers have speculated that the diazonium forms a radical which can cleave

DNA.12

1.3 Chemistry of BDz ions

Peter Griess first synthesized BDz ions via diazotization in 1858 (Scheme 1.2).13 The structure of a BDz features an N-N triple bond as a substituent on a benzene ring (Scheme 1.2,

1.6). BDz ions are positively charged, requiring a counter-anion for stability, which is typically the conjugate base of the acid used. Counteranions can be chosen carefully to modulate solubility, reactivity, and therefore the overall stability of the diazonium. The most common method to synthesize BDz ions uses an (Scheme 1.2, a. Cl N HCl, NaNO 1.5) precursor charged with a strong acid and a NH2 2 N nitrosating agent (Scheme 1.2).14 A highly reactive H2O 1.5 1.6 ion is produced from the nitrosating Scheme 1.2 Diazotization agent with strong acid. The aniline reacts with the Diazotization from an aniline nitrosonium ion, and with the loss of water the precursor with strong acid and a nitrosating agent. diazonium ion is formed.

BDz ions are reactive molecules that have a half-life in water ranging from minutes to hours.15 BDz ions can undergo thermal degradation (or dediazoniation) which involves the release

2 N of N2 gas and formation of a sp N H2O OH hybridized benzene cation (Scheme 1.3, N2 1.7 1.8 1.9 1.8).16 For dediazoniation in aqueous Scheme 1.3 Dediazotization conditions, water acts as a nucleophile Dediazotization from a BDz ion (1.7) to and the benzene cation hydrolyzes to a produce a benzene cation (1.8). In aqueous conditions the cation hydrolyzes to a phenol (1.9, Scheme 1.3). Interestingly, (1.9).

16 the kinetics of benzene cation formation is independent of solvent and strength of nucleophile and is more dependent on the electronics of substituents. Most notably, all para substituents, whether electron-withdrawing or electron-accepting, will stabilize the BDz and prevent aryl benzene formation. Meta substituents have to be strongly withdrawing to stabilize the diazonium, contributing to benzene cation stabilization.14

BDz ions are generally viewed as soft electrophiles. BDz ions are significantly more stable than aliphatic diazonium ions due to their ability to resonate throughout the benzene ring. BDz ions are usually seen synthetically within the context of the Sandmeyer reaction,17 where a strong nucleophile displaces N2 gas via a Cu(I) catalyst (1.10 to 1.11, Scheme 1.4) to form a substituted product. Additionally, coupling to the terminal nitrogen of the BDz can occur and will be discussed in this thesis in the context of amino acids. The terminal nitrogen of the BDz ion can be subjected to direct nucleophilic attack (1.10 to 1.12, Scheme 1.4,). When a nucleophile forms a covalent bond with the BDz ion, it is referred to as Nuc Cu(I) Nuc an azo coupled product (12). Since the N N N2 BDz is a relatively weak , 1.11 coupling reactions are nucleophile Nuc N Nuc 1.10 N selective. It has been found that the BDz 1.12 ion prefers to react with an electron- Scheme 1.4 Sandmeyer reaction dense aromatic ring, such as phenol. The Sandmeyer reaction involves a BDz ion (1.10) and a strong nucleophile to afford an Coupling reactions with amino acids with electrophilic aromatic substitution product (1.11). An azo coupled product (1.12) is electron-dense aromatic rings form formed when the nucleophile attacks the terminal nitrogen. stable azo compounds and will be discussed thoroughly in the next section.

17 1.4 BDz ion reactivity with amino acids

Coupling reactions with histidine

Imidazole, the side chain of histidine, was first reported to react with benzene diazonium salts in 1892.18 Pauly was the first to react diazotized benzene sulfanilic acid with histidine (1.13,

Figure 1.1) by monitoring changes in color. A dark red cherry color was observed upon formation of the histidine-azo product. At the time it was not known how BDz ions reacted with histidine.

Pauly found that methylating one of the nitrogens of the side chain of histidine hindered the BDz coupling reaction. Later in the mid-1950s it was confirmed that the nonreactive nature with 1- methylimidazoles is due to the necessity of the ionization of the N-H bond.19 It was found that the

C2 position of histidine is the preferred coupling site with BDz salts (1.14, Figure 1.1). The second most reactive site in the histidine heterocycle is C5; however, this azo adduct is not readily formed and requires harsh reaction conditions that are not generally biocompatible. Given the ability for

BDz ions to couple to histidine, researchers began using BDz salts for analytical methods to

20–23 1 determine histidine concentration, N N 2 N which included detailed colorimetric NH NH N methods for histidine quantification in H3N COO H3N COO 1.13 urine.24,25 1.14 Figure 1.1 Histidine and azo conjugate

The amino acid histidine (1.13) is reactive with a BDz ion at its C2 position to produce the coupled azo conjugate (1.14).

18 Coupling reactions with tyrosine

The first reported interaction of a BDz ion with a tyrosine residue on a protein was by Pauly in 1904.1 Pauly noticed that when treating silk with diazotized benzene sulfanilic acid the silk changed color. A deep red color was formed in basic conditions, but a bright yellow was observed in acidic conditions. Pauly then speculated that the side chain of tyrosine residues of proteins

(1.15, Figure 1.2) is responsible for reacting with the BDz ions,4 because the color was similar to that of BDz ions reacting with phenols.13 Pauly also pointed out that fingernails must have a lot of the protein keratin, which is rich in tyrosine residues. Additionally, fingernails were easily dyed in basic solutions of diazotized benzene sulfanilic acid.1 Detailed studies confirming Pauly’s hypothesis of tyrosine coupling was quickly followed up using diazotized benzene sulfanilic and arsanilic acids.5,26,27 Optimal BDz ion coupling to tyrosine increases with pH, and in general the pH should be 7-11 range.28 Spectroscopy was used to characterize the azo adduct on tyrosine at

325 nm (1.16, Figure 1.2).29

While covalent and generally considered to be stable, the azo modification on tyrosine can be cleaved either chemically or biochemically. Various metal salts, such as tin(II) chloride, mercurous chloride, and titanous chloride have been used to reduce the azo bond.30,31 More recently, the Francis group brought the OH OH use of BDz ions as chemical probes N N back on the table.32 Additionally, the

H3N COO H3N COO Francis group reported the 1.15 1.16 biocompatible method of azo reduction Figure 1.2 Tyrosine and azo conjugate using sodium dithionite.32 The amino acid tyrosine (1.15) and its azo product (1.16).

19

Reactions with a-amino groups and lysine

It was first discovered that BDz ions react with primary aliphatic amino groups in 1905.33

Pauly also investigated the reaction of BDz ions and amino groups. Upon studying the reaction of diazotized benzene arsanilic acid and proteins, Pauly noticed that the elemental analysis of arsenic surpassed the number of tyrosine and histidine residues suggesting other interactions could occur.2,4 Indeed, it was found that the a-amino group of glycine (1.17 to 1.18, Figure 1.3) was involved in the reaction to produce triazine 1.18. However, compound 1.18 could not be isolated.

A little while later, researchers found that the e-nitrogen of lysine also interacted with the

BDz ions (1.19 to 1.20, Figure 1.3). Researchers noticed a slight color change when lysine reacted with BDz ions.34 These interactions were then confirmed spectroscopically, and the optimum pH reactivity for the BDz ion and lysine determined to be a pH N H N COO N N COO 3 H of 9.35 It was theorized that multiple 1.17 1.18 BDz ions could react with the e- H NH N N nitrogen of lysine, resulting in 3 N 4 multiple conjugations. In some H3N COO H3N COO cases, researchers thought 1.19 1.20 pentazene derivatives could be Figure 1.3 Glycine and a-amino group

36 Example of BDz reactions with an amino formed, but that theory was put to group. Glycine, 1.17, forms an unstable rest after determining triazines were triazine with the a-amino group (1.18). The e- nitrogen of lysine also reacts to afford forming spectroscopically.30,37,38 reversible product 1.20.

20 Similar to glycine, the lysine BDz ion conjugate (1.20) could not be isolated. The reason was that in aqueous solutions, the triazine was found to be highly reversible in neutral or slightly acidic pH.37 Recently, the triazene adduct on lysine was trapped by introducing an appropriately positioned ester onto the BDz ion.6

Reactions with cysteine

The reactivity of cysteine (1.21, Figure 1.4) with a BDz ion is similar to that of lysine. The nucleophilic of cysteine can attack the terminal nitrogen of a BDz ion and form a diazothiol linkage (1.22, Figure 1.4). Similar to the triazine formed with BDz and lysine, the azo adduct formed with cysteine is not permanent. The first reports of reversibility of the diazothiol linkage is when the BDz was trapped with a naphthol compound.39 These diazothiol linkages can be identified spectroscopically in solution.40 Similar to the triazine, the diazothiol linkage has proven to be nearly impossible to isolate. The reversible nature of these benzene diazothiol linkages can also form disulfide bonds, which has N SH S N prompted researchers to alkylate reduced cysteines on peptides to H3N COO H3N COO 1.21 1.22 circumvent disulfide dimer formation.41 Figure 1.4 Cysteine and azo conjugate

The amino acid cysteine (1.21) and its transient azo conjugate (1.22).

21

Reactions with tryptophan

Indole, the heterocyclic R group of tryptophan, has been known to react transiently with

BDz ions.42 However, this reaction might have just been due to the interaction with the a-amino group on tryptophan. Pauly reported that the indole of tryptophan (Figure 1.5, 1.23) cannot react with BDz ions in alkaline solution.3 There have been reports of BDz ions reacting with the NH position of the indole of tryptophan or the free amino groups. However, similar to the BDz reactions with primary or a-amines, the adduct is too unstable to isolate.28,34,36 More recently, researchers have found that 5-hydroxy tryptophan (Figure 1.5, 1.24) reacts readily to form a covalent azo coupled product HO HO (Figure 1.5, 25).43 The azo N N coupling of 5-hydroxy tryptophan NH NH NH

1.24 with a BDz ion is H N COO 3 H3N COO H3N COO significantly faster (1000x) than 1.23 1.24 1.25 with tyrosine (Figure 1.2, 15). Figure 1.5 Tryptophan and azo conjugate

The amino acid tryptophan (1.23), 5-hydroxy tryptophan (1.24), and the stable azo conjugate of 5- hydroxy tryptophan (1.25).

22 Reactivity with other biological moieties

Benzene diazonium ions have also been recorded to react (mostly transiently) with other biomolecules or functional groups, such as DNA,44,45 urea,29 thiourea,46 guanidino,47 glutathione,46 ascorbic acid, 7 gallic acid,48 pyridine,49 sugars,50 pyrrole, and indazole,19 For other biological moieties that can react with BDz ions, see work by Higgins.51

1.5 Amino acid selectivity

Amino acid selectivity depends on a variety of factors: electronics of the substituents of the BDz ion, pH of solution, time, equivalents used, and relative concentrations of reagents.

Depending on the reaction conditions with the BDz ion, amino acid selectivity can differ drastically.

Lysine modifications with BDz ions tend to be the amino acid most modified, due to the high frequency of lysine on proteins. Tyrosine and histidine are by far the most relevant amino acids that are purposefully modified using BDz ions. Competition studies of N-acetylated amino acids were performed using the p-formyl BDz ion. It was found that at pH 7, tyrosine outcompetes other amino acids wildly (>80-95%). The next most prevalent modification at pH 7 was found to be histidine (0-10%) and then cysteine (~2%).52 It was also discovered that different electron- donating or electron-withdrawing groups influences reactivity and thus selectivity of reaction partner. For example, the o-methoxy BDz ion only had a coupling yield of 10% whereas the coupling yield of a p-bromophenyl BDz ion was 85%.53 Considering there are so many factors that dictate amino acid selectivity, it is recommended that analysis of all potentially reactive amino acids is performed.

23 1.6 Azoproteins

Although Pauly discovered that BDz ions can react with proteins, the first researchers to explore the functional properties and immunological effects of these azoproteins were Landsteiner and Lampl.54,55 Blood serum obtained from rabbit, horse, and chicken was treated with different benzene BDz ion compounds, resulting in thousands of different azoproteins, in the hope of azoproteins serving as artificial antigens.55 Landsteiner found that modifying the proteins with

BDzs inhibited antigen-antibody precipitin reactions56 and induced anaphylaxis in guinea pigs.57

Diazotized p-aminophenyl arsanilic acid was reacted with Type I and II pneumococcus antibodies. Infected mice were then injected with the antibody conjugate, and it was found that the mice were cured from pneumonia.58 Considering azoproteins can be highly colored (due to presence of tyrosine and histidine), ranging from red to purple, researchers thought that they might be able to monitor antigen-antibody interactions using color.59 Rabbits were injected with an egg albumin azoprotein and their antibodies were then extracted by fractionation of the animal sera. Colorful purified egg azoprotein was injected into rabbits and quantitative measurements were used to determine the amount of precipitin.60 Additionally, researchers used BDz ions to label glycoproteins.61 In practice, it has proven to be difficult to spectroscopically study structure- function relationships of azoproteins, as multiple azo coupled modifications can lead to overlapping spectral bands.62 However, it was discovered that azoproteins have a unique circular dichroism signature, which is not true for their absorption spectra.63 Azoproteins have had a major presence for initial studies with antibodies and antigens. Perhaps azoproteins could be studied more thoroughly using circular dichroism rather than absorption.

24 1.7 Summary and Outlook

BDz ions have been used for protein bioconjugation for over a century. Pauly, a German chemist, pioneered the study of BDz ions and amino acids. Some nucleophilic amino acids (lysine and cysteine) and a-amino groups can form transient linkages with BDz ions, although they have not proven stable enough to be isolated. Aromatic amino acids such as tyrosine and histidine form covalent azo coupled products, which makes BDz ions attractive chemical probe candidates.

Useful chemical probes require biocompatibility, which is not the case for typical BDz ion generation. Chapter 2 discusses molecules called triazabutadienes, which provide a biocompatible platform for BDz ion generation.

25 Chapter 2 Design, synthesis, and reactivity of protected triazabutadienes

2.1 Introduction

Chapter 1 of this thesis introduced benzene diazonium (BDz) ions in the context of coupling with tyrosine and histidine in protein bioconjugation. Given the harsh requirements for generation, BDz ions have not been extensively used in protein bioconjugation, in comparison to other commercially available chemical probes. Unfortunately, the harsh synthetic requirements to generate BDz ions are not compatible in most biological contexts. A gentle method (pH 7, aqueous conditions, ambient temperature) to generate BDz ions would boost their utility as chemical probes for their use in bioconjugation.

2.2 Triazabutadienes as triggered chemical probes for BDz ion generation

N3 R1 R R1 N1 1 N N H N H N H N N H N N N N N N1 N N N N3 N N N R R3 2 R R2 Reversible 2 2.2 2.1 2.3 2.4

R3 R3 R3 Scheme 2.1 Triazabutadiene mechanism Triazabutadiene mechanism requires protonation at the N3 nitrogen to release a BDz ion. Protonation pathway at N1 nitrogen is reversible, whereas N3 pathway leads to BDz ion release.

Triazabutadienes (2.2, Scheme 2.1) have been recently introduced as a mild method for the generation of BDz ions in aqueous conditions at pH 7.64 The utility of triazabutadienes has proven relevant in several biological contexts, such as in vitro protein labeling65,66 which includes

26 modifying the surface of the dengue virus (DENV).67 Triazabutadienes are small organic molecules (<1 kDa) that contain a p-conjugated nitrogen bridge between an imidazole and benzene ring. Nitrogens 1 and 3 (designated as N1 and N3) are the nucleophilic atoms in the molecule (Scheme 2.1, 2.1). If N1 is protonated first (Scheme 2.1, 2.2), the reaction is reversible and results in re-formation of triazabutadiene 2.1. However, if N3 is protonated (2.3), the molecule is triggered to degrade into a BDz ion (2.4). Depending on the scaffold (identity of R1 and R2), triazabutadienes can release BDz ions over a wide range of pH. The kinetics of BDz ion release

64,68 depends on the R1 and R2 substituents, which has been extensively studied. For most scaffolds, the kinetics of BDz ion release is faster as the hydronium ion of the buffer increases, so it is recommended to generate the BDz ion in at a buffer pH £ 7. Although, triazabutadienes have generated BDz ions even in basic conditions (pH 9) with the assistance of UV light.69

CH CH3 . 3 HCl Et3O BF4 N N N N N N No BDz ion N N Et reflux S S BF4 2.5 2.6 Scheme 2.2 Benzothiazolidine triazabutadienes Alkylation of triazabutadiene 2.5 to 2.6 hinders the molecule from releasing a BDz ion, even while boiling in strong acid.

Dr. Egon Fanghänel, a German chemist, published a large series of papers in the 1970-

1990s about the reactivity of triazabutadienes. Fanghänel was studying the reactivity of the benzothiazolidine triazabutadienes, amongst other triazabutadiene scaffolds (2.5, Scheme

2.2).70,71 Fanghänel alkylated his benzothiazolidine scaffold using Meerwein’s salt (2.5 to 2.6) to study the reactivity of N1 and N3 in terms of cis-trans isomerism.70–74 Fanghänel found that the

27 N1 alkylated triazabutadiene, 2.6, exhibited stability in acidic solutions, even when refluxing,72

Fanghänel was able to completely deactivate the triazabutadiene by alkylating the N1 position.

Given that the N1 nitrogen protonation pathway is reversible (2.2 to 2.1, Scheme 2.1) and the acid stability reported with the alkylated triazabutadiene, the idea of protecting groups at the

N1 position came about (Scheme 2.3). Installation of protecting groups at the N1 position would allow for the triggered release of the BDz ion. Depending on the protecting group itself, triazabutadienes could be triggered to release BDz ions upon exposure to a specific chemical stimulus.

otectio R Pr n R N N N N N N N N N N R D R eprotection

Scheme 2.3 Protected triazabutadienes Representation of protected triazabutadienes through installation of a protecting group at the N1 position.

2.3 Attempts to protect the triazabutadiene

First was to start protecting the triazabutadienes with acyl electrophiles, as this produces a hydrolyzable protecting group. A number of acyl electrophilic groups were reacted with the triazabutadiene in an attempt to install a protecting group on the N1 position. The bis-mesityl triazabutadiene scaffold (2.7, Scheme 2.3) was used because it is synthetically easy to work with due to its stable nature. Ideally, the installation of an acyl protecting would be reversible, allowing for a protecting group.

28

The goal was to establish a carbonyl-containing protecting group, so initially it was thought that having an acyl chloride at the N1 position (2.8, Scheme 2.4) would allow for diversity in protecting groups through a modular synthesis. The triazabutadiene, 2.7, was treated with phosgene (2.10) in an attempt to install an acyl chloride protecting group at the N1. Unfortunately, compound 2.8 was not observed by nuclear magnetic resonance (NMR). Instead, degradation products were observed when the triazabutadiene was treated with phosgene, even with having an acid scavenger present, triethylamine (TEA). It is speculated that hydrochloric acid (HCl) had formed from phosgene, which then immediately destroyed the triazabutadiene. A less-toxic version of phosgene, triphosgene, was also reacted with the triazabutadiene. Degradation products were also observed using this reagent. Due to these findings, it was decided to forgo

Cl Cl O Mes Mes Mes N N N Cl Cl N N N N N N N 2.10 N Cl Nu N Nu N N O N O Mes Mes Mes 2.7 2.8 2.9 Scheme 2.4 Acyl chloride triazabutadiene

Scheme for modular protecting group installation. Bis-mesityl triazabutadiene (2.7) reacting with phosgene (2.10) to yield acyl chloride protected triazabutadiene (2.8). Addition of any nucleophile would lead to modular protected product 2.9. the idea of an acyl chloride protecting group and pursue different acyl electrophiles.

Another attempt to protect the triazabutadiene (2.7, Scheme 2.5) was with using the reagent 1,1’-carbonyldiimidazole (CDI) (2.11, Scheme 2.5). The CDI protecting group contains an excellent leaving group, imidazole, which would allow for a to occur at the

N1 position. The CDI protected triazabutadiene, 2.13, would serve as an intermediate to synthesize a diverse number of protected triazabutadienes. Unfortunately, no reaction occurred

29 when reacted compounds 2.7 and 2.11. It appeared that the triazabutadiene was not nucleophilic enough to react with CDI, or that the CDI was not electrophilic enough to protect the triazabutadiene. Only starting material was recovered from the reaction with compounds 2.7 and

2.11. Another electrophile, diethyl carbonate (2.12), was reacted with the triazabutadiene in hopes to install a protecting group. Similarly to CDI, the diethyl carbonate did not react with the triazabutadiene. These findings lead to trying much more reactive electrophiles for triazabutadiene protection. O Mes N N N N N N N N N N 2.11 N O X Mes Mes 2.13 N N N N O N Mes Mes O O N N N 2.7 2.12 N O X N O Mes Scheme 2.5 Other potential intermediates 2.14

Attempts at protecting triazabutadiene 2.7 with CDI (2.11) and diethyl carbonate (2.12) were unsuccessful.

Chloroformates are highly reactive electrophiles that establish a carbamate protecting group onto amines.75 A model chloroformate found in lab, ethyl chloroformate (2.15, Scheme 2.6), was chosen for initial experiments. The triazabutadiene was reacted with ethyl chloroformate

(Scheme 2.6). Fortunately, the ethyl chloroformate was reactive enough to form the N1 substituted acyl group, 2.14 (see Figure A1). It was found that the protection reaction could come to completion in <1 hour if an excess of chloroformate is used. The addition of crushed 4Å molecular sieves to absorb water proved to be effective to keep the reaction dry, but it is not necessarily required if the reaction is performed in dry solvent. Chlorinated solvents (such as

30 dichloroethane and dichloromethane) have proven to be effective in the protection reaction with ethyl chloroformate. Yields for the protected triazabutadiene, 2.14, were generally over 90% if an excess of chloroformate is used.

O Cl Mes Cl OEt Mes N N N 2.15 N N N N N OEt N N DCE, 4Å MS O Mes Mes 2.7 2.14 Scheme 2.6 Reaction of triazabutadiene with ethyl chloroformate

Bis-mesityl triazabutadiene (2.7) was reacted with an excess of ethyl chloroformate (2.15) to yield protected triazabutadiene 2.14.

31 2.4 Initial stability experiments with the protected triazabutadiene

Compound 2.14 resembles that of a carbamate protecting group, which is essentially an ester protecting groups for amines. Carbamates are known to be cleaved by either acid or base- catalyzed hydrolysis.75 Initial stability tests were performed to test the lability of this carbamate protecting group. To test the stability of the compound in acid, the bis-mesityl triazabutadiene was treated with HCl in methanol overnight (2.14 to 2.15, Scheme 2.7a). Methanol was used as a solvent due to the insolubility of the bis-mesityl triazabutadiene, 2.7, in water. Resorcinol was also added to the mixture to act as a benzene diazonium ion trap. After an overnight incubation at room temperature, the reaction was evaporated in vacuo, and washed with water to remove unreacted resorcinol. It was found that the protected triazabutadiene remained intact after treatment with strong acid as determined by 1H NMR spectroscopy (See Figure A2).

a.

O Cl Mes Mes Cl OEt N N N N N N N HCl N N 2.15 N OEt X OH MeOH N N O DCE resorcinol Mes Mes 2.7 4Å MS 2.14 2.15 b. 94% OH N Cl N Mes Mes N HCl N N N N NaOH N N N N OEt MeOH N MeOH N O N 2.7 resorcinol 2.16 Mes Mes 2.14 2.15 50% (over two ~ quantitative steps) Scheme 2.7 Initial stability experiments

(a) Bis-mesityl triazabutadiene (2.7) was reacted with an excess of ethyl chloroformate (2.15) to yield protected triazabutadiene (2.14). 2.14 was then treated under highly acidic conditions, but BDz ion 2.15 did not form. When treating compound 2.14 with base first, then acidifying using HCl, BDz ion (2.15) did form through proof of azo conjugate 2.16.

32 Since the protecting group stayed intact under strongly acidic conditions, the next thing to try was to treat the protected triazabutadiene under strongly basic conditions. The protected triazabutadiene, 2.14, was treated with the strong base, crushed sodium hydroxide (NaOH), in methanol (Scheme 2.7b). It was found that compound 2.14 had reverted to the regular triazabutadiene, 2.7, as determined by 1H NMR spectroscopic analysis (see Figure A3). To ensure that BDz ion 2.15 could still be formed, acid and resorcinol were added to crude compound

2.7. Indeed, the azo conjugate, 2.16, was observed by NMR when compared to resorcinol, which is indicative of BDz ion formation (see Figure A4).

2.5 Deprotection mechanism of the carbamate protecting group

It is known that some carbamates are base-labile in aqueous conditions.75 It was shown that the protected compound deprotects under basic conditions (see Figure A3). As stated previously, carbamates are essentially esters. The mechanism of a general base-catalyzed ester hydrolysis reaction have been a controversial subject, as there are theoretically many possible mechanisms.76 The most accepted mechanism for ester hydrolysis in basic aqueous conditions is the BAC2 mechanism (Scheme 2.8). The rate-determining step of the BAC2 mechanism is bimolecular and involves the carbonyl of ester 2.16 being an electrophile to nucleophile attack by a hydroxide anion (shown in red) to afford tetrahedral intermediate 2.17. The OR1 group is pushed out to reveal 2.18, which then becomes conjugate base 2.19.

33

O O OH OH O O R + HOEt R OR1 OR R OH H2O 1 R O 2.16 2.17 2.18 2.19

Scheme 2.8 BAC2 ester hydrolysis mechanism

However, other possible ester hydrolysis mechanisms exist, such as b-elimination

(Scheme 2.9a) or the BAL2 mechanism (Scheme 2.9b). The b-elimination mechanism involves a hydroxide anion deprotonating a b-hydrogen (2.20) to reveal hydrolyzed 2.21 and alkene 2.22.

The BAL2 mechanism involves the hydroxide anion acting as a nucleophile and attacking the ethyl group on 2.23 to afford 2.24 and 2.25. It is important to keep these alternative mechanisms in mind for future experiments. The only way to determine the mechanism of such a deprotection reaction would be to perform isotopic labeling studies using heavy water. For the purpose of this thesis, it was assumed that the mechanism in aqueous conditions is the bimolecular mechanism

BAC2.

a. O OH O H + R O R O 2.20 2.21 2.22

b. O OH O Et + HOEt R O R O 2.23 2.24 2.25 Scheme 2.9 Other potential mechanisms

(a) The b-elimination and (b) BAL2 mechanism for basic ester hydrolysis.

34 Cl Mes Mes N N N N N N N N OEt N N O Mes Mes 2.7 2.14

0.45 Protected and unprotected triazabutadiene traces

λmax =372

0.35 7 14

λmax = 326

0.25

0.15

0.05

250 270 290 310 330 350 370 390 410 430 450 -0.05

Figure 2.1 Unprotected vs. protected absorbance traces

Absorbance traces of unprotected triazabutadiene 2.7 (blue) and protected triazabutadiene 2.14 (green) in DMSO.

Since proving the base-lability of the protected triazabutadiene, 2.14, the next step was to test the deprotection reaction over a range of pH using ultraviolet/visible (UV/Vis) spectroscopy.

The absorbance spectra of the unprotected and protected triazabutadienes 2.7 and 2.14

(respectively) were obtained in DMSO (Figure 2.1). The traces were obtained in DMSO because unprotected triazabutadiene 2.7 is not very soluble in buffer at the relevant concentrations of the compound (~20 µM). This insolubility in buffer ended up being advantageous when measuring rates of deprotection from compounds 2.14 to 2.7 as only 2.14 was visible by UV/Vis. As seen from Figure 2.1, there is significant area overlap for the two compounds, and differentiating their traces by UV/Vis would be difficult. Fortunately, the unprotected triazabutadiene 2.7 was insoluble enough that no absorbance trace was seen at the 20 µM concentration of the regular triazabutadiene.

35

Figure 2.2 Deprotection experiments (a) Basic hydrolysis mechanism of protected triazabutadiene 2.14 to unprotected triazabutadiene 2.7. (b) Decreasing absorbance over time of compound 2.14 during hydrolysis. (c) Concentration of 2.14 plotted over time over a large pH range. Figure used with permission from John Wiley & Son’s, Inc.

Next, UV/Vis spectroscopy was used to study the kinetics of the deprotection reaction

(Figure 2.2a) over a large range of pH. The kinetics of the reaction were monitored by disappearance of 2.14 (Figure 2.2b). As shown previously with 1H NMR experiments, the protected triazabutadiene deprotected only at highly basic pH (Figure 2.2c). It was confirmed that compound 2.14 does indeed have stability over an acidic to neutral pH range (2 to 7), whereas at basic pH (9 and above) the molecule quickly deprotects.

To understand the protected triazabutadiene reactivity, a small series of protected triazabutadienes with varying sizes of R1 groups (ethyl, neopentyl, or isopropyl) were synthesized

36 (Figure 2.3). The t-butyl variant was attempted but it was unable to be synthesized. There is not a large difference in rate when comparing compounds 2.26 and 2.27. However, the rate of the isopropyl compound, 2.28, decreased two-fold. Considering the rate decreased with increased steric bulk, it would suggest a bimolecular reaction mechanism.

R2 R2

Mes OH Mes N N N N N N N O N N N O R1 Mes Mes

# R1 R2 rate x 10-3 (M-1s-1)

2.26 Et H 13.5 ± 1.5 2.27 Np H 13.6 ± 0.9 2.28 i-Pr H 5.7 ± 0.8

Figure 2.3 Varying the steric bulk at the protecting group

(a) Basic hydrolysis of protected triazabutadiene with varying steric bulk around the carbamate protecting group R1. (b) Second-order reaction rates of protected triazabutadienes with varying R1 groups.

Considering the reaction rate was measured with respect to sterics, it would make sense to also measure the reaction rate with respect to electronics. The hypothesis was that if electron- withdrawing groups (EWGs) were installed para on the benzene of the protected triazabutadiene

(Figure 2.4a), the deprotection reaction rates would increase due to the inductive effect of the

EWG. The electron-withdrawing substituent would pull electron density away from the carbamate protecting group, as shown by the dipole arrow in Figure 2.4a. This would then cause a build-up of positive charge at the carbonyl carbon, which makes the protecting group more electrophilic to a nucleophilic attack, assuming a BAC2 reaction mechanism. It was therefore hypothesized that

37 electron-donating groups (EDGs) installed para on the benzene of the protected triazabutadiene

(Figure 2.4b) would cause the deprotection reaction rate to decrease. This would be again due to the inductive effect, as an electron-donating substituent would donate electron density into the benzene ring, as indicated by the dipole arrow in Figure 2.4b. It was hypothesized that an EDG would stabilize the positive charge on the N1 nitrogen. Due to the stabilization of charge, it is suspected that EDG would decrease the deprotection reaction rate.

a. R1 b. R1

Mes Mes N N N N N N N OEt N OEt N O N O Mes Mes R1 = EWG R1 = EDG

Figure 2.4 Electronics hypothesis

(a) If R1 is an EWG, dipole points away from the carbamate protecting group. (b) If R2 is an EDG, the dipole points towards the carbamate protecting group.

To test the effect of electronics on the deprotection reaction rate, a small series of protected triazabutadienes with varying R2 groups were synthesized (Figure 2.5). Compounds were synthesized with EDGs, such as methyl 2.29 and methoxy 2.30. Additionally, compounds with EWGs were synthesized, such as the trifluoromethyl, 2.31, and nitro, 2.32, compounds.

Surprisingly, a clear trend of reaction rate with respect to the hypothesis was not observed. Both electron withdrawing and donating groups seems to stabilize the protecting group, as the reaction rate decreased for all cases. The electron donating methyl substituent, 2.29, allowed for a moderate hydrolysis second-order rate of 7.7 x 10-3 ± 0.8 M-1 s-1. The methoxy compound, 2.21,

38 stabilized the protected triazabutadiene so much that a rate constant could not be determined under the conditions used for the other compounds. The trifluoromethyl compound, 2.31, had the

-3 -1 -1 slowest observable rate of 2.1 x 10 ± 0.8 M s , which is considerably slower than the NO2 substituent, 2.32, which was 9.1 x 10-3 ± 1.8 M-1 s-1. No clear trend was determined from the changes in electronics.

R2 R2

Mes OH Mes N N N N N N N O N N N O R1 Mes Mes

# R1 R2 rate x 10-3 (M-1s-1) 2.29 Et Me 7.7 ± 0.8 2.30 Et OMe ND

2.31 Et CF3 2.1 ± 0.8

2.32 Et NO2 9.1 ± 1.8

Figure 2.5 EWG or EDG effect on rate

(a) The deprotection reaction involving hydroxide. (b) Second-order rate constants of the deprotection reaction with differing steric bulk (R2) around the carbamate protecting group.

A Hammett plot (see Figure A5) was constructed using the rate data from Figure 2.5.

Since there was no rate determined for the methoxy compound only the rate data of three compounds could be used. With the limited number of compounds, it is difficult to conclude anything definitively from the Hammett plot. It appears that there is a change of mechanism, as the rate data of the three compounds form a V shape, showing changes in slope. More compounds with EDGs and EWGs will need to be synthesized to prove a change in mechanism

39 due to the electronics of the substituent. Additionally, it could very well be that the deprotection mechanism is not BAC2, which would explain the lack of trend with respect to electronics.

2.6 Ethyl carbamate stability in various contexts

The goal is to use protected triazabutadienes as chemical probes. Therefore, a number of stability tests with the protected triazabutadiene and common biological moieties were performed.

To simulate nucleophilic sulfur (from cysteine, glutathione, etc.), b-mercaptoethanol (BME) was used. The protected triazabutadiene was reacted with a 5 mM solution of BME in pH 7 phosphate buffer. No significant changes in UV/Vis absorbance of the protected triazabutadiene was observed over a time period of 120 minutes (see Figure A6).

Ethanolamine was used to test the stability against biological amines (i.e. lysine). The protected triazabutadiene 2.14 was first dissolved in a phosphate buffer at pH 7. A large excess of ethanolamine, ten equivalents (300 µM), was added to the protected triazabutadiene solution and the absorbance was measured over time (See Figure A7). There was no observed changed in the absorbance of the molecule 70 minutes.

Solid phase peptide synthesis (SPPS) uses solutions of 20% piperidine in DMF to remove

Fmoc protecting groups. It was postulated that the protected triazabutadienes could be compatible using SPPS and be compatible. To test the stability against piperidine, absorbance of the protected triazabutadiene 2.14 was measured over time (see Figure A8). Immediately the lambda max of the protected triazabutadiene (320 nm) disappeared and a new absorbance signature at 360 nm emerged. Considering that DMF is dipolar aprotic, the piperidine at this

40 concentration is extremely nucleophilic. Nucleophilic enough to deprotect the protected triazabutadiene.

Trifluoroacetic acid (TFA) is commonly used in Fmoc chemistry to cleave the peptide from an acid-sensitive resin. A solution of 50% TFA in DCM was made and the protected triazabutadiene was dissolved in the mixture and the absorbance was measured over time (See

Figure A9). Oddly enough, the absorbance of the protected triazabutadiene increased over time.

This anomaly is not fully understood and requires further investigation.

2.7 Future Directions

The anomaly in rates from Figure 2.5 should be further investigated. A larger series of compounds with differing EWG and EDG should be synthesized to explore this phenomenon. The Hammett plot (see Figure A5) needs more data points to be able to conclude anything about the effects of electronics on the deprotection reaction. Studies using heavy water can be performed to determine more information about the mechanism of the reaction.

2.8 Conclusion

In this chapter, the design, synthesis, and reactivity protected triazabutadienes was discussed. Carbamate protecting groups installed on the N1 position of the triazabutadiene were synthesized using chloroformate reagents. The deprotection reaction of the carbamate protecting group occurred in highly basic conditions (pH>7). The next chapter, chapter 3, discusses the design and synthesis of functionalized protected triazabutadienes.

41 Chapter 3 Design and synthesis of functionalized protected triazabutadienes

3.1 Introduction

In this chapter, the development of a modular synthesis for functionalized protected triazabutadienes as chemical probes will be discussed. Additionally, synthetic challenges and alternative routes attempted will be discussed. The drive for the synthesis of functionalized protected triazabutadienes is to identify new drug targets for mosquito population control, which will be discussed in Chapter 4. Functionalized protected triazabutadienes could be used in many other biological applications as well. It is the hope that these molecules can be used to study biological systems, even beyond the purposes of this dissertation.

42 3.2 Design of the protected triazabutadiene chemical probe

The design of the chemical probe (Figure 3.1) is based on the work from previous members of the Jewett lab64,65,69,77 which was discussed in Chapter 2. The reactivity of the protected triazabutadiene scaffold presented here is finely tuned. For example, tert-butyl and methyl groups were established as substituents on the imidazole ring. Dr. Jie He, a PhD graduate from the Jewett lab, had previously shown that the tert-butyl substituent caused a rapid release in the benzene diazonium ion, even more so than two methyl substituents.68 Additional functionality includes the installation of a terminal alkyne to utilize as a handle for click chemistry.78

Brandon Cornali, a Master’s student from the Jewett lab had previously shown that triazabutadienes are compatible with Cu-click reaction conditions.65 A handle allows the ability to attach cargo like a fluorophore or biotin which allows for versatility of experimentation. The last feature of the molecule is the protecting group (R). For the experimental compounds, the R group is an ethyl ester which on attachment to the N1 of the triazabutadienes forms an ethyl carbamate.

O

R = O Experiment Control = -CH3 Cl N R Protecting group tert-butyl N } group N N N

CH3

Functional handle = • Alkyne • Azide • Biotin • Fluorophore

Figure 3.1 Properties of the functionalized protected triazabutadiene Features of the protected triazabutadiene includes tert-butyl and methyl imidazole substituents. The R group is either an ethyl ester or methyl group. The purple star represents different handles such as an azide or alkyne. Using these handles allows for pull-down or imaging experiments.

43 For the control compounds, a methyl group is the R group. The methyl group is not cleaved under basic conditions, which does not allow for benzene diazonium (BDz) ion release. The control compound reactivity was discussed in Chapter 2.

3.3 Synthesis of the protected triazabutadiene chemical probe

Lithium carboxylate salt triazabutadiene

The synthesis of the functionalized protected triazabutadiene required over a year of synthetic optimization (3.5, Scheme 3.1). The steps that required the most optimization were the methyl ester hydrolysis reaction and subsequent amine coupling to (compounds 3.2 to 3.4). The issues included compound degradation, side-reactivity, and cumbersome purifications. Despite the synthetic challenges, the highly engineered compound, 3.5, was synthesized. This synthesis hopefully serves as a modular procedure to synthesize other functionalized protected triazabutadienes.

The tert-butyl imidazolium salt starting material, 3.1, was synthesized through previously established methods using methyl iodide. The methyl ester phenyl azide, 3.2, starting material was synthesized using previously established methods in the lab. The synthesis of the methyl ester triazabutadiene, 3.3, also followed general synthetic procedures established in the Jewett lab.

The most difficult synthetic step was the hydrolysis of the methyl ester triazabutadiene,

3.3, to the lithium carboxylate salt 3.4. The triazabutadiene, 3.4, degrades very quickly in the methyl ester hydrolysis reaction. What makes the process more arduous is having to monitor the reaction via 1H NMR spectroscopy. Initially it was attempted to monitor the reaction using thin layer chromatography (TLC) plates. Unfortunately, regular silica plates readily degrade the tert-

44 butyl/methyl triazabutadiene scaffold. The loss of the methyl ester compound could not be monitored using neutral or basic alumina TLC plates. However, it is not possible to monitor the formation of the lithium carboxylate salt product, 3.4. The carboxylate, 3.4, Rf shows up at the baseline in most solvent systems for silica or alumina (neutral or basic) stationary phases.

Additionally, the degradation products of the triazabutadiene stick to the baseline of silica and alumina TLC plates. Since neither silica nor alumina TLC plates could differentiate between the carboxylate, 3.4, and from degraded triazabutadiene products, it was required to monitor the reaction using 1H NMR. Aliquots of the crude reaction at specific timepoints were obtained and dried before taking 1H NMR. The carboxylate, 3.4, has limited solubility in most organic solvents, but is soluble in DMSO. Thus, d6-DMSO was used in monitoring the reaction by 1H NMR. When heating at 80 °C it is recommended that reaction is monitored by NMR every 20 minutes. It is also recommended to heat for no longer than two hours. It is important to stir vigorously in a small

O

O N N N N3 N N I 3.2 LiOH N N N N N N N KOtBu, rt, THF CH3 80 °C, THF/water CH3 CH3 85% 78% 3.1 3.3 3.4 O O O O Cl Li H2N O N N O 3.5 N Cl O N O HATU, DIPEA N N N 3.7 N N N CH3 CH3 DCM DCM 77% 3.6 57% 3.8 NH NH O O

Scheme 3.1 Synthesis of alkyne protected triazabutadiene

Modular synthesis of functional protected triazabutadienes, with the alkynyl-containing carbamate protected triazabutadiene, 3.8, as the final product.

45 round bottom, as the solvent is biphasic. The carboxylate product is an orange/yellow color, and the degraded products are orange/red.

Coupling reagents for amide bond formation

After the hydrolysis step (3.3 to 3.4), a number of coupling reagents were used to attempt the amide bond formation for the product 3.6 using propargyl amine 3.5. Compound 3.5 was used as a model here to develop the modular synthesis; however, any primary amine can be used.

Initially the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) was used as a coupling reagent, as previous members of the Jewett lab had success with this reagent for coupling amines to a bis-mesityl carboxylate triazabutadiene (see Flora’s and Brandon’s theses). Because the highly sensitive t-butyl/methyl scaffold was used here, significant triazabutadiene degradation was observed when attempting 3.4 to 3.6. It was postulated that the degradation was occurring perhaps because EDC is sold as the protonated HCl. Additionally, it was difficult to remove EDC by-products from the triazabutadiene.

Another common coupling reagent was then used, benzotriazol-1-yl- oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP). When attempting the coupling reaction from 3.4 to 3.6, the PyBOP was able to successfully synthesize compound 3.6. However, it was observed by 1H NMR that other unknown triazabutadiene species were present (see

Figures A10). The NMR of the unknown triazabutadiene species did not match the NMR of the degraded triazabutadiene. Additionally, a new peak was observed in the 31P NMR (see Figure

A11) spectra after 24 hours. It was suspected that the nucleophilic N1 or N3 position attacks the electron deficient phosphorus atom of PyBOP. What made PyBOP more difficult to use was purification of the reaction of 3.5. Phosphine oxide side-products from the coupling reaction were difficult to remove, even after multiple columns or triturations were performed.

46 PyBOP was then no longer used as it clearly was having side-reactivity with the triazabutadiene. We hypothesized that it would be advantageous if the coupling reagent didn’t have an electrophilic phosphorus atom. The 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5- b]pyridinium 3-oxide (HATU) reagents have been proven to be fast and effective somewhat-new coupling reagents. Additionally, neither coupling reagent has an electron deficient phosphorous atom so side-reactivity would not be a problem. The coupled product, 3.6, was confirmed using either HBTU or HATU. Most importantly, no side-reactivity of the triazabutadiene with HBTU or

HATU was observed. The HATU reagent was faster at coupling than HBTU, so HATU was chosen as the coupling agent for this modular synthesis. The coupling reaction with HATU goes to completion in less than an hour and can be monitored by neutral or basic alumina TLC. Since there are such a large excess of coupling reagents in the reaction to make 3.6, it is nearly impossible to take crude aliquots and monitor the reaction by NMR.

Once synthetic steps for 3.4 and 3.6 were optimized the target protected triazabutadiene product, 3.8, was synthesized. The protection step (3.6 to 3.8) had already been optimized, as seen from Chapter 2. The goal was to attach biotin to the triazabutadiene, so that labeled proteins were biotinylated, which would allow for the easy detection of labeled proteins via streptavidin conjugates. The next section describes issues experienced in pursuit of a biotinylated protected triazabutadiene.

47 3.4 Issues with the synthesis of the biotinylated probe

A huge motivator for developing the synthesis of Scheme 3.1 was to have the ability to develop a modular synthesis for cargo attachment onto the triazabutadiene. The synthesis for a triazabutadiene requires the use of a strong base (3.3, Scheme 3.1). Cargo (such as biotin, fluorophore, or a drug) would most likely have side-reactivity under these highly basic conditions.

The first incorporation was with an amino-biotin group to synthesize 3.9 (Scheme 3.2). It was the thought that after biotin coupling it would be easy to protect with ethyl chloroformate, 3.7, to produce target product 3.10. After the addition of triazabutadiene 3.9 with ethyl chloroformate

3.10, the triazabutadiene did not appear to be protected at the N1 position, missing the characteristic shifts of the methyl and t-butyl peaks (see Figure A12).

O N O N Cl O HN NH N N N 3.7 CH H H H H 3 N N O X 3 S DCM, rt 3.9 4 O O

Cl N O O N O HN NH N N N CH H H H H 3 N N O 3 S 3.10 4 O O Scheme 3.2 Biotin triazabutadiene Attempt to protect the triazabutadiene, 3.9, did not yield the target product, 3.10.

48

It was thought that if the triazabutadiene, 3.9, was not protecting at the N1 position, perhaps the biotin moiety was interfering with the reaction in some way. To test if biotin was reacting with 3.7, a control experiment was performed. Considering triazabutadiene compound

3.9 is precious, a biotin carboxylic acid (3.11, Scheme 3.3) was used instead. The biotin was treated with an excess of chloroformate (which is normally done in the triazabutadiene protection reactions). By 1H NMR, it appeared that indeed biotin is modified by the chloroformate (see

Appendix A, Figure A13). It was expected that the carboxylic acid would be transformed into an anhydride, which was indeed observed with a loss of the carboxylic acid proton. Additionally, after overnight treatment with ethyl chloroformate (which because of the slow reaction rate) it appeared that the amide nitrogens of the biotin moiety also were acylated (Scheme 3.3, 3.12). It is speculated that the acyl groups could be removed using base, such as sodium hydroxide (NaOH), then perhaps Scheme 3.2 could be still utilized to synthesize target compound 3.10.

Unfortunately, the original biotin structure, 3.11, was not recovered after treatment of 3.12 with base. It was speculated that the base caused the urea ring of biotin to break open, resulting in an irreversibly modified compound.

O O O O O Cl OEt N N HN NH 3.7 EtO OEt EtO O HO S S NaOH O O O X 3.11 3.12

Scheme 3.3 Biotin and ethyl chloroformate Control experiment to see if biotin was reacting with ethyl chloroformate. The reaction was not reversible when base was added.

49

Considering the protected triazabutadiene biotin compound (3.10, Scheme 3.2) could not be synthesized easily by direct treatment with ethyl chloroformate, alternative routes to make a biotinylated protected triazabutadiene were attempted. One route was to use protected alkyne compound (3.13, Scheme 3.3) and perform a Cu-click reaction to attach cargo using an azide

(3.14, Scheme 3.3). The click reaction was attempted using compound 3.13 and hexyl azide,

3.14. The reaction was performed in tetrahydrofuran (THF) or dichloromethane (DCM) solvents.

Unfortunately, with either solvents, the crude NMR was too dirty to analyze. Considering purifications with protected triazabutadienes are very difficult, it was thought that the species in the crude sample could be analyzed by mass spectrometry. The crude mixture was then analyzed by low-resolution mass spectrometry (LRMS; see Appendix A, Figure A14). It was then revealed that the triazabutadiene was deprotected yet clicked product (Scheme 3.4, 3.16). Other possible triazabutadiene products were not found in the mass spectrum. Given the outcome of Scheme

3. 4, performing Cu-click on a protected triazabutadiene looked like it was unlikely.

N3 Cl 5 Cl N O 3.14 N O N O N O N N N N CuI, XPMDTA N N CH CH3 THF or DCM 3 3.15 3.13 NH NH N N O O N 5

N N N N N CH3

3.16 NH N N O N 5 Scheme 3.4 Attempt to use Cu-click on protected triazabutadiene Attempt to Click on a model azide to the protected triazabutadiene yielded deprotection.

50 3.5 Synthesis of the biotinylated probe using Cu-free click chemistry

To overcome to the synthetic challenges that arose from Cu-click chemistry, attention was then turned to using Cu-free click chemistry.79 The Cu was the assumed culprit deprotecting the compound, so it was the hope that a Cu-free method was a solution. Azide compounds 3.17 and

3.18 (Scheme 3.5) were synthesized so that they could be reacted with a biotin cyclooctyne compound, 3.21. Compound 3.17 and control compound 3.18 were reacted with cyclooctyne 3.15 on a small scale in an NMR tube, as compound 3.21 is expensive. By LRMS (see Figures A15 and A16, Appendix A), the target biotinylated products, 3.19 and 3.20, were successfully synthesized. These compounds will make an appearance in the next chapter, Chapter 4.

O 3.17 R = O Cl = -CH 3.18 N N 3 N R O N N N O 3.21

CH3 H N N DMSO O 3 O 2 O

Cl R = O 3.19 N 3.20 N R = -CH3 N N N

CH3 N N H N N O O 2 O N O HN NH H = H H H N N S O O 3 3 O

Scheme 3.5 Synthesis of biotin triazabutadiene using Cu-free click chemistry Utilizing the azide-functionalized protected triazabutadienes, compounds 3.17 and 3.18, to conjugate to cyclooctyne biotin, 3.21, using Cu-free click chemistry.

51

3.6 Synthesis of functionalized protected triazabutadienes using Cu-click chemistry in water

Biotinylated protected triazabutadiene products, 3.16 and 3.17, were able to be synthesized using Cu-free click. Unfortunately, Cu-free click is not ideal for an easy modular synthesis. Cyclooctyne compounds are generally bulky and hydrophobic, and require many synthetic steps. A terminal alkyne, however, is much easier to install on a substrate. There are far more commercial products of terminal alkynes, and they are smaller and less hydrophobic than cyclooctynes. Therefore, it would be ideal if we could perform the Cu-click reaction on protected triazabutadienes.

Dr. Carolyn Bertozzi recommended performing the Cu-click reaction in water, instead of organic solvents because the nucleophilicity of the Cu should be diminished in water. At the time attention was on biological experiments, so Anjalee Wijentunge, a PhD student from the Jewett lab, was asked to try the Cu-click reaction of the protected triazabutadiene in water (Scheme 3.6).

Anjalee was able to confirm by TLC and mass spectrometry (MS) that doing the reaction in water prevented Cu from deprotecting the carbamate. In the future it is also recommend trying the click reaction with methanol. Methanol might have the same effects on Cu that water does, and it might allow the triazabutadiene to stay protected. Synthetically, methanol is much easier to work with than water. Currently the biggest challenge is how to purify these complicated protected triazabutadienes. The bis-mesityl triazabutadiene scaffolds are relatively straightforward to purify using trituration. However, as these compounds gain more functionality, they are more difficult to purify by trituration alone.

52

N3 Cl 5 Cl N O 3.23 N O N O N O N N N N N N CuSO , NaAsc 4 CH CH3 3 H2O

3.22 NH NH 3.24 N N O O N 5 Scheme 3.6 Cu-click reaction should be performed in water to prevent deprotection Click reaction in water yields target product, 3.24 without deprotecting the triazabutadiene.

3.7 Future Directions

Current efforts are focused on using the probes discussed in this chapter to study the alimentary canal of mosquito larvae (see Chapter 4). The probes described in this chapter will hopefully be useful to any biological application involving a base-triggered mechanism.

3.8 Conclusion

Functionalized protected triazabutadiene synthesis was discussed. A modular synthesis was developed for functionalized protected triazabutadienes. It was found that the Cu- click reaction deprotects the triazabutadiene in organic solvents. However, if water is used instead of an organic solvent, the triazabutadiene can stay protected. In the next section of this thesis,

Chapter 4, biological experiments with the functionalized protected triazabutadiene will be reported.

53 Chapter 4 Identifying drug targets for mosquito population control

4.1 Introduction

Considered to be the most dangerous animal on the planet, mosquitoes kill over 700,000 people per year.80 Mosquitoes are vectors of many human diseases, such as dengue fever

(DENV),81 yellow fever, West Nile fever, malaria, chikungunya, Japanese encephalitis, and the newly emerged Zika virus.82 Mosquitoes inhabit every continent on the planet, including

Antarctica. The Aedes genus is particularly invasive. Many disease-carrying mosquitoes tend to prefer warm and wet climates, such as Central America, South America, Pacific islands, and

African regions. However, due to climate change, global temperatures are rising. Mosquito migration patterns are changing rapidly, such that mosquitoes are moving to unpredictable areas, such as the United States, Canada, Europe, and even the arctic.

The biggest defense against the spread of mosquito-borne illness is the development of vaccines or treatments for these diseases. Unfortunately, there are not many treatments for mosquito-borne illnesses. Two examples of successful vaccines are for yellow fever and

Japanese encephalitis. The yellow fever vaccine became popular during World War II, where

North African war zones were epidemic.83 The vaccine for Japanese encephalitis is effective, but requires multiple doses which lowers compliance and increases delivery-related costs.84 Vaccine development for mosquito-borne illnesses is progressing but has a long way to go.

54 As vaccines and treatments are currently underway for mosquito-borne illnesses, our current and main defense against these illnesses is the control and surveillance of mosquito populations.85 Research has shown vector control methods reduce transmission of mosquito- borne diseases.86

Despite being vectors to human disease, mosquitoes cannot be fully eradicated. The majority of mosquito species are not responsible for transmission of mosquito-borne illness.

Mosquito-borne illness transmission is dependent on the species of the vector. In fact, out of the

3500 species of mosquitoes, only 200 mosquito species are carnivorous. The majority of mosquitoes are vegetarian. Mosquitoes play an important role in the ecosystem. Mosquito larvae consume detritus and keep water clean. Adult mosquitoes serve as food to fish, frogs, lizards, birds, and other insects. Some mosquitoes even participate in mutualism, serving as pollinators for plants.87 Therefore, complete eradication of all mosquito species would be damaging to the ecosystem.

Population control methods differ by stage of the mosquito life cycle. The life cycle of mosquitoes has four main stages: egg, larva, pupa, and adult (Figure 4.1). Aside from the adult, all other stages are aquatic. The egg and pupae are essentially dormant, as neither eat nor drink at these stages. Due to this, the two main stages targeted for population control are the adults and larvae.

55

Figure 4.1 Mosquito life cycle The four main stages of the mosquito life cycle.

4.2 Targeting adult mosquitoes for population control

Introduction

There are many ways to control adult mosquito populations. The most common methods involve using adulticides (insecticides at the adult stage), environmental management, and genetic modification. Genetic modification techniques are a newer technology for mosquito population control. A brief review of adulticides, environmental management, and genetic modification will be discussed herein.

56 Adulticides: organophosphates, organochlorines, and pyrethroids

Adult mosquitoes are often the focus of population control strategies as the adults are directly responsible for transmission of mosquito-borne illnesses. Mosquito adulticides are applied through ultra-low volume spraying (ULV).88 ULV finely disperses liquid adulticides in the minimum amount of volume.89 Adulticide research faces a tough challenge due to unfavorable persistence, environmental effects, and toxicity to humans. Adulticides that are legal for use in the U.S. are organophosphates, natural pyrethrins, and synthetic pyrethroids.90 A brief discussion of population control strategies at the adult stage is provided herein.

Organophosphates first made an appearance during World War I (WWI) as toxic nerve agents. Used for chemical warfare, organophosphates generated large amounts of poisonous

91 gases, such as chlorine gas (Cl2). It wasn’t until World War II (WWII) that organophosphates were introduced as pesticides.92 The mechanism of action of organophosphates involves the inhibition of acetylcholinesterase in the central nervous system.93 However, it has long been known that organophosphates have off-target effects and toxicity in humans.94 Due to off-target effects and persistence in the environment, use of organophosphates is declining.95

The mechanism of action of organochlorines is similar to those of organophosphates.

Organochlorine pesticides act upon the central nervous system of the insect.96 The most well- known organochlorine is dichlorodiphenyltrichloroethane, also known as DTT. DTT began its use during WWII to prevent soldiers from developing malaria. Given how successful this organochlorine pesticide was, DDT became available in the U.S. for public use in 1945. However, after the release of Silent Spring, a book calling out the U.S. government for their misuse of pesticides, in 1962, the U.S. launched a full investigation to determine the adverse effects of pesticides on the environment. The results of the research concluded the harmful environmental

57 impacts of DDT. One of which almost resulted in the extinction of the bald eagle, the national bird of U.S. In addition, the overuse of DDT was found to be directly correlated insecticide resistance.97

In 1972 the United States banned all agricultural use of DDT. are still used as an insecticide throughout other parts of the world, including some countries in Africa,

India, China, and the Democratic People’s Republic Korea (North Korea).97 Aside from DDT, other organochlorine pesticides include dichlorodiphenyldichloroethane (DDD), eldrin, dieldrin, chlorobenziate, lindane, and many others.98 Similar to organophosphates, the use of organochlorine pesticides is declining, due to their negative impacts on the environment, such as honey bees.99

Pyrethroids are the synthetic analogs of pyrethrins. Pyrethrins are natural product insecticides from Chrysanthemum cineraiifolium flowers.100 Pyrethroids are often preferred over pyrethrins due to their improved potency and stability.101 The mode of action of pyrethroids is to disrupt insect sodium and chloride ion channels.102 There have been cases reported of pyrethroid resistance in insects.103 In general, pyrethroids are considered a safer alternative to organochlorine and organophosphate insecticides.104

Genetic modification (GM)

A GM strategy involves releasing mosquitoes infected with the bacterium Wolbachia pipientis.105 Wolbachia controls mosquito populations through a variety of mechanisms, one of which is cytoplasmic incompatibility.106 Cytoplasmic incompatibility results from mating an infected male with Wolbachia and an uninfected female. The offspring of the two insects produce eggs that are unable to hatch.107 It had been known previously that Wolbachia was able to cause

58 cytoplasmic incompatibility in Drosophila.108 Previously, the mosquito Culex pipiens fatigans was successfully eradicated by releasing GM males infected with Wolbachia.109

After the 2009 outbreak of dengue fever in Florida,110 U.S. officials proposed the use of

GM mosquitoes to control mosquito populations and future outbreaks. A mosquito strain,

OX513A, contains a self-limiting gene to reduce populations.111 The introduction of GM mosquitoes was met with public controversy, perhaps due to the lack of community engagement.112 Despite the public concern, the U.S. Food and Drug Administration (FDA) found no serious impact to human health or the environment upon the release of OX513A mosquitoes.113

Another GM method to control mosquito populations uses the sterile insect technique

(SIT) to suppress the population of wildtype mosquitoes.114 SIT involves releasing GM sterile male insects into the field. These sterile males then mate with wild females, creating eggs that are unable to hatch.115 The SIT technique has been successful in the past, as it was able to eradicate the screwworm fly in the Southwestern U.S. and Central America.116

Due to lack of educating the public and community engagement, the widespread use GM of mosquitoes is fairly limited. The WHO are working to overcome these challenges, to establish framework to assess regulatory, legal, ethical, social and cultural issues during GM research and development.117

Environmental management techniques

An additional method includes environmental management techniques to control mosquito populations. Environmental management involves container removal, trapping, solid waste

59 management, and improvement of water supply and water-storage systems.118 Another method is using personal protection against mosquitoes. This can include body spray featuring the repellents N,N-dimethyl-meta-toluamide (DEET),119 2,2-dimethoxypropane (DMP), or diethyl malonate (DEM). Wearing light-colored clothing can help prevent mosquito bites.120 Additionally, insecticide-treated bed nets (ITN) have proven effective in comparison to untreated bed nets

(UTN).121 Permethrin-treated summer clothing prove to be effective in repelling mosquitoes.122

4.3 Targeting mosquito larvae for population control

Mosquito larvae are aquatic, which makes them much easier to localize than the flying adults. Larvicides, or pesticides designed to target the larval stage, can be either biological or synthetic. A biological larvicide that is commonly used is Bacillus thuringiensis israelensis (Bti).

The pore-forming bacterium is applied to bodies of water and ingested by mosquito larvae that indiscriminately feed. Bti becomes activated in the larvae by the highly basic anterior midgut. The main players in the mechanism are four Cry proteins and at least two Cyt proteins.123 These proteins form a complex that forms holes in the membrane of the gut. Bti is self-generating in the mosquito larvae and lives in the dead carcasses, which can then infect other larvae.124 One clever method of larval management involves using adult mosquitoes as a vector to transfer juvenile hormones to larval habitats.125 Other larvicides include insect growth regulators such as methoprene pyriproxyfen.126

Despite the overwhelming amount of evidence that tell us that larvicides are effective in reducing mosquito populations,127,128 adulticides are much more likely to be used and studied than

60 larvicides. In order to control mosquito populations, multiple programs will need to be in place.

This means a combination of programs, such as using both adulticides and larvicides. This chapter of this dissertation discusses how we can develop potent larvicides by studying a fundamental organ of the larvae: the gut.

4.4 Identifying new drug targets by understanding the mosquito gut

Identifying potential larvicides requires a fundamental understanding of the larval digestive tract. The digestive tract is composed of four sections: gastric caeca, the anterior midgut, the posterior midgut, and the malpighian tubes (Figure 4.2). The larval midgut is mostly composed of epithelial cells. An unusual feature of the larval digestive tract is that the midgut is highly basic.129 Aside from a few other larvae from lepidopteran insects (black flies, chironomids, tobacco hornworm) mosquito larvae are the only organism that uses basic pH in their gut.130 The beginning of the mosquito larval tract starts at physiological pH 7. But once entering the anterior midgut portion of the gut, the pH jumps up to 11.

The evolutionary advantage for lepidoptera to develop such an alkaline midgut is still under discussion. It is suspected that larvae have evolved this extreme leap in pH because plant matter is easier to break down in alkaline conditions.131 For example, it is believed they adapted their gut pH to due tannin-rich diets. Tannins form cross-links with proteins in the larval gut,132 and will only dissociate under extremely alkalkine pH.131

61

Gastric Anterior Posterior Malpighian caeca midgut midgut tubes

pH 7 pH 11 pH 8 pH 7

Figure 4.2 Mosquito alimentary canal The pH gradient of the mosquito larva alimentary canal.

To develop effective larvicides, it is advantageous to understand the proteome of the larval gut. The identity of proteins is crucial for developing drugs. To determine the identity of a protein, scientists use mass spectrometry (MS). Fragmentation patterns are then compared with a protein database which identifies individual proteins. Knowing the identity of a protein is key but determining the location of proteins in the alimentary canal is crucial for drug development.

Probing regions of the gut for protein spatial awareness would be highly advantageous in this context.

62 4.5 In vivo chemical modification of proteins in the alimentary canal

Introduction

The goal of this project is to identify new drug targets for mosquito larvae population control. As mentioned previously, drugs/larvicides first interact with the alimentary canal for proper absorption. Therefore, it is imperative to study the alimentary canal for identity and location of gut proteins. The approach discussed here proposes using small molecules, protected triazabutadienes, to identify new drug targets.

The chemical probe used in these experiments is a protected triazabutadiene (Figure 4.3).

The design, synthesis, and reactivity of protected triazabutadienes can be found in Chapters 2 and 3 of this dissertation. The rationale for using chemical modification over other methods is for multiple reasons. First, chemical modification allows for the in vivo detection of midgut proteins.

Cl O Base labile N } protecting group tert-butyl N O group N N N

CH3

= • Alkyne • Azide • Biotin • Fluorophore

Figure 4.3 Properties of the functionalized protected triazabutadiene General scaffold of the protected triazabutadienes used in this chapter. A tert-butyl group was installed for fast release of the BDz ion. The base labile protecting group ensures that deprotection will only release in the gut of the larva. Purple star represents additional functionality for imaging, isolation, and analysis.

63

The highly basic nature of the anterior midgut would serve as a perfect biological activator for the chemical probes developed in this dissertation, protected triazabutadienes (Figure 4.3).

Mosquito larvae are fed the experimental or control functionalized protected triazabutadiene and then harvested. To determine if the probing is successful, a number of different methods could be employed. In this dissertation, there are three methods used: fluorescence microscopy, SDS

PAGE, and tandem mass spectrometry (MS/MS). Chasing the chemical probe with a fluorophore would help us identify the location of protein labeling in the gut. SDS PAGE is a relatively simple protein readout, which can eventually be developed into a western blot. MS/MS will help us identify the labeled proteins.

If the mosquitoes were fed a functionalized protected triazabutadiene, it is expected that the probes would stay protected until it reaches the anterior midgut (Figure 4.4). At the anterior midgut a reaction cascade would occur which would end in producing a benzene diazonium (BDz) ion in the alimentary canal. The BDz ion would then react with nearby proteins containing tyrosine or histidine residues. Therefore, we expect labeling to occur after the trigger of basic conditions in the anterior midgut. Considering the larvae are fed a functionalized protected triazabutadiene, reactive handles (purple stars) would be installed onto the gut proteins. Having a reactive handle on our labeled proteins means we can study these proteins using a variety of different methods.

64

Gastric Anterior Posterior Malpighian caeca midgut midgut tubes

R N O N N O N N N N R

Figure 4.4 Reactions inside mosquito gut Reaction cascade of a functionalized protected triazabutadiene inside the alimentary canal of a mosquito midgut.

The proposed workflow (Figure 4.5) uses three main techniques: fluorescence microscopy, analysis by SDS PAGE, and proteomics (Figure 4.5). Depending on what is attached to the probe (purple star) will determine its application. These three approaches will be used in this chapter.

65 O

Cl R = O N R N = -CH3 N N N

CH3

NH O

Larvae

m/z Figure 4.5 Mosquito experiments Workflow for probing the proteome of mosquito larvae involves fluorescence imaging, SDS PAGE, and tandem mass spectrometry (MS/MS).

66 4.6 Initial experiments on feeding the larvae with protected triazabutadienes

The first experiment required for this project was to ensure that the chemical probes were

not toxic to the mosquito larvae. At the time the protected triazabutadiene alkyne probes were

just newly synthesized (4.1 and 4.2, Figure 4.6a). The majority of these preliminary experiments

were executed with compounds 4.1 and 4.2. Dr. Robbie Zinna, a postdoctoral researcher in the

lab of Dr. Michael Riehle, performed initial cytotoxicity experiments. Dr. Zinna treated the larvae

with the alkyne protected compound and its control (4.1 and 4.2, Figure 4.6a) in varying

concentrations up to 2 mM. After 24 hours of incubation with the compound, all larvae had

survived, and some larvae even pupated. After treatment, the whole body or dissected midgut

were homogenized in lysis buffer. Protein lysates were then loaded and run on an SDS PAGE

(Figure 4.6b). The A lanes contain protein from the dissected midgut, and the B lanes contain

protein from the whole body. Lanes 1A and 1B were treated with the experimental compound

(4.1) and Lanes 2A and 2B were treated with the control compound (4.2). Lanes 3A and 3B did

not receive any compound treatment.

a.. Cl O b.. N N R R = OEt 4.1 N N N CH 4.2 3 = -CH3

NH O

Larvae

Figure 4.6 Initial mosquito larvae experiment

SDS PAGE with larval gut proteins after compound treatment. Proteins were isolated from the dissected larval midgut (lanes 1A, 2A, and 3A) or from whole body (1B, 2B, and 3B). Lanes 1 were treated with the experimental compound (4.1), lanes 2 with the control compound (4.2), and lanes 3 without any compound treatment.

67 Looking at Figure 4.6b, it is apparent that there is no protein in the A lanes. There does appear to be some visible protein from the whole larval body dissections in the B lanes; however, it is not very significant either. There does not appear to be a different between compound-treated lanes (1 and 2) vs. the non-treated (3 lanes). This was the first experiment showing no or very little protein from dissected mosquito larvae.

The protected triazabutadiene alkyne probes, 4.1 and 4.2, were first-generation compounds with the alkyne handle. Instead of synthesizing the compounds with the alkyne handle, it was speculated that biochemical experiments would be easier if the probes had biotin pre-attached. After some synthetic optimization (see Chapter 3) there was success being able to synthesize the biotinylated compounds, 4.3 and 4.4 (see Figures A15 and A16, Appendix A), using Cu-free click chemistry (see Chapter 3.5). Biotinylated compounds 4.3 and 4.4 (Figure 4.7) were given to Dr. Mike Riehle for preliminary experiments. Dr. Riehle treated 4th in-star mosquito larvae with the biotinylated compounds at 0.1 mM, 0.5 mM, or 1 mM (see Figure A17, Appendix

A). After compound treatment, Dr. Riehle dissected the gut and homogenized with lysis buffer and protease inhibitors. Samples were then ran on an SDS PAGE and transferred to a blot. The blot was then probed using a streptavidin-HRP conjugate. Unfortunately, the blot did not appear to have protein in sufficient quantity, similarly, to Figure 4.6b. Given that Figure A17 is a western blot, and Figure 4.6b is an SDS PAGE, the two figures cannot be compared directly. However, it is interesting to see that the quantity of larval gut proteins is low.

68

Cl O N N R R = OEt 4.3 N N N CH 4.4 3 = -CH3

NH O = biotin

Figure 4.7 Biotin probes

Biotinylated protected triazabutadienes.

In addition to western blot, fluorescence microscopy was employed to determine if in vivo protein labeling of the midgut was occurring with the biotinylated probes. Dr. Riehle treated 4th in- star larvae with the biotinylated compound 4.3 or not treated with any compound. The larvae were then dissected leaving the food bolus intact. Tissues were then fixed and treated them with

AF488-avidin. Looking at the fluorescence image of Figure 4.8a, the only signal that is detected is with the guts that were treated with experimental compound 4.3. Additionally, the fluorescence is localized in the middle part of the gut. There is some fluorescence localization at the gastric caeca for one of the guts (farthest gut on the right) and some at the end of the gut. The zoomed in fluorescence image (Figure 4.8b) shows that labeling is predominantly on the outer gut tissue, and not concentrated in the food bolus. The results shown in Figure 4.8 was promising enough to continue with experimentation.

69

a. Brightfield b. Brightfield Not treated

Treated with 4.1 Treated with 4.1

Fluorescence Not treated Fluorescence

Treated with 4.1 Treated with 4.1

Figure 4.8 Images of mosquito gut

Larvae were treated (or not treated) with 250 µM of the biotinylated compound 4.3 in 500 µL of tap water for 24 hours. Guts were dissected and fixed in 4% paraformaldehyde (PFM). The guts were permeabilized with 3 freeze/thaw cycles. Guts were washed with TBST buffer and blocked with 5% bovine serum albumin (BSA). The guts were then treated with avidin-AF488 and washed with TBST prior to visualizing under a fluorescence microscope. b. Zoomed in image of 4.1- treated larval guts. Work performed by Dr. Mike Riehle.

70

4.7 1H NMR experiments of larval media post compound treatment

To affirm the chemical reactivity of the chemical probe, 1H nuclear magnetic resonance

(NMR) was used. The 1H NMR spectrum of the larval media post-compound treatment was obtained. Larvae were treated with compounds 4.1 or 4.2 or not treated with any compound. The media was isolated and lyophilized. NMR spectra of the residue from the lyophilization was then obtained. The NMR from the compound 4.1 treatment (Figure 4.9a) shows complete consumption of the compound. Additionally, in Figure 4.9a, the NMR signals post-compound treatment are indicative of triazabutadiene degradation products. Conversely, in Figure 4.9b, the NMR spectrum of the media post compound treatment of compound 4.2 is identical to the starting material. Additionally, the NMR of the media with no compound treatment did not show any 1H

NMR signals (data not shown). Further biochemical experimentation is required to further prove that compound 4.1 is reacting with larval gut proteins.

a. b. _

A B A B _ Cl N O N O I N N N N CH N 3 CH 3 N N N + A CH3 1 B + NH A O B NH 4.1 O

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.2 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 ppm ppm Figure 4.9 1H NMR experiment on larval media Some 4th in-star Ae. aegypti larvae were treated with compounds 4.1 (a) or 4.2 (b) or not treated with any compound. Approximately 10 larvae were placed in small petri dishes with a concentration of 100 µM compound in 5 mL of tap water. Larvae were then placed in the insectary for two hours. The media from the larvae was then isolated and lyophilized. The residue was then dissolved in d6-DMSO and spectra was obtained using 1H NMR. The NMR of the media treated with no compound showed no 1H signals after larval treatment.

71 4.8 Protein labeling of model protein BSA is dependent on pH

The next experiment was to confirm that the experimental compounds could label a model protein dependent on basic pH. A Cy3 fluorophore was conjugated to the probes (4.5 and 4.6,

Figure 4.10) so that labeled proteins could be easily detected by fluorescence. Solutions of bovine serum albumin (BSA) at pH 7 or 10 were treated with compounds 4.5 or 4.6 (100 µM) for

30 minutes (Figure 10a). After incubation, the samples at pH 10 were neutralized to pH 7 using

0.1 M HCl. Proteins samples were loaded and run on a 12% SDS PAGE. A fluorescence scan of the gel was obtained and then stained using Coomassie blue (Figure 10b). Fluorescence intensity was then quantified (Figure A18, Appendix A). Looking at the quantification of fluorescence, it is clear that the greatest signal is the sample that was treated with experimental

a. N N R 1. N N N CH3 b. 4.6 4.5

NH pH 10 - + - + O BSA pH 7 or 10, rt, 30 min

2. Neutralize pH 7 O Lane 1 2 3 4 R = 4.5 O = Cy3 4.6 = -CH3

Figure 4.10 BSA as a model protein for labeling

(a) The model protein BSA was treated with 100 µM protected triazabutadiene 4.5 or 4.6 carrying a pre-conjugated Cy3 fluorophore. Samples were incubated at pH 7 or pH 10 for 30 minutes. After the pH 10 samples were neutralized to pH 7. (b) SDS PAGE fluorescence scan with Coomassie stain below.

72 compound 4.5 at pH 10. It is expected for there to be some fluorescence in the other samples due to non-specific binding of BSA to the fluorophore.

4.9 In-lysate Cu-click reaction suggests in vivo labeling of mosquito larvae

The next experiment was to show in vivo protein labeling of the mosquito larvae. This experiment was initially started with chemical probes, 4.5 and 4.6. However, there was too much background fluorescence because the fluorophore was sticking to everything. Instead, the alkyne- containing probes 4.1 and 4.2 were used, which was then chased with the alexafluor488-azide

(AF488-azide) using Cu-click chemistry. Mosquito larvae were treated with compounds 4.1 or 4.2 in the insectary for two hours. Larval gut tissue was then dissected and homogenized. A click

4.1 4.2 NT a. O b. 4.1 R = O N = -CH 4.2 N R 3 N N N

CH3 1. Compound treatment NH Fluorescence O 2. Dissect gut 3. Lyse and homogenize 4. AF488-azide, THPTA,

NaAsc, CuSO4

Mosquito larvae Coomassie

Figure 4.11 Cu-click in larval lysate

Solutions (100 µM) of chemical probe were incubated with 10 larvae (4th in-star) in 5 mL of tap water for 2 hours. After the media was exchanged for fresh tap water. Larvae were dissected on ice, and the gut tissue was isolated. Soluble proteins were extracted from the tissue and then used in the Cu-click reaction with Alexafluor 488-azide for 1 hr at room temperature. The 12% SDS PAGE shows fluorescence signal for compound 4.1 while the control lanes do not show signal. NT= not treated with the chemical probe but still treated with the fluorophore and Cu-click conditions.

73 reaction was then performed on the lysate using AF488-azide under Cu-click reaction conditions.

Protein samples were then run on a 12% SDS PAGE (Figure 4.11).

Looking Figure 4.11b, the most signal appears in the lane that corresponds to using the experimental compound 4.1, which is further confirmed with quantification (see Figure A18,

Appendix A). There was excess free fluorophore concentrated near the middle of the gel in all the lanes, so the lower portion of the gel was removed. Various purification procedures were attempted to purify away the excess fluorophore so that cutting the gel wouldn’t be required for a promising image.

First, acetone precipitations were used to remove fluorophore from the Cu-click reaction in larval lysates. The acetone precipitations were effective in removing the bulk of the fluorophore from the lysates. However, many rounds (at least 3) of acetone precipitations were required to remove the fluorophore sufficiently from solution. The fluorophore had nonspecific interactions with other biological moieties in the lysate resulting in off-target effects. Additionally, it was difficult to reconstitute the pellet in buffer after each acetone precipitation, which means protein was lost with each round.

Since acetone precipitations were causing loss of protein, G-25 Sephadex spin columns were then used to remove excess fluorophore. Prior to loading onto the G-25 column, the samples were spun down and the insoluble pellet was removed. Unfortunately, because the sample is a crude lysate, the protein sample would get stuck in the Sephadex column and would not elute after centrifugation. The assumption was that cellular debris was affecting the chromatography of the proteins through the Sephadex.

74 To remove cellular debris prior to using a Sephadex column, the samples were pushed through syringe filters. The volumes of the lysates were relatively small (100 - 200 µL) so a syringe with a small diameter was required (£ 13 mm). Otherwise, the lysate would get stuck in the filter and sample retrieval required many washes with phosphate buffer solution (PBS). Washing the syringe filter significantly diluted the sample, so it was not pursued. Instead, I used the smallest diameter syringe filter with a pore size 0.44 µm for the filter paper. The syringe filters did help the lysates run smoothly through the Sephadex. The Sephadex was effective in removing bulk fluorophore, but more than one column was required to remove a significant amount of dye.

In the midst of trying to optimize the chromatography conditions to remove bulk fluorophore, it was apparent that there was not a lot of protein after staining with Coomassie blue.

The protein concentration measured (1 mg/mL) was more than enough protein for Coomassie blue staining. Sometimes my proteins would not be very resolved either and appear to significantly smear on the gel. An example of the larval gut protein migration through an SDS PAGE is seen in Figure 4.12. Protein localization appears at the bottom of the gel, below 35 kDa. It was speculated that protein degradation could be occurring.

75

75 kDa

35 kDa

Figure 4.12 Example of larval gut proteins Coomassie stain of 10% SDS-PAGE of larval gut proteins. Significant protein seems to smear near the end of the gel, near the lower molecular weight markers (<35 kDa).

76 4.10 Solving poor protein resolution in SDS-PAGE

The problem with mosquito larval analysis by SDS PAGE appeared to be protein degradation. However, additional troubleshooting experiments were performed to confirm this hypothesis. It is known that poor protein migration can be due to overloading the gel with protein.

To test this hypothesis, a serial dilution of the gut protein lysate was performed (see Figure A19,

Appendix A). There are some defined bands near the top and middle portion of the gel, but again, the majority of protein is accumulating near the bottom of the gel.

Dilution of the protein sample didn’t yield better protein migration for SDS-PAGE (See

Figure A20, Appendix A). The next variable to test was protein aggregation. It is known that protein aggregation can lead to poor chromatography of proteins. To test this hypothesis, a sample of the gut protein lysate was treated with differing boiling times (see Figure A21,

Appendix A). Each lane has the same amount of protein. Looking at Figure A21, it appears that boiling is absolutely necessary for clear protein band migration. The lane that was not boiled

(farthest left) shows the smear that was commonly observed in the Coomassie-stained gels.

However, boiling the samples for 1 or 5 minutes resulted in good protein migration and resolution of bands. It does look like some protein sample was lost when boiling for 10 minutes (farthest right lane). This protein loss near the higher molecular weights could potentially be due to the protein aggregation from boiling. From Figure 4.14, I learned that I should boil my larval gut protein samples, but not for longer than 5 minutes.

Since the outcome of Figures A20 and A21, attention was brought to protein degradation as the main issue in the Coomassie gels. Proteins can be degraded through many mechanisms

(i.e. multiple freeze/thaw cycles, thermal heat from sonication/mechanical homogenization, and

77 proteases). The next set of experiments was dedicated to determine the source of protein degradation.

First, lysis conditions were tested to determine if the conditions were degrading the proteins (see Figure A22, Appendix A). The lysates were sonicated (1st, 3rd, 5th lanes) or lysed through mechanical homogenization with a motorized pestle (2nd, 4th, and 6th lanes). It can be seen from Figure A22, there is not a large difference in protein migration with sonication vs. mechanical homogenization. Again, there is a large protein smear on the bottom half of the gel.

The next hypothesis to test was to see if increasing the equivalents of protease inhibitors would save the proteins from potential degradation. Dissection and lysis are the steps that would involve active proteases. The mosquito guts were dissected and lysed in the presence of HALT

(EDTA-free) protease inhibitor at increasing concentrations. The protease inhibitor without ethylenediaminetetraacetic acid (EDTA) was used because the in-lysate Cu-click reaction was being attempted at the time, and EDTA chelates Cu very well. The lysates were then loaded onto an SDS PAGE gel, ± boiling (see Figure A23, Appendix A). It can be seen that the protein migration and banding changes between samples that were or were not boiled. In fact, the banding looked better and less smeary in the samples that were not boiled. This contradicts the experiment performed previously with boiling (see Figure A21, Appendix A). However, it is important to keep in mind that there are many variables, and some could be working in cooperativity. The interesting thing about Figure A23 is that protein migration and resolution is not improved with the increasing concentration of protease inhibitors. In fact, there is no clear difference with using no protease inhibitor and using a 5x concentration of protease inhibitor. At this point, the protease inhibitor cocktail being used was found to be the problem. It appeared that enzymatic degradation may be responsible for protein degradation, which was giving unreliable/inconsistent results.

78

4.11 Prevention of enzymatic degradation

To address a different protease inhibitor should be used to prevent degradation, focus was to dive deeper into the mosquito literature. In the larval gut there are many proteases, specifically serine proteases.133 It was reported that a paper used phenylmethylsulfonyl fluoride

(PMSF) and tosyl-L-lysine chloromethyl ketone (TLCK) protein inhibitor cocktail to suppress gut proteases.134 PMSF is a very common serine protease inhibitor, but the TLCK inhibitor is less common. The same paper134 also said that protease degradation was prevented when samples were in a sodium acetate buffer at pH 3. Dissections were performed with a PMSF/TLCK were protease inhibitor cocktail or in a pH 3 0.1 M sodium acetate solution (Figure A24, Appendix A).

It can be seen from Figure A24 that dissecting with the 0.1 M pH 3 sodium acetate buffer

(left two lanes) outperforms the PMSF/TLCK cocktail (right two lanes). A very high concentration of PMSF (1 mM) was used, so this result was shocking. The banding resolution and migration of the samples dissected in acidic buffer looks excellent compared to what was seen before (See

Figures A20-A23, Appendix A). The lysates that were treated with the PMSF/TLCK cocktail look like what I had seen previous gels.

Due to the breakthrough from Figure A24, further investigation was required to ensure that the acidic buffer dissection was the solution to protein degradation. The plan was to repeat the experiment in Figure A24, but just focus on dissecting in acidic buffer instead of using the small molecule inhibitor cocktails. Mosquito larvae guts were dissected and lysed in 0.1 M sodium acetate buffer pH 3. A serial dilution of the larval proteins was then loaded onto an SDS PAGE. It can be seen that from Figure 4.13, the banding resolution and migration of proteins is excellent

(compared to previous gels). Given that the larval gut proteases are most active pH 7-11, it makes sense that a highly acidic pH 3 buffer would be inhibiting. From now on dissections and lysis will be performed in 0.1 M pH 3 sodium acetate buffer without the need for any small molecule

79 protease inhibitors. An advantage to using acidic buffer to prevent protein degradation is that it is easier than using the small molecule inhibitors. Small molecule protease inhibitors have a very short half-life in water and have to be made fresh for each dissection. The buffer can be made in advance and stored at room temperature. Whereas small molecule inhibitors are much more sensitive and cannot be stored for significant periods of time.

Figure 4.13 Prevention of protein degradation using acidic dissection media

Serial dilution of the mosquito larvae gut protein lysate dissected in the presence of 0.1 M sodium acetate pH 3 buffer.

80 4.12 Proteomics of A. aegypti 4th-instar mosquito larvae

Introduction

The larval mosquito midgut is the largest organ in the organism. Additionally, the larval midgut is responsible for absorption of sugars, amino acids, and lipids. The larval midgut is very important to the mosquito, as mentioned previously for population control methods (See Ch 4.2).

However, the midgut is also important to the adult mosquitoes as it reacts with viruses or parasites for proper replication of the pathogen. Understanding the larval mosquito midgut proteome and how it rearranges as an adult can shed light on how mosquitoes are infected with various pathogens.

Despite their relevance in human disease transmission, Ae. aegypti mosquitoes are considered “non-model” organisms. Due to advances in proteogenomics, the proteomes of non- model organisms, such as Ae. aegypti mosquitoes, have not been experimentally reported.

However, the “proteomics informed by genomics” approach cannot replace the experimental reports of full proteomes.135 Additionally, the development of protein sample preparations can be experimentally challenging, which limits the publication of experimental proteomic reports of the midgut. Without a complete understanding of the Ae. aegypti midgut proteome, research regarding these mosquitoes is limited. Herein we report the full proteomic analysis of the Ae. aegypti midgut.

Previous proteomic investigation of the larval midgut has been highly variable and inconsistent. The larval midgut proteome has mainly been studied in pursuit of mosquito gut proteins that interact with the Cry toxins from Bti. 136 Unfortunately, the study only reports the proteins that are differentially expressed (22 different proteins) when larva are treated with a Cry toxin. Another study study showed a a 2D SDS PAGE experiment which only yields 13 identifiable

81 gut proteins from 4th in-star larvae.137 The larval midgut has been studied by generating antibodies against midgut antigens without knowing the exact identity of the proteins themselves.138 From the literature it is unclear why the full proteomics of the Ae. aegypti larval midgut has not been reported. Due to the wildly enzymatic degradation observed earlier in this chapter, it is possible a complete proteome of the larval midgut has not been reported due to protein autolysis.

For the adult Ae. aegypti, there is more information on proteomics, probably due to the fact that it is the stage responsible for disease transmission. Proteomics of the whole mosquito has been done, identifying approximately 200 proteins by mass spectrometry.139 One study reports 76 midgut proteins analyzed by 2D SDS PAGE, but no mass spectrometry experiments were performed.137 There have been reports on the characterization of the brush-border membrane vesicle (BBMV) for the midgut of adult Aedes aegypti that have revealed 39 proteins by mass spectrometry.140 However, this analysis is a partial report of only the BBMV, and not the entire midgut. Additionally, researchers have been able to characterize the larval peritrophic matrix (PM), which lead to the identification of 114 proteins by mass spectrometry.141 There are many proteomics reports where information can be inferred from either genomics or transcriptomics142 of the adult mosquito.

82 Proteomic analysis of the Ae. aegypti larva midgut

Due to issues in enzymatic degradation (see Ch. 4.10), a dissection and protein prep protocol were highly optimized (Figure 4.14). Not only are the larvae dissected in acidic buffer, but the tissues are then immediately frozen in liquid nitrogen. A detailed explanation of the protocol can be found in EM9.

1. Harvest larvae 2. Dissect on ice in 0.1 M sodium acetate, pH 3

3. Freeze in LN2 4. Grind Larvae 5. Lyse

Figure 4.14 Workflow Workflow for dissection and protein prep for larval mosquito midguts.

Before optimization of the workflow in Figure 4.14, the total protein count at 95% confidence was approximately 200 proteins (see Figure 4.15). However, after using the optimized protocol, the total protein count in the midgut was approximately 2,000 (see Figure 4.15). A complete list of proteins can be seen in Appendix B. Amongst the protein list, most proteins appear to be uncharacterized. The protein list shows many serine proteases, which is consistent with many reports in the literature.133

83

Figure 4.15 Venn diagram of proteins

Venn diagram showing total protein count for dissection of mosquito midgut. Difference in protein count of the old vs. new protein prep protocols.

4.13 Future directions

There are many future directions for this project in Ch. 4. Current efforts are also focused on a pull-down of labeled proteins by protected triazabutadienes and analysis by mass spectrometry. Once the identity of the labeled proteins from the pull-down is known, future experiments could look into using these labeled proteins as drug targets. If there are known inhibitors of the labeled proteins, new directions in mosquito population control methods can be pursued. RNA interference or genetic knock-out techniques (such as the CRISPR-Cas9 technology) could be used to confirm certain proteins as drug targets. In addition, imaging the larvae using protected triazabutadienes in vivo would be interesting. Although not discussed here, there were attempts at trying to image the larvae in vivo using protected triazabutadienes.

84 However, it is recommended that a protected triazabutadiene with a quencher-fluorophore pair be used for in vivo experiments to limit background fluorescence.

A list of 2000 proteins from the Ae. aegypti midgut has not been reported, and current efforts are focused on reporting a more in-depth proteomic analysis of the midgut. A future direction could be using the dissection and protein prep protocol (see EM9) to determine changes in protein expression levels after Bti treatment, or any other larvicide for that matter. It is the hope that the dissection and protein prep protocol aids in larvicidal research and development. The dissection and protein prep protocol could theoretically be used with any mosquito, so a detailed proteomic analysis of midguts from different mosquitoes (such as Anopholes or Culex) could then be published. Also, the protocol could look into characterizing the proteomes of the full organisms.

4.14 Conclusion

In conclusion, chemical methods were used to prove protein labeling on a model protein by Figure 4.8. Functionalized protected triazabutadienes were used to label the gut of mosquito larvae, which is shown by Figures 4.9 and Figure 4.11. Chemical experiments also confirmed reaction cascade in the larval midgut by Figure 4.7. Additionally, a proteomics sample prep protocol was optimized to prevent enzymatic degradation.

85 Experimental section

86 EM1. Compound 3.3

O O O O

N N N I N N3 N N N KOtBu CH3 CH3 THF

The imidazolium salt (100 mg, 0.24 mmol) was suspended in dry 10 mL THF. Added was the methyl ester azide (0.44 mL, 0.44 mmol, stored in 1 M solution THF), and then the potassium tert-butoxide (50 mg, 0.44 mmol). Filter with whatman 1 paper and wash with THF to remove imidazolium and unreacted base. Triturated with DCM/hexanes. If needed run a neutral alumina column using 2:1 hexanes:acetone. 1H NMR in d6DMSO: 7.8 (doublet, 2H), 7.4 (doublet, 2H), 7.18 (doublet, 1H), 7.03 (doublet, 1H), 3.82 (singlet, 3H), 3.74 (singlet, 3H), 1.62 (singlet, 9H). 13C NMR in d6DMSO: 166.45, 157.12, 151.27, 130.34, 124.61, 119.98, 118.37, 113.60, 57.74, 51.76, 37.10, 27.53.

87 EM2. Compound 3.4

O O O O Li LiOH N N N N N N N N THF/water N N CH3 CH3

The methyl ester TBD (150 mg, 0.48 mmol) was put into a small 10 mL rb flask. A LiOH suspension (10% w/v, 150 µL, 0.626 µmol) was added. Added was 5 mL THF (wet THF ok) and 5 mL DI H2O. Heated at 80 C while stirring vigorously (both layers need to be miscible) in an oil bath with a flowing cold-water condenser. Monitored reaction by NMR every 15 min. Make sure that you are stirring rapidly when you take aliquots of the reaction mixture for NMR. The reaction was >90% complete by NMR approximately 45 min later. The THF was removed by rotovap. The water was removed by passing a stream of air into the rb flask (should take <2 hrs). It is recommended that the rb flask is put into a large beaker and covered to collect any product that is blown out by the stream of air (the carboxylate/LiOH mixture turns into a fine yellow powder when dried). Once all the water has evaporated and the product is all in your rb, you can wash the residue with acetone to remove it (the carboxylate will not be soluble in acetone, and should just adhere to the rbf). Make sure to reuse/recycle this starting material - it should be clean. The carboxylate can now be moved to the next coupling step.

1H NMR in d6DMSO: 7.81 (d, J = 8.52, 2H), 7.2342 (d, J = 8.52, 2H), 7.0776 (d, J=2.56, 1H), 6.9117 (d, J=2.56, 1H), 3.7316 (s, 3H), 1.6108 (s, 9H). 13C NMR in d6DMSO: 169.78, 153.90, 149.62, 135.91, 130.07, 120.57, 117.72, 112.15, 58.06, 38.29, 28.55.

88 EM3. Compound 3.6

O O O NH Li

H N N N N 2 N N N N N N HATU, DIPEA N DCM CH3 CH3

The carboxylate triazabutadiene (150 mg, 0.49 mmol) was dissolved in 10 mL of DCM (doesn’t have to be super dry). Added to this was then DIPEA (0.3 mL, 1.7 mmol). Added to this was the propargyl amine (150 µL, 2.3 mmol). Then HATU was added (186 mg, 0.49 mmol). The reaction was monitored by TLC using a 1:1 hexanes:acetone solvent system with neutral alumina TLC plates. The target product is a visibly yellow spot which appears with an Rf~ 0.3-0.5 in this solvent system. The coupling reaction should take no longer than one hour. After one hour, 10 mL of DI water was added to the reaction mixture which was then stirred vigorously for 20 minutes. A sep funnel was then used to isolate the product in the DCM layer. The DCM layer is then dried with mag sulfate. The crude mixture is then filtered (using whatman 1 filter paper). The filtrate is then adhered onto neutral alumina and purified by running a gradient column (100% hexanes to 1:1 hexanes:acetone). Make sure to fractionate the yellow spots (if you want clean compound you should go no faster than 2 drops/second). The first yellow spot that comes off the column is not the target product, but if this is your first time doing this column, fractionate and keep to make sure. The column can take up to an hour to run in entirety. An iodine stain should be done on the fractions to see all impurities before re-combining fractions. If product still has leftover impurities (residual i.e. propargyl amine), they can be triturated away using a small amount of DCM followed by a large amount of hexanes. The product is a bright yellow solid. Yield should be ~ 70%.

1H NMR in d6DMSO: 8.7547 (t, 1H), 7.7934 (d, J=8.6 Hz), 7.3663 (d, J=8.6 Hz, 2H), 7.1537 (d, J=2.6, 1H), 6.9934 (d, J=2.6, 1H), 4.0351 (m, 2H), 3.7017 (s, 3H), 3.0976 (t, 1H), 1.6465 (s, 9H). 13C NMR in d6DMSO: 166.37, 155.93, 151.85, 129.58, 128.70, 118.54, 113.16, 81.67, 72.60, 58.33, 38.86, 28.76, 28.26.

89

EM4. Compound 3.8 or 4.1

O N N O N Cl O N O N N N N N N CH CH3 4Å MS, DCM 3

NH NH O O

1H NMR in d6DMSO: 9.1139 (t, 1H), 8.0386 (d, J=8.89 Hz, 1H), 7.8076 (s, 2H), 7.5524 (d, J=8.89, 1H), 4.3146 (q, 2H), 4.0812 (m, 2H), 3.9339 (s, 3H), 3.1720 (t, 1H), 1.2721 (s, 9H), 1.2007 (t, 3H).

90

EM5. Compound 4.2

I N H3C I N N N CH3 N N N N N N CH3 CH3

NH NH O O

1H NMR in d6DMSO: 9.0339 (t, 1H), 8.0108 (d, J=9.0, 2H), 7.7407 (d, J=2.4, 1H), 7.7659 (d, J=9.0, 2H), 7.6558 (d, J=2.4, 1H), 4.0756 (m, 2H), 3.9090 (s, 3H), 3.8719 (2, 3H), 3.1484 (t, 1H), 1.7101 (s, 9H). 13C NMR in d6DMSO: 165.33, 145.52, 144.58, 132.24, 129.26, 122.05, 119.29, 81.69, 73.46, 61.61, 38.26, 35.42, 2929,

91

EM9: Protein protocol

1. About 20 4th instar larvae were placed in a small petri dish on ice. A 2 mL dounce homogenizer tube and pestles is pre-chilled with LN2. LN2 was also put into the glass tube directly. 2. Using a 0.1 M sodium acetate pH 3 buffer, dissected the larvae on ice. 3. After each laval dissection, the gut tissue was submerged into LN2 for a few seconds. After completely frozen the tissue was then scraped off a wooden stick into the cold, submerged glass tube. 4. Approximately 15 larval guts were obtained. 5. The frozen tissues were ground in the glass tube (which was submerged in LN2) using pre-chilled pestle A. 6. The tube was then transferred to the -20 °C (still submerged in LN2 for transit). 7. The glass tube was then tempered in the -20 °C for ~30 minutes with pestle A. 8. The tube was removed from the -20 °C freezer. The protein should look like a nice dry powder. Added first to the tube was the 8 M urea/SDS buffer (100 µL, pre-made stored at rt, 1 mg DTT added fresh) and mixed using pestle A. Then was added the 50% glycerol [100 µL total: 50 µL of sodium acetate solution and 50 µL of glycerol] lysis buffer (200 µL total volume). 9. Tube was then submerged in a 60 °C water bath and homogenized with pestle A. 10. Once pestle A came out clean, switch to pestle B. 11. Homogenize in the 60 °C water bath with pestle B for 4 min. 12. The tube was then incubated in the 60 °C water bath for another 10 minutes (with pestle B intact). 13. Pestle B was then removed. The glass tube was put into a benchtop eppendorf centrifuge 5702 (swinging buckets) and spun for 1 min at 3000 rpm. This is to spin down the bubbles. 14. Protein sample was transferred to a 1.5 mL eppie tube and spun down at 15000 rpm for 5 minutes. Supernatant stored in -80 °C.

92 Appendix A: spectra, graphs, gels

93

1H NMR, CDCl , 400 MHz 3 b

A a

b N N N N a N 2.7

d’ B Aromatic c’

d’ c’ N N e’ N a’ N N O b’ 2.14

e’ b’ a’

Aromatic

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Chemical shift (�)

1 Figure A1. H NMR; 400 MHz; CDCl3. Top spectrum is the triazabutadiene and the bottom spectrum is the protected triazabutadiene.

94

1 Figure A2. H NMR; 500 MHz; CDCl3. Top spectrum is protected triazabutadiene 2.14. Bottom spectrum is after treatment with conc. HCl.

95 1 H NMR, CDCl3, 400 MHz

c A e d

d N N N a c N N b O 2.14 e a b

B Aromatic

a’ C Aromatic b’ c’ c’ N N N a’ d’ N 2.7 N Reference

Aromatic

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Chemical shift (�)

1 Figure A3. H NMR; 500 MHz; CDCl3. Top spectrum is protected triazabutadiene 2.14 . Bottom spectrum is after treatment with crushed NaOH.

96

1 Figure A4. H NMR; 500 MHz; CD3OD. Top spectrum is the azo conjugate 2.16. Bottom spectrum is resorcinol.

97

0 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.1 σpara value

-0.2 Nitro

-0.3 Methyl )

H -0.4 /k X

-0.5 log (k log

-0.6

-0.7

-0.8

-0.9 Trifluoromethyl

Figure A5. Hammett plot of three protected triazabutadienes: methyl, nitro, trifluoromethyl. Methoxy was not plotted as the rate could not be determined.

98

Figure A6. (Above) Absorbance of protected triazabutadiene (30 µM) in phosphate buffer pH 7 with 5 mM BME. Scans were obtained every 30 seconds for a total of 120 minutes while stirring at 25 °C. (Below) The lmax of the protected triazabutadiene with respect to time (min).

99

Figure A7. (Above) Absorbance of protected triazabutadiene (30 µM) in phosphate buffer pH 7 with 300 µM aminoethanol. Scans were obtained every 60 seconds for a total of 70 minutes while stirring at 25 °C. (Below) The lmax of the protected triazabutadiene with respect to time (min).

100

Figure A8. Absorbance of protected triazabutadiene (30 µM) in DMF with 20% piperidine. Scans were obtained every 60 seconds for a total of 90 minutes while stirring at 25 °C.

101

Figure A9. Absorbance of protected triazabutadiene (30 µM) in TFA/DCM mixture. Scans were obtained every 30 seconds for a total of 100 minutes while stirring at 25 °C. (Below) The lmax of the protected triazabutadiene with respect to time (min).

102

Figure A10. 1H NMR; 400 MHz, d6-DMSO. These spectroscopy experiments of the bis-mesityl triazabutadiene reacting with PyBOP over the course of 72 hours. The 1 spectrum was obtained immediately after PyBOP addition followed by 5 hours, 24 hours, and then 72 hours.

103

PyBOP

4

3

2

Oxidized PyBOP Unknown

1

33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 f1 (ppm)

Figure A11. 31P NMR; 400 MHz, d6-DMSO. These spectroscopy with 1H decoupled experiment of the bis-mesityl triazabutadiene reacting with PyBOP. Top spectrum is PyBOP alone followed by the first addition of PyBOP. Third spectra from top is after 5 hours and bottom spectra is after 24 hours.

104 2

1

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 f1 (ppm)

Figure A12. Top spectrum is the 1H NMR of the biotin-triazabutadiene compound, 3.9. Bottom spectrum is after reacting 3.9 with ethyl chloroformate. Red arrows indicate t-butyl and methyl peaks.

105

Figure A13. 1H NMR spectroscopy of biotin carboxylic acid 3.11 (top spectrum). Second spectrum is after treatment with ethyl chloroformate after one hour. Third spectrum is after ethyl chloroformate treatment overnight. Bottom spectrum is of the third spectrum with NaOH added to the NMR tube.

106 Figure A14. LRMS of attempted clicked product. Experiment was run in positive ion mode. Compound 3.16 shows up at m/z = 467.

107 Figure A15. LRMS run in positive ion mode. Target compound 3.19 is identified at m/z = 1236.61.

108

Figure A16. LRMS run in positive ion mode. Target compound 3.20 is identified at m/z = 1177.62.

109

4.3 (mM) 4.4 (mM) 1 0.5 0.1 0 1 0.5 0.1 0

Figure A17. Treatment of larvae as a function of compound concentration for the experimental (compound 4.3) and control (compound 4.4). 10 larvae were placed in 1 mL of water with a pinch of food and the compound for 3 hours (top) or 24 h. Middle lane is biotinylated ladder. Guts were homogenized in fresh 5x O-Complete Roche protease inhibitor. Two mosquito gut equivalents were loaded onto each lane and run on an SDS PAGE. Gel was transferred to a PVDF membrane and probed with avidin- HRP. Blot was imaged with 40 seconds of exposure. Work performed by Dr. Mike Riehle.

110

Figure A18. Fluorescence quantification of Figure 4.10b.

20 18 16 14 12 10

8

Fluorescence 6 4 2 0 4.1 4.2 NT Compound

Figure A19. Fluorescence quantification of Figure 4.11. Treatment with either compound 4.1, 4.2 , or not treated (NT).

111

Figure A20. Coomassie stain of SDS-PAGE featuring a serial dilution of larval gut protein lysate.

112

75 kDa

35 kDa

Figure A21. Coomassie stain of 12% SDS-PAGE of larval gut proteins with increasing time spent boiling prior to loading. Left lane to right: no boiling, 1 minute, 5 minutes, 10 minutes. The same amount of protein was loaded into each lane.

113

Figure A22. Coomassie stain of 12% SDS-PAGE of decreasing protein lysate loading with different lysis conditions. The odd protein lanes were sonicated and the even lanes were mechanically homogenized using a motorized pestle.

114

Figure A23. Mosquito larvae (4th in-star) were dissected and put into tubes (20 guts per sample). Each tube contained 200 µL of 1x PBS lysis buffer with increasing amounts of HALT (EDTA-free) protease inhibitor. The gut samples contained a concentration of 0x, 1x, 5x, 10x of the protease inhibitor and were homogenized with a motorized pestle on ice. Samples were spun down in and loaded onto a 12% SDS PAGE ± boiling samples. Protein degradation did not appear to change due to increasing amounts of HALT protease inhibitor.

115

Figure A24. Gut proteins dissected in the presence of 0.1 M sodium acetate pH 3 buffer (left two lanes) or a PMSF/TLCK protein inhibitor cocktail (right two lanes).

116

0

1

0 0 . 9 2 6 . 1 2

3

3 0 . 3

5 7 . 3

5 0 . 3 5 8 . 3 4 ) m p 5 p (

1 f

6

8 9 . 0

3 0 .

7 7

1 0 . 1 8 1 . 7

2 4 . 7 2 0 . 2

3 0 . 2 8 8 . 7 8 9 0 1

117 0 1 2 - 0 0 2 - 0

9

3 2 . 6 8 1 - 1 - 0 8 1 - 0 7

1

-

5 7 . 2 6 1 - 0 6

1 6 7 . 5 5 1 - - 0 5 1 - 0 4 1 - 0 3 1 - 0 2 1 - 0 1 ) 1 - m p

0

p

5 6 . 0 0 1 - (

0

5 3 . 5 9 - 1 1

- f

2 7 . 2 9 -

1 9 . 8 8 - 0

9

-

5 3 . 2 8 - 0 8 - 0

7

-

8 1 . 3 6 - 0

6 3 7 . 6 5 - - 0

5

1 8 . 5 4 - - 0 4 - 0 3 - 0 2 - 0 1 - 0 0 1

118 0

1

0 0 . 9 1 6 . 1 2

3

3 9 . 2 3 7 . 3 4 ) m p 5 p (

1 f

6

6 9 . 0

1 9 . 6

5 9 . 0

8 0 .

7 7

3 2 . 7 4 9 . 1

5 9 . 1 1 8 . 7

z 8 H M

0 0 4

, O S M D - 9 6 d

, R M N

H 1

119 0 0 1 0

2

5 5 . 8 2 0 3 0 4 0

5

5 0 . 8 5 0 6 0 7 0 8 0 9 0 0 1 ) m 0 p

1 p 5 1 . 2 1

1 (

1

2 7 . 7 1

1 1

f

7 5 . 0 2 1 0 2

1

7 0 . 0 3 1 0 3

1

1 9 . 5 3 1 0 4

1

2 6 . 9 4 1 0

5

0 9 . 3 5 1 1 0 6

1

8 7 . 9 6 1 0 7 1 0 8 1 0 9 1 0 0 2 0 1 2 0 2

2 5 2 . 5 2 2

120 0

1

0 0 . 9

5 6 . 1

2

6 8 . 0 3

0 7 . 3 0 9 . 2

0 0 . 2 4 0 . 4 4 ) m p 5 p (

1 f

6

4 0 . 1

9 9 . 6

7

6 0 . 1 5 1 . 7

7 3 . 7 1 1 . 2

8 0 . 2 9 7 . 7

z 8 H M

0 0 4

,

O 6 0 . 1 5 7 . 8 S M D - 9 6 d

, R M N

H 1 0 1

121

0 0 1 0

2

2 6 . 8 2

6 7 . 8 2 0

3

6 8 . 8 3 0 4 0

5

3 3 . 8 5 0 6

0

0 6 . 2 7 7

0 7 6 . 1 8 8 0 9 0 0 1 ) m 0 p

1 p 6 1 . 3 1 1 ( 1

1

f 4 5 . 8 1 1 0 2

1

0 7 . 8 2 1

0 8 5 . 9 2 1 3 1 0 4 1

0

5 8 . 1 5 1 5

1

3 9 . 5 5 1 0 6

1

7 3 . 6 6 1 0 7 1 0 8 1 0 9 1 0 0 2 0 1 2 0 2

2 5 2 . 5 2 2

122 0

1

0 0 . 9

7 2 . 1

0 3 . 1 4 3 . 4 2

3

1 0 . 1 7 1 . 3

3 9 . 3

9 2 . 3

8 0 . 4 4

5 3 . 2

3 1 . 3

3 4 . 4 ) m p 5 p (

1 f 6

7

8 4 . 2

5 5 . 7

4 4 . 2 1 8 . 7

4 0 . 8 8 5 . z 2 8 H M

0 0 4

, O S

M

D

1 2 . - 1 9 1 1 . 9 6 d

, R M N

H 1 0 1

123 0

1

0 0 . 9 1 7 . 1 2

3 1 8 . 0 5 1 . 3

6 8 . 2

7 8 . 3

4 8 . 2 1 9 . 3

4 8 0 . 4 4 0 . 2 ) m p 5 p (

1 f 6

7

3 9 . 0

6 6 . 7

4 9 . 0

4 7 . 7

7 7 . 7 5 8 .

1

z 1 0 . 8

9 8 . 1 8 H M

0 0 4

, O S

M

2 9 . 0 3 0 . 9 D - 9 6 d

, R M N

H 1 0 1

124

0 0 1 0

2

9 2 . 9 2 0

3 2 4 . 5 3

6 2 . 8 3 0 4 0 5

0 1 6 . 1 6 6

0

6 4 . 3 7 7

0 9 6 . 1 8 8 0 9 0 0 1 ) 0 1 m 1 p

p

( 9 2 . 9 1 1

0

1 5 0 . 2 2 1 2

f

1

6 2 . 9 2

1 0

4 2 . 2 3 1 3 1 0

4

8 5 . 4 4

1 1

2 5 . 5 4 1 0 5 1 0 6

1 3 3 . 5 6 1 0 7 1 0 8 1 0 9 1 0 0 2 0 1 2 0 2 2 0

3

3 7 . 3 3 2 2

125 Appendix B: List of proteins

126 Experiment name: 4463_1 Protein molecular Protein name Protein accession numbers weight (Da)

AAEL009029-PA OS=Aedes aegypti OX=7159 GN=AAEL009029 PE=3 SV=1 Q16X08_AEDAE 56,618.90

AAEL000778-PA OS=Aedes aegypti OX=7159 GN=AAEL000778 PE=4 SV=1 Q17N65_AEDAE 99,897.40

AAEL003597-PB OS=Aedes aegypti OX=7159 GN=AAEL003597 PE=4 SV=1 Q17F19_AEDAE 57,520.80

AAEL001793-PA OS=Aedes aegypti OX=7159 GN=AAEL001793 PE=4 SV=1 Q17K65_AEDAE 62,198.10

AAEL008317-PA OS=Aedes aegypti OX=7159 GN=AAEL008317 PE=4 SV=1 Q16Z54_AEDAE 10,251.80

AAEL004234-PA OS=Aedes aegypti OX=7159 GN=5564392 PE=4 SV=1 Q17DE6_AEDAE 14,654.30

AAEL009956-PA OS=Aedes aegypti OX=7159 GN=AAEL009956 PE=4 SV=1 Q1DH43_AEDAE 16,220.70

AAEL002102-PA OS=Aedes aegypti OX=7159 GN=AAEL002102 PE=4 SV=1 Q17J67_AEDAE 57,138.70

AAEL014026-PA OS=Aedes aegypti OX=7159 GN=AAEL014026 PE=4 SV=1 Q16HH0_AEDAE 44,783.10 Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial OS=Aedes aegypti OX=7159 GN=5573238 PE=3 SV=1 Q16TA7_AEDAE 32,341.90 Solute carrier organic anion transporter family member OS=Aedes aegypti OX=7159 GN=AAEL007691 PE=3 SV=1 Q171D5_AEDAE 90,796.40

Metalloendopeptidase OS=Aedes aegypti OX=7159 GN=AAEL011550 PE=4 SV=1 Q16G58_AEDAE 31,960.50

Epoxide hydrolase OS=Aedes aegypti OX=7159 GN=5574682 PE=2 SV=1 Q16QD6_AEDAE 51,882.90

AAEL010765-PA OS=Aedes aegypti OX=7159 GN=5573863 PE=3 SV=1 Q16RY7_AEDAE 33,547.00

AAEL002901-PA OS=Aedes aegypti OX=7159 GN=AAEL002901 PE=3 SV=1 Q17GT3_AEDAE 26,707.30

AAEL013995-PA OS=Aedes aegypti OX=7159 GN=5579058 PE=4 SV=1 Q16HK2_AEDAE 45,413.50

AAEL005728-PA OS=Aedes aegypti OX=7159 GN=5566973 PE=4 SV=2 Q178X7_AEDAE 84,907.10

AAEL001864-PA OS=Aedes aegypti OX=7159 GN=5572651 PE=2 SV=1 Q17JZ5_AEDAE 12,956.90

AAEL013139-PA OS=Aedes aegypti OX=7159 GN=5577289 PE=4 SV=1 Q16K17_AEDAE,Q16K18_AEDAE 23,244.00

AAEL012010-PA OS=Aedes aegypti OX=7159 GN=AAEL012010 PE=4 SV=1 Q16ND9_AEDAE 16,476.10

AAEL006090-PA OS=Aedes aegypti OX=7159 GN=AAEL006090 PE=4 SV=1 Q177K7_AEDAE,Q177L4_AEDAE 81,627.40

Uricase OS=Aedes aegypti OX=7159 GN=UO PE=2 SV=1 Q17J02_AEDAE 37,133.90

AAEL008478-PA OS=Aedes aegypti OX=7159 GN=AAEL008478 PE=4 SV=1 Q16YP4_AEDAE 34,667.50

Transaldolase OS=Aedes aegypti OX=7159 GN=5571930 PE=3 SV=1 Q16VW8_AEDAE 36,993.10

AAEL006207-PA OS=Aedes aegypti OX=7159 GN=AAEL006207 PE=4 SV=1 Q176Z5_AEDAE 98,424.40

AAEL009406-PA OS=Aedes aegypti OX=7159 GN=AAEL009406 PE=4 SV=1 Q16VX6_AEDAE 40,794.50

AAEL007132-PA OS=Aedes aegypti OX=7159 GN=AAEL007132 PE=4 SV=1 Q173I7_AEDAE 532,149.70

AAEL002501-PA OS=Aedes aegypti OX=7159 GN=AAEL002501 PE=4 SV=1 Q17I04_AEDAE 44,323.50

V-type proton ATPase subunit OS=Aedes aegypti OX=7159 GN=5574244 PE=2 SV=1 Q1HQS1_AEDAE 39,698.20

AAEL017421-PA OS=Aedes aegypti OX=7159 GN=23687841 PE=4 SV=1 J9EAN1_AEDAE 55,461.00

AAEL005276-PA OS=Aedes aegypti OX=7159 GN=AAEL005276 PE=4 SV=1 Q17AJ9_AEDAE 53,622.30

AAEL002861-PA OS=Aedes aegypti OX=7159 GN=5576348 PE=4 SV=1 Q17GX0_AEDAE 47,655.70

AAEL006187-PA OS=Aedes aegypti OX=7159 GN=AAEL006187 PE=4 SV=1 Q177C0_AEDAE 293,237.90

AAEL010799-PA OS=Aedes aegypti OX=7159 GN=5573878 PE=4 SV=1 Q16RW3_AEDAE 18,481.20

AAEL015051-PA OS=Aedes aegypti OX=7159 GN=AAEL015051 PE=3 SV=1 Q16ER6_AEDAE 59,881.70

127 AAEL000679-PA OS=Aedes aegypti OX=7159 GN=5565878 PE=4 SV=1 Q17NI5_AEDAE 8,824.50

Aminopeptidase OS=Aedes aegypti OX=7159 GN=AAEL012779 PE=3 SV=1 Q16L30_AEDAE 93,384.50

AAEL010540-PA OS=Aedes aegypti OX=7159 GN=5573490 PE=4 SV=1 Q16SN5_AEDAE 70,344.00

AAEL006977-PA OS=Aedes aegypti OX=7159 GN=5568618 PE=4 SV=1 Q173Y9_AEDAE 66,297.00

AAEL012554-PA OS=Aedes aegypti OX=7159 GN=AAEL012554 PE=4 SV=1 Q16LR1_AEDAE 162,981.00

Adenosylhomocysteinase OS=Aedes aegypti OX=7159 GN=5579820 PE=3 SV=1 Q179S1_AEDAE 51,194.50

AAEL000147-PA OS=Aedes aegypti OX=7159 GN=5567789 PE=3 SV=1 Q17Q33_AEDAE 15,974.20

Small nuclear ribonucleoprotein E OS=Aedes aegypti OX=7159 GN=5574555 PE=3 SV=1 Q16QN6_AEDAE 10,823.70

AAEL006087-PA OS=Aedes aegypti OX=7159 GN=AAEL006087 PE=4 SV=1 Q177P1_AEDAE 104,061.40

AAEL001742-PA OS=Aedes aegypti OX=7159 GN=AAEL001742 PE=4 SV=1 Q17KC1_AEDAE 116,211.10

AAEL009173-PA OS=Aedes aegypti OX=7159 GN=AAEL009173 PE=4 SV=1 Q16WM8_AEDAE 90,952.80

alpha-1,2-Mannosidase OS=Aedes aegypti OX=7159 GN=AAEL006074 PE=3 SV=1 Q177N4_AEDAE 68,825.70

AAEL013255-PA OS=Aedes aegypti OX=7159 GN=AAEL013255 PE=4 SV=1 Q16JQ7_AEDAE 17,408.40

AAEL003569-PA OS=Aedes aegypti OX=7159 GN=AAEL003569 PE=4 SV=1 Q17F54_AEDAE 52,885.50

AAEL010037-PA OS=Aedes aegypti OX=7159 GN=AAEL010037 PE=3 SV=1 Q16U43_AEDAE 60,868.50

AAEL011756-PA OS=Aedes aegypti OX=7159 GN=5575285 PE=3 SV=1 Q16P57_AEDAE 58,294.10

AAEL000143-PA OS=Aedes aegypti OX=7159 GN=AAEL000143 PE=4 SV=1 Q17Q52_AEDAE 31,362.00

AAEL007951-PA OS=Aedes aegypti OX=7159 GN=GSTe2 PE=1 SV=1 Q5PY77_AEDAE 24,695.20

AAEL014899-PB OS=Aedes aegypti OX=7159 GN=AaeL_AAEL014899 PE=4 SV=1 J9I050_AEDAE 26,329.00

Proteasome subunit alpha type OS=Aedes aegypti OX=7159 GN=5572582 PE=3 SV=1 Q16UH5_AEDAE 27,680.10

AAEL012247-PA OS=Aedes aegypti OX=7159 GN=AAEL012247 PE=4 SV=1 Q16MN8_AEDAE 87,742.00

AAEL004419-PA OS=Aedes aegypti OX=7159 GN=5564781 PE=4 SV=1 Q17CT5_AEDAE 82,547.30

AAEL010148-PA OS=Aedes aegypti OX=7159 GN=5572929 PE=4 SV=1 Q16TS1_AEDAE 36,121.20

AAEL013782-PA OS=Aedes aegypti OX=7159 GN=5578595 PE=4 SV=1 Q16I65_AEDAE 15,311.90

AAEL010027-PA OS=Aedes aegypti OX=7159 GN=AAEL010027 PE=4 SV=1 Q16U46_AEDAE 47,566.30

40S ribosomal protein S3a OS=Aedes aegypti OX=7159 GN=RS3A_AEDAE_a PE=3 SV=1 Q0IFA5_AEDAE 25,368.90

AAEL000415-PA OS=Aedes aegypti OX=7159 GN=5577380 PE=4 SV=1 Q17P68_AEDAE 65,014.20

AAEL007029-PB OS=Aedes aegypti OX=7159 GN=AAEL007029 PE=4 SV=1 Q173S7_AEDAE 48,660.40

AAEL011567-PA OS=Aedes aegypti OX=7159 GN=5575012 PE=3 SV=1 Q16PP2_AEDAE 41,969.80

AAEL005730-PA OS=Aedes aegypti OX=7159 GN=5566978 PE=4 SV=1 Q178X3_AEDAE 51,515.50

AAEL003125-PA OS=Aedes aegypti OX=7159 GN=AAEL003125 PE=3 SV=1 Q17GD3_AEDAE 46,422.70

Peptidyl-prolyl cis-trans isomerase OS=Aedes aegypti OX=7159 GN=AAEL013279 PE=2 SV=1 Q1HRP6_AEDAE 21,448.90

AAEL011104-PA OS=Aedes aegypti OX=7159 GN=AAEL011104 PE=4 SV=1 Q16R12_AEDAE 146,992.50

128 AAEL007473-PA OS=Aedes aegypti OX=7159 GN=CYP6AH1 PE=3 SV=1 Q172A0_AEDAE 57,662.90

AAEL009121-PA OS=Aedes aegypti OX=7159 GN=CYP6N9 PE=3 SV=1 Q16WS2_AEDAE 56,821.60

AAEL013528-PA OS=Aedes aegypti OX=7159 GN=TPX1 PE=4 SV=1 Q16IW1_AEDAE 25,881.50

AAEL006239-PA OS=Aedes aegypti OX=7159 GN=AAEL006239 PE=3 SV=1 Q176X4_AEDAE 61,895.70

AAEL001446-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL001446 PE=4 SV=1 Q17L70_AEDAE 49,190.50

AAEL009402-PA OS=Aedes aegypti OX=7159 GN=AAEL009402 PE=3 SV=1 Q16VX5_AEDAE 42,472.10

AAEL005816-PA OS=Aedes aegypti OX=7159 GN=AAEL005816 PE=4 SV=1 Q178Q5_AEDAE 54,973.40

Proteasome subunit alpha type OS=Aedes aegypti OX=7159 GN=5567383 PE=3 SV=1 Q177R1_AEDAE 25,726.90

AAEL015143-PB OS=Aedes aegypti OX=7159 GN=AAEL015143 PE=4 SV=1 Q16EJ6_AEDAE,Q1HQP8_AEDAE 24,424.90

AAEL014821-PA OS=Aedes aegypti OX=7159 GN=5565330 PE=4 SV=1 Q16FC8_AEDAE 22,509.40

AAEL004092-PA OS=Aedes aegypti OX=7159 GN=5564107 PE=4 SV=1 Q17DM1_AEDAE 47,262.10

AAEL002527-PA OS=Aedes aegypti OX=7159 GN=AAEL002527 PE=4 SV=1 Q17I13_AEDAE 69,723.60

AAEL004229-PA OS=Aedes aegypti OX=7159 GN=GSTT4 PE=3 SV=1 Q17DF6_AEDAE 27,009.60

AAEL017223-PA OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017223 PE=4 SV=1 J9E9B6_AEDAE 62,758.50

Prefoldin subunit 3 OS=Aedes aegypti OX=7159 GN=5564782 PE=3 SV=1 Q17CV4_AEDAE 22,323.80

AAEL010205-PB OS=Aedes aegypti OX=7159 GN=5573031 PE=4 SV=1 Q16TK1_AEDAE 19,632.10

60S ribosomal protein L28, putative OS=Aedes aegypti OX=7159 GN=AAEL008353 PE=2 SV=1 Q1HRJ1_AEDAE 17,010.80

Acyl-coenzyme A oxidase OS=Aedes aegypti OX=7159 GN=AAEL000735 PE=3 SV=1 Q17ND0_AEDAE 75,446.30

AAEL009214-PA OS=Aedes aegypti OX=7159 GN=5571685 PE=4 SV=1 Q16WI7_AEDAE 9,884.50

Serine--pyruvate aminotransferase OS=Aedes aegypti OX=7159 GN=5573438 PE=1 SV=1 Q3LSM4_AEDAE 43,109.10

Carboxylic ester hydrolase (Fragment) OS=Aedes aegypti OX=7159 GN=5577515 PE=3 SV=1 Q17G40_AEDAE 63,149.90

AAEL002115-PA OS=Aedes aegypti OX=7159 GN=AAEL002115 PE=4 SV=1 Q17J87_AEDAE 56,248.30

ATP synthase subunit alpha OS=Aedes aegypti OX=7159 GN=5575914 PE=2 SV=1 Q1HRQ7_AEDAE 59,393.80 Q175D4_AEDAE,Q175D5_AEDAE,Q175 AAEL006693-PC OS=Aedes aegypti OX=7159 GN=AAEL006693 PE=4 SV=1 D6_AEDAE 36,487.00

AAEL010368-PB OS=Aedes aegypti OX=7159 GN=AAEL010368 PE=4 SV=1 Q16T54_AEDAE 31,169.00

AAEL009357-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL009357 PE=3 SV=1 Q16W30_AEDAE 208,226.90

AAEL013661-PA OS=Aedes aegypti OX=7159 GN=5578382 PE=4 SV=1 Q16IH8_AEDAE 14,592.80

AAEL013744-PA OS=Aedes aegypti OX=7159 GN=AAEL013744 PE=2 SV=1 Q1HQJ3_AEDAE 21,207.70

AAEL002759-PD OS=Aedes aegypti OX=7159 GN=5575993 PE=3 SV=1 Q17H82_AEDAE 32,376.70

AAEL011917-PA OS=Aedes aegypti OX=7159 GN=AAEL011917 PE=4 SV=1 Q16NM4_AEDAE 27,076.50

Golgi SNAP receptor complex member 1 OS=Aedes aegypti OX=7159 GN=AAEL006945 PE=3 SV=1 Q174C5_AEDAE 25,866.50

AAEL007174-PA OS=Aedes aegypti OX=7159 GN=AAEL007174 PE=4 SV=1 Q173D1_AEDAE 91,002.80

AAEL000562-PA OS=Aedes aegypti OX=7159 GN=5563671 PE=4 SV=1 Q17NY6_AEDAE 20,096.90

AAEL015065-PA OS=Aedes aegypti OX=7159 GN=5566099 PE=4 SV=1 Q16EQ1_AEDAE 277,963.50

AAEL008486-PA OS=Aedes aegypti OX=7159 GN=5570667 PE=4 SV=1 Q16YN6_AEDAE 17,613.50

Proteasome subunit beta OS=Aedes aegypti OX=7159 GN=AAEL013236 PE=3 SV=1 Q16JS7_AEDAE 31,137.10

2-hydroxyacid dehydrogenase OS=Aedes aegypti OX=7159 GN=5566474 PE=3 SV=1 Q17A42_AEDAE,Q17A43_AEDAE 46,961.30

AAEL011781-PA OS=Aedes aegypti OX=7159 GN=5575373 PE=4 SV=1 Q16P32_AEDAE 41,935.10

AAEL008921-PB OS=Aedes aegypti OX=7159 GN=AAEL008921 PE=4 SV=1 Q16XC3_AEDAE 23,737.50

AAEL007001-PA OS=Aedes aegypti OX=7159 GN=AAEL007001 PE=4 SV=1 Q173U9_AEDAE 34,452.00

129 AAEL017030-PA OS=Aedes aegypti OX=7159 GN=23687450 PE=4 SV=1 J9HGY8_AEDAE 20,270.60

Peptidyl-prolyl cis-trans isomerase OS=Aedes aegypti OX=7159 GN=5566844 PE=4 SV=1 Q17N54_AEDAE 14,119.90

AAEL013726-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL013726 PE=4 SV=1 Q16IC4_AEDAE 46,599.40

AAEL003246-PA OS=Aedes aegypti OX=7159 GN=AAEL003246 PE=4 SV=1 Q17G09_AEDAE 35,452.60 Angiotensin-converting enzyme (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL009310 PE=3 SV=1 Q16W80_AEDAE 70,136.30

AAEL001336-PA OS=Aedes aegypti OX=7159 GN=5570080 PE=4 SV=1 Q17LI1_AEDAE 26,096.00

AAEL004404-PA OS=Aedes aegypti OX=7159 GN=5564724 PE=4 SV=1 Q17CX4_AEDAE 12,186.30

AAEL011888-PA OS=Aedes aegypti OX=7159 GN=5575513 PE=4 SV=1 Q16NR4_AEDAE 27,850.70

AAEL013980-PA OS=Aedes aegypti OX=7159 GN=5579045 PE=4 SV=1 Q16HL7_AEDAE 11,049.10

AAEL009313-PA OS=Aedes aegypti OX=7159 GN=5571785 PE=2 SV=1 Q1HQZ8_AEDAE 29,078.20

AAEL012552-PA OS=Aedes aegypti OX=7159 GN=AAEL012552 PE=3 SV=1 Q16LR5_AEDAE 79,201.00

60S ribosomal protein L7a OS=Aedes aegypti OX=7159 GN=AAEL005722 PE=4 SV=1 Q0IFE0_AEDAE 39,234.10

AAEL004345-PA OS=Aedes aegypti OX=7159 GN=AAEL004345 PE=3 SV=1 Q17D29_AEDAE 83,898.00

Leucine carboxyl methyltransferase 1 OS=Aedes aegypti OX=7159 GN=5565351 PE=3 SV=1 Q17BX2_AEDAE 37,683.90

AAEL001830-PA OS=Aedes aegypti OX=7159 GN=5572430 PE=4 SV=1 Q17K57_AEDAE 41,045.30

AAEL010483-PA OS=Aedes aegypti OX=7159 GN=AAEL010483 PE=4 SV=1 Q16SV4_AEDAE 91,797.80

AAEL012246-PA OS=Aedes aegypti OX=7159 GN=AAEL012246 PE=4 SV=1 Q16MN6_AEDAE 75,057.80

AAEL013346-PA OS=Aedes aegypti OX=7159 GN=5577711 PE=3 SV=1 Q16JG1_AEDAE 21,779.50

AAEL004240-PA OS=Aedes aegypti OX=7159 GN=AAEL004240 PE=4 SV=1 Q17DD8_AEDAE 62,420.50

AAEL005890-PA OS=Aedes aegypti OX=7159 GN=5567139 PE=4 SV=1 Q178I5_AEDAE 23,235.60 Succinate--CoA ligase [ADP-forming] subunit beta, mitochondrial OS=Aedes aegypti OX=7159 GN=AAEL011746 PE=3 SV=1 Q16P82_AEDAE 48,805.40

AAEL002777-PA OS=Aedes aegypti OX=7159 GN=AAEL002777 PE=4 SV=1 Q17H54_AEDAE 20,820.00

AAEL000314-PA OS=Aedes aegypti OX=7159 GN=AAEL000314 PE=4 SV=1 Q17PK0_AEDAE 20,790.90

AAEL015041-PA OS=Aedes aegypti OX=7159 GN=AAEL015041 PE=3 SV=1 Q16ES8_AEDAE 37,632.20

AAEL011505-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL011505 PE=4 SV=1 Q16PW3_AEDAE 210,963.90

AAEL013684-PA OS=Aedes aegypti OX=7159 GN=AAEL013684 PE=4 SV=1 Q16IG3_AEDAE 23,410.80

AAEL010587-PA OS=Aedes aegypti OX=7159 GN=AAEL010587 PE=4 SV=1 Q16SG4_AEDAE 65,576.50

AAEL014658-PA OS=Aedes aegypti OX=7159 GN=AAEL014658 PE=3 SV=1 Q16FR8_AEDAE 32,862.90

AAEL014078-PA OS=Aedes aegypti OX=7159 GN=AAEL014078 PE=3 SV=1 Q16HB8_AEDAE 52,347.20

AAEL006363-PA OS=Aedes aegypti OX=7159 GN=AAEL006363 PE=4 SV=1 Q176H6_AEDAE 39,117.80

AAEL006190-PA OS=Aedes aegypti OX=7159 GN=AAEL006190 PE=4 SV=1 Q176Z6_AEDAE 95,354.50

AAEL011560-PA OS=Aedes aegypti OX=7159 GN=AAEL011560 PE=4 SV=1 Q16PQ9_AEDAE 38,757.80

AAEL013981-PA OS=Aedes aegypti OX=7159 GN=AAEL013981 PE=4 SV=1 Q16HL2_AEDAE 83,495.50

AAEL008275-PA OS=Aedes aegypti OX=7159 GN=5570370 PE=4 SV=1 Q16Z99_AEDAE 35,820.70

AAEL009274-PA OS=Aedes aegypti OX=7159 GN=5571752 PE=4 SV=1 Q16WB0_AEDAE 12,717.80

AAEL010509-PA OS=Aedes aegypti OX=7159 GN=AAEL010509 PE=4 SV=1 Q16SS6_AEDAE 38,521.60

AAEL012492-PA OS=Aedes aegypti OX=7159 GN=CYP6AA5 PE=3 SV=1 Q16LY9_AEDAE 58,113.10

AAEL017251-PA OS=Aedes aegypti OX=7159 GN=AGO2 PE=2 SV=1 C5J0H4_AEDAE 114,803.60 Cytochrome b-c1 complex subunit Rieske, mitochondrial OS=Aedes aegypti OX=7159 GN=5578796 PE=4 SV=1 Q17EQ1_AEDAE 28,254.70

AAEL009953-PA OS=Aedes aegypti OX=7159 GN=AAEL009953 PE=4 SV=1 Q16UB9_AEDAE 15,713.70

AAEL003748-PA OS=Aedes aegypti OX=7159 GN=CYP9AE1 PE=3 SV=1 Q0IG08_AEDAE 60,951.80

130 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase short form OS=Aedes aegypti OX=7159 GN=AAEL013132 PE=4 SV=1 Q16K24_AEDAE 60,134.50

AAEL009467-PA OS=Aedes aegypti OX=7159 GN=5571976 PE=4 SV=1 Q16VR4_AEDAE 18,560.50

Sodium/hydrogen exchanger OS=Aedes aegypti OX=7159 GN=AAEL001503 PE=3 SV=1 Q17L17_AEDAE 130,190.30

AAEL002594-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL002594 PE=4 SV=1 Q17HS6_AEDAE 64,923.40

AAEL011742-PA OS=Aedes aegypti OX=7159 GN=5575273 PE=4 SV=1 Q16P70_AEDAE 49,165.00

AAEL006607-PA OS=Aedes aegypti OX=7159 GN=5568173 PE=4 SV=1 Q175N0_AEDAE 47,869.70

AAEL011704-PA OS=Aedes aegypti OX=7159 GN=AAEL011704 PE=3 SV=1 Q16FA5_AEDAE,Q16PB5_AEDAE 81,473.20

AAEL004412-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL004412 PE=4 SV=1 Q17CW6_AEDAE 148,219.70

Beta-galactosidase OS=Aedes aegypti OX=7159 GN=AAEL004580 PE=3 SV=1 Q17CH4_AEDAE 73,975.10

AAEL009913-PA OS=Aedes aegypti OX=7159 GN=5572595 PE=4 SV=1 Q16UG1_AEDAE 57,765.20 Q175R3_AEDAE,Q175R4_AEDAE,Q175 Calcium-transporting ATPase OS=Aedes aegypti OX=7159 GN=AAEL006582 PE=3 SV=1 R5_AEDAE 112,122.00

Glutamine synthetase OS=Aedes aegypti OX=7159 GN=AAEL001887 PE=3 SV=1 Q17JX2_AEDAE 44,673.40

Ubiquinone biosynthesis protein OS=Aedes aegypti OX=7159 GN=AAEL000240 PE=3 SV=1 Q17PR6_AEDAE 35,281.10

40S ribosomal protein S10 OS=Aedes aegypti OX=7159 GN=5573413 PE=2 SV=1 Q1HR41_AEDAE 17,977.80

AAEL009917-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL009917 PE=3 SV=1 Q16UF9_AEDAE 98,107.40

AAEL011848-PA OS=Aedes aegypti OX=7159 GN=5575471 PE=4 SV=1 Q16NV2_AEDAE 44,241.70

Peroxisomal membrane protein PEX16 OS=Aedes aegypti OX=7159 GN=AAEL010461 PE=3 SV=1 Q16SW3_AEDAE 36,372.70

Thioredoxin OS=Aedes aegypti OX=7159 GN=5573851 PE=2 SV=1 Q963B4_AEDAE 12,022.30

AAEL014730-PA OS=Aedes aegypti OX=7159 GN=AAEL014730 PE=4 SV=1 Q16FK4_AEDAE 144,568.60

AAEL004699-PA OS=Aedes aegypti OX=7159 GN=AAEL004699 PE=4 SV=1 Q0IFK9_AEDAE 112,038.20

AAEL002658-PB OS=Aedes aegypti OX=7159 GN=5575571 PE=4 SV=1 Q17HJ3_AEDAE 59,289.40

AAEL012250-PA OS=Aedes aegypti OX=7159 GN=5576019 PE=4 SV=1 Q16MM8_AEDAE 40,851.70

AAEL012746-PA OS=Aedes aegypti OX=7159 GN=AAEL012746 PE=3 SV=1 Q16L72_AEDAE 59,519.70

AAEL010668-PA OS=Aedes aegypti OX=7159 GN=AAEL010668 PE=4 SV=1 Q16S95_AEDAE 50,557.00

AAEL008741-PA OS=Aedes aegypti OX=7159 GN=AAEL008741 PE=4 SV=1 Q16XY2_AEDAE 109,538.40

AAEL005187-PA OS=Aedes aegypti OX=7159 GN=AAEL005187 PE=4 SV=1 Q17AS8_AEDAE 180,076.00

AAEL015020-PA OS=Aedes aegypti OX=7159 GN=AAEL015020 PE=3 SV=1 Q16ET7_AEDAE 60,649.90

AAEL005740-PA OS=Aedes aegypti OX=7159 GN=AAEL005740 PE=4 SV=1 Q178X1_AEDAE 69,098.50

AAEL000310-PA OS=Aedes aegypti OX=7159 GN=AAEL000310 PE=4 SV=1 Q17PI6_AEDAE 45,206.40

AAEL013203-PA OS=Aedes aegypti OX=7159 GN=AAEL013203 PE=3 SV=1 Q16JV4_AEDAE 148,120.80 Q17I94_AEDAE,Q17I95_AEDAE,Q17I96 AAEL002417-PC OS=Aedes aegypti OX=7159 GN=5574604 PE=4 SV=1 _AEDAE 45,976.00

AAEL000807-PA OS=Aedes aegypti OX=7159 GN=AAEL000807 PE=4 SV=1 Q17N59_AEDAE 56,995.90

AAEL005801-PA OS=Aedes aegypti OX=7159 GN=AAEL005801 PE=3 SV=1 Q178Q6_AEDAE 190,230.30

AAEL009772-PB OS=Aedes aegypti OX=7159 GN=5572383 PE=4 SV=1 Q16UW1_AEDAE,Q6Q9G0_AEDAE 14,676.10

AAEL001804-PA OS=Aedes aegypti OX=7159 GN=AAEL001804 PE=3 SV=1 Q17K51_AEDAE 119,696.30

AAEL012312-PA OS=Aedes aegypti OX=7159 GN=5576082 PE=4 SV=1 Q16MG5_AEDAE 47,987.20 ATP-dependent Clp protease proteolytic subunit OS=Aedes aegypti OX=7159 GN=5572433 PE=3 SV=1 Q17K60_AEDAE 24,554.00

AAEL011912-PA OS=Aedes aegypti OX=7159 GN=5575533 PE=2 SV=1 Q1HQX1_AEDAE 47,323.30

131 AAEL005043-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL005043 PE=4 SV=1 Q17B98_AEDAE 169,060.70

AAEL005062-PA OS=Aedes aegypti OX=7159 GN=AAEL005062 PE=4 SV=1 Q17B70_AEDAE 68,028.10

AAEL017116-PA OS=Aedes aegypti OX=7159 GN=23687536 PE=4 SV=1 J9HFH4_AEDAE 67,953.10

AAEL012439-PA OS=Aedes aegypti OX=7159 GN=AAEL012439 PE=4 SV=1 Q16M31_AEDAE 35,167.20

AAEL005819-PA OS=Aedes aegypti OX=7159 GN=AAEL005819 PE=4 SV=1 Q178Q0_AEDAE 42,388.50

AAEL005175-PA OS=Aedes aegypti OX=7159 GN=AAEL005175 PE=4 SV=1 Q17AT3_AEDAE 113,755.80

AAEL009212-PE OS=Aedes aegypti OX=7159 GN=AAEL009212 PE=4 SV=1 Q16WH9_AEDAE 63,988.40

AAEL007463-PA OS=Aedes aegypti OX=7159 GN=AAEL007463 PE=4 SV=1 Q172A1_AEDAE 35,678.50

60S ribosomal protein L36 OS=Aedes aegypti OX=7159 GN=5575450 PE=3 SV=1 Q17HK5_AEDAE,Q1HR17_AEDAE 13,326.50

AAEL003202-PA OS=Aedes aegypti OX=7159 GN=AAEL003202 PE=4 SV=1 Q17G32_AEDAE 36,055.50

AAEL009829-PA OS=Aedes aegypti OX=7159 GN=AAEL009829 PE=4 SV=1 Q16UQ1_AEDAE 26,970.00

AAEL014943-PA OS=Aedes aegypti OX=7159 GN=5565702 PE=4 SV=1 Q16F10_AEDAE 20,153.00

AAEL004452-PA OS=Aedes aegypti OX=7159 GN=AAEL004452 PE=4 SV=1 Q17CR2_AEDAE 54,962.90

AAEL003424-PA OS=Aedes aegypti OX=7159 GN=AAEL003424 PE=4 SV=1 Q17FG0_AEDAE 32,575.60

AAEL011930-PA OS=Aedes aegypti OX=7159 GN=AAEL011930 PE=4 SV=1 Q16NL6_AEDAE 28,482.80

AAEL006794-PA OS=Aedes aegypti OX=7159 GN=5579924 PE=3 SV=1 Q174T8_AEDAE 190,607.10

Serine/threonine-protein phosphatase OS=Aedes aegypti OX=7159 GN=5580325 PE=3 SV=1 Q16K96_AEDAE 35,540.70

AAEL006577-PA OS=Aedes aegypti OX=7159 GN=5568150 PE=4 SV=1 Q175Q3_AEDAE 63,572.90

AAEL012266-PA OS=Aedes aegypti OX=7159 GN=CYP4C38 PE=3 SV=1 Q16ML8_AEDAE 59,195.50

AAEL004453-PA OS=Aedes aegypti OX=7159 GN=AAEL004453 PE=4 SV=1 Q17CR5_AEDAE 67,990.80

AAEL008473-PA OS=Aedes aegypti OX=7159 GN=5570678 PE=3 SV=1 Q16YM8_AEDAE 24,345.70

AAEL000485-PB OS=Aedes aegypti OX=7159 GN=5578443 PE=4 SV=1 Q17P45_AEDAE 95,565.30

AAEL008604-PA OS=Aedes aegypti OX=7159 GN=CPA-IV PE=2 SV=1 Q6J6D7_AEDAE 46,742.20

Protein transport protein SEC23 OS=Aedes aegypti OX=7159 GN=5569219 PE=3 SV=1 Q171Y9_AEDAE 87,345.70

AAEL002457-PB OS=Aedes aegypti OX=7159 GN=AAEL002457 PE=4 SV=1 Q17I81_AEDAE 43,304.30

AAEL000127-PA OS=Aedes aegypti OX=7159 GN=AAEL000127 PE=4 SV=1 Q17Q46_AEDAE 59,746.20

AAEL013287-PA OS=Aedes aegypti OX=7159 GN=AAEL013287 PE=4 SV=1 Q16JL8_AEDAE 10,976.30

Superoxide dismutase [Cu-Zn] OS=Aedes aegypti OX=7159 GN=CUSOD3_b PE=2 SV=1 Q1HRN3_AEDAE 15,396.70

AAEL011662-PA OS=Aedes aegypti OX=7159 GN=5575112 PE=4 SV=1 Q16PF0_AEDAE 52,254.20

AAEL013739-PA OS=Aedes aegypti OX=7159 GN=5578532 PE=4 SV=1 Q16IA8_AEDAE 34,404.50

3-hydroxyisobutyrate dehydrogenase OS=Aedes aegypti OX=7159 GN=5578900 PE=3 SV=1 Q16HU0_AEDAE 33,863.50

Annexin OS=Aedes aegypti OX=7159 GN=5574667 PE=3 SV=1 Q16QF1_AEDAE 35,757.80

AAEL013559-PA OS=Aedes aegypti OX=7159 GN=AAEL013559 PE=4 SV=1 Q16IU1_AEDAE 516,777.40

AAEL007288-PB OS=Aedes aegypti OX=7159 GN=5569014 PE=3 SV=1 Q172Q6_AEDAE 98,109.00

AAEL013982-PA OS=Aedes aegypti OX=7159 GN=5579044 PE=4 SV=1 Q16HL9_AEDAE 38,025.50

AAEL003019-PA OS=Aedes aegypti OX=7159 GN=AAEL003019 PE=4 SV=1 Q0IGD0_AEDAE 33,121.10

AAEL005169-PA OS=Aedes aegypti OX=7159 GN=5566097 PE=4 SV=1 Q17AX0_AEDAE 70,560.70

AAEL001331-PA OS=Aedes aegypti OX=7159 GN=5570068 PE=2 SV=1 Q1HQN5_AEDAE 40,056.50

AAEL012092-PA OS=Aedes aegypti OX=7159 GN=AAEL012092 PE=4 SV=1 Q16N45_AEDAE 75,696.10 Eukaryotic translation initiation factor 5A (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL003835 PE=2 SV=1 Q1HRN6_AEDAE 17,581.10

AAEL003754-PA OS=Aedes aegypti OX=7159 GN=AAEL003754 PE=4 SV=1 Q0IFZ8_AEDAE,Q0IFZ9_AEDAE 102,246.10

132 MICOS complex subunit MIC60 OS=Aedes aegypti OX=7159 GN=AAEL010004 PE=3 SV=1 Q16U69_AEDAE 81,262.80

AAEL014958-PA OS=Aedes aegypti OX=7159 GN=AAEL014958 PE=4 SV=1 Q16EZ4_AEDAE 52,338.70 Q0IEC8_AEDAE,Q0IEC9_AEDAE,Q0IE AAEL010814-PA OS=Aedes aegypti OX=7159 GN=5573976 PE=4 SV=1 D0_AEDAE,Q0IED1_AEDAE 42,217.70

AAEL012559-PA OS=Aedes aegypti OX=7159 GN=AAEL012559 PE=4 SV=1 Q16LQ7_AEDAE 28,374.00

AAEL009955-PA OS=Aedes aegypti OX=7159 GN=AAEL009955 PE=4 SV=1 Q16UB8_AEDAE 367,471.50

AAEL000471-PA OS=Aedes aegypti OX=7159 GN=AAEL000471 PE=4 SV=1 Q17P95_AEDAE 73,927.80

AAEL002900-PA OS=Aedes aegypti OX=7159 GN=AAEL002900 PE=4 SV=1 Q17GR8_AEDAE 37,584.30

AAEL005391-PA OS=Aedes aegypti OX=7159 GN=5566450 PE=4 SV=1 Q17A85_AEDAE 36,036.70

AAEL001301-PA OS=Aedes aegypti OX=7159 GN=AAEL001301 PE=4 SV=1 Q17LL0_AEDAE 33,083.10

AAEL014045-PA OS=Aedes aegypti OX=7159 GN=AAEL014045 PE=3 SV=1 Q16HF4_AEDAE 42,152.00

AAEL003459-PA OS=Aedes aegypti OX=7159 GN=AAEL003459 PE=4 SV=1 Q17FB5_AEDAE 14,378.00

AAEL003864-PA OS=Aedes aegypti OX=7159 GN=AAEL003864 PE=4 SV=1 Q17EC1_AEDAE 35,022.70

AAEL009735-PA OS=Aedes aegypti OX=7159 GN=AAEL009735 PE=4 SV=1 Q16V07_AEDAE 34,367.30

AAEL013534-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL013534 PE=4 SV=1 Q16IV4_AEDAE 153,125.40

Delta-aminolevulinic acid dehydratase OS=Aedes aegypti OX=7159 GN=5574180 PE=2 SV=1 Q1HQH0_AEDAE 35,997.10 2-deoxyglucose-6-phosphate phosphatase OS=Aedes aegypti OX=7159 GN=AAEL003006 PE=4 SV=1 Q17GH7_AEDAE 65,235.80

AAEL002668-PA OS=Aedes aegypti OX=7159 GN=5575578 PE=4 SV=1 Q17HH8_AEDAE 59,290.30

AAEL003986-PB OS=Aedes aegypti OX=7159 GN=AAEL003986 PE=2 SV=1 Q1HR45_AEDAE 10,537.20

Thioredoxin OS=Aedes aegypti OX=7159 GN=AAEL009708 PE=3 SV=1 Q16V30_AEDAE 15,506.30

AAEL012278-PA OS=Aedes aegypti OX=7159 GN=AAEL012278 PE=4 SV=1 Q16MK3_AEDAE 115,381.60

AAEL012390-PA OS=Aedes aegypti OX=7159 GN=AAEL012390 PE=4 SV=1 Q16M77_AEDAE 51,389.50

AAEL004835-PA OS=Aedes aegypti OX=7159 GN=AAEL004835 PE=4 SV=1 Q0IFI2_AEDAE 13,619.80

AAEL013968-PA OS=Aedes aegypti OX=7159 GN=5579023 PE=3 SV=1 Q16HN8_AEDAE 85,989.10

AAEL014961-PA OS=Aedes aegypti OX=7159 GN=AAEL014961 PE=3 SV=1 Q16EZ3_AEDAE 43,479.90

AAEL008155-PA OS=Aedes aegypti OX=7159 GN=AAEL008155 PE=4 SV=1 Q16ZL4_AEDAE 211,249.90

AAEL009894-PA OS=Aedes aegypti OX=7159 GN=AAEL009894 PE=4 SV=1 Q16UI8_AEDAE 42,918.10

AAEL005432-PB OS=Aedes aegypti OX=7159 GN=AAEL005432 PE=4 SV=1 Q17A20_AEDAE 163,341.60

Ribosomal protein L15 OS=Aedes aegypti OX=7159 GN=AAEL012736 PE=3 SV=1 Q16L79_AEDAE 18,491.60

AAEL011108-PA OS=Aedes aegypti OX=7159 GN=AAEL011108 PE=3 SV=1 Q16R11_AEDAE 40,396.00

AAEL015464-PA OS=Aedes aegypti OX=7159 GN=AAEL015464 PE=3 SV=1 Q1DGV3_AEDAE 21,975.00

AAEL012455-PA OS=Aedes aegypti OX=7159 GN=AAEL012455 PE=4 SV=1 Q16M06_AEDAE 37,973.70

AAEL002761-PC OS=Aedes aegypti OX=7159 GN=5575995 PE=2 SV=1 Q17H75_AEDAE 32,722.50

AAEL005270-PA OS=Aedes aegypti OX=7159 GN=5566220 PE=2 SV=1 Q1HQX5_AEDAE 15,352.70

AAEL011803-PA OS=Aedes aegypti OX=7159 GN=5575395 PE=4 SV=1 Q16P12_AEDAE 34,490.40

AAEL011195-PA OS=Aedes aegypti OX=7159 GN=AAEL011195 PE=3 SV=1 Q16QS2_AEDAE 23,311.00

AAEL003428-PA OS=Aedes aegypti OX=7159 GN=5578104 PE=4 SV=1 Q17FF2_AEDAE 26,042.10

AAEL009503-PA OS=Aedes aegypti OX=7159 GN=AAEL009503 PE=3 SV=1 Q0IEN1_AEDAE 34,765.40

AAEL015410-PA OS=Aedes aegypti OX=7159 GN=AAEL015410 PE=4 SV=1 Q1DGZ2_AEDAE 59,505.80

AAEL012366-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL012366 PE=4 SV=1 Q16MA4_AEDAE,Q16SG8_AEDAE 33,156.30

AAEL004500-PA OS=Aedes aegypti OX=7159 GN=AAEL004500 PE=4 SV=1 Q0IFN2_AEDAE 94,393.90

UDP-glucuronosyltransferase OS=Aedes aegypti OX=7159 GN=AAEL002688 PE=3 SV=1 Q17HG0_AEDAE 59,294.30

133 AAEL000185-PA OS=Aedes aegypti OX=7159 GN=5570050 PE=4 SV=1 Q17PW1_AEDAE 50,751.00 Polypeptide N-acetylgalactosaminyltransferase OS=Aedes aegypti OX=7159 GN=AAEL004538 PE=3 SV=1 Q17CM9_AEDAE 68,834.80

AAEL009120-PA OS=Aedes aegypti OX=7159 GN=CYP6S3 PE=3 SV=1 Q16WR8_AEDAE 59,982.60

Carboxylic ester hydrolase (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL002385 PE=3 SV=2 Q17IG1_AEDAE 65,595.80

AAEL005655-PA OS=Aedes aegypti OX=7159 GN=AAEL005655 PE=4 SV=1 Q179E9_AEDAE,Q179F0_AEDAE 51,396.00

AAEL002155-PA OS=Aedes aegypti OX=7159 GN=5580058 PE=4 SV=1 Q17J36_AEDAE 23,160.90

Pyruvate kinase OS=Aedes aegypti OX=7159 GN=5565629 PE=1 SV=1 Q16F38_AEDAE,Q16LP5_AEDAE 57,458.30

AAEL011341-PA OS=Aedes aegypti OX=7159 GN=AAEL011341 PE=3 SV=1 Q16QA5_AEDAE 60,327.40

AAEL017253-PD OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017253 PE=4 SV=1 J9HGJ1_AEDAE,J9HJB1_AEDAE 27,759.10

Adenosylhomocysteinase OS=Aedes aegypti OX=7159 GN=5570455 PE=2 SV=1 Q1HQR0_AEDAE 47,634.10

ATP-citrate synthase OS=Aedes aegypti OX=7159 GN=5564509 PE=3 SV=1 Q17D87_AEDAE 122,879.10

AAEL009872-PA OS=Aedes aegypti OX=7159 GN=AAEL009872 PE=4 SV=1 Q16UK8_AEDAE 59,522.50

AAEL001128-PA OS=Aedes aegypti OX=7159 GN=AAEL001128 PE=4 SV=1 Q17M83_AEDAE 38,795.60

AAEL006663-PB OS=Aedes aegypti OX=7159 GN=AAEL006663 PE=4 SV=1 Q175F1_AEDAE,Q175F2_AEDAE 50,111.30

CAAX prenyl protease OS=Aedes aegypti OX=7159 GN=5571067 PE=3 SV=1 Q16XQ8_AEDAE 51,511.20

AAEL014738-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL014738 PE=4 SV=1 Q16FJ3_AEDAE,Q17F38_AEDAE 62,511.20

AAEL000744-PA OS=Aedes aegypti OX=7159 GN=5566267 PE=4 SV=1 Q17NC9_AEDAE 17,135.10

Actin-related protein 2/3 complex subunit 5 OS=Aedes aegypti OX=7159 GN=5571418 PE=3 SV=1 Q16WY4_AEDAE 16,842.50

AAEL001307-PA OS=Aedes aegypti OX=7159 GN=5569816 PE=4 SV=1 Q17LL1_AEDAE 33,931.20 Succinate--CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial OS=Aedes aegypti OX=7159 GN=AAEL006833 PE=2 SV=1 Q1HR33_AEDAE 34,473.20

AAEL015070-PA OS=Aedes aegypti OX=7159 GN=ALP PE=2 SV=1 Q16EP7_AEDAE 58,116.30

AAEL009201-PA OS=Aedes aegypti OX=7159 GN=5571609 PE=2 SV=1 Q1HQQ9_AEDAE 9,994.00

AAEL001132-PA OS=Aedes aegypti OX=7159 GN=5568552 PE=4 SV=1 Q17M86_AEDAE 29,127.40

AAEL010441-PA OS=Aedes aegypti OX=7159 GN=AAEL010441 PE=4 SV=1 Q16SZ0_AEDAE 64,829.70

AAEL015100-PA OS=Aedes aegypti OX=7159 GN=AAEL015100 PE=3 SV=1 Q1DH50_AEDAE 68,565.50

AAEL010520-PA OS=Aedes aegypti OX=7159 GN=AAEL010520 PE=4 SV=1 Q16SQ9_AEDAE 131,136.70

AAEL008734-PA OS=Aedes aegypti OX=7159 GN=AAEL008734 PE=4 SV=1 Q16XW6_AEDAE 41,233.00

AAEL008107-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL008107 PE=4 SV=1 Q0IES4_AEDAE 580,298.80

AAEL007403-PA OS=Aedes aegypti OX=7159 GN=5569143 PE=4 SV=1 Q172F5_AEDAE 63,305.00

Ribonucloprotein OS=Aedes aegypti OX=7159 GN=5577910 PE=2 SV=1 Q1HQW0_AEDAE 14,064.60

AAEL000091-PA OS=Aedes aegypti OX=7159 GN=5563654 PE=4 SV=1 Q0C785_AEDAE 37,034.20

AAEL017085-PA OS=Aedes aegypti OX=7159 GN=GSTO1 PE=3 SV=1 J9E9C0_AEDAE 28,608.50

Carboxylic ester hydrolase (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL013543 PE=3 SV=2 Q16IU6_AEDAE 51,347.80

Aconitate hydratase, mitochondrial OS=Aedes aegypti OX=7159 GN=5580315 PE=3 SV=1 Q16KR4_AEDAE,Q17EL3_AEDAE 87,336.50

AAEL005303-PA OS=Aedes aegypti OX=7159 GN=5566305 PE=4 SV=1 Q17AG8_AEDAE 131,242.70

40S ribosomal protein S15 OS=Aedes aegypti OX=7159 GN=5575105 PE=3 SV=1 Q16PF7_AEDAE 17,035.10

AAEL009625-PA OS=Aedes aegypti OX=7159 GN=5572218 PE=3 SV=1 Q16VA4_AEDAE 36,997.30

AAEL009721-PA OS=Aedes aegypti OX=7159 GN=AAEL009721 PE=3 SV=1 Q16V22_AEDAE 75,726.50

AAEL009959-PA OS=Aedes aegypti OX=7159 GN=5572690 PE=4 SV=1 Q16UB0_AEDAE 278,571.60

AAEL006359-PA OS=Aedes aegypti OX=7159 GN=5567885 PE=4 SV=1 Q176K3_AEDAE 35,406.30

AAEL011741-PA OS=Aedes aegypti OX=7159 GN=GSTS1 PE=4 SV=2 Q16P79_AEDAE 23,264.50

134 Peptidylprolyl isomerase OS=Aedes aegypti OX=7159 GN=AAEL007883 PE=1 SV=1 Q1HR83_AEDAE 11,538.60

AAEL017357-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017357 PE=4 SV=1 J9E8Z2_AEDAE 234,413.30

AAEL004755-PA OS=Aedes aegypti OX=7159 GN=AAEL004755 PE=4 SV=1 Q17BZ3_AEDAE 31,334.30

AAEL012476-PA OS=Aedes aegypti OX=7159 GN=AAEL012476 PE=4 SV=1 Q16M00_AEDAE 32,925.10

AAEL010473-PA OS=Aedes aegypti OX=7159 GN=AAEL010473 PE=4 SV=1 Q16SV9_AEDAE 41,530.40

AAEL007356-PA OS=Aedes aegypti OX=7159 GN=5569097 PE=4 SV=1 Q172K4_AEDAE,Q172K5_AEDAE 45,669.00

AAEL012460-PA OS=Aedes aegypti OX=7159 GN=AAEL012460 PE=4 SV=1 Q16M15_AEDAE 57,090.30

AAEL009142-PA OS=Aedes aegypti OX=7159 GN=5571557 PE=4 SV=1 Q16WP2_AEDAE 88,360.80

6-phosphogluconolactonase OS=Aedes aegypti OX=7159 GN=5563882 PE=3 SV=1 Q16H01_AEDAE 27,649.80

AAEL013262-PA OS=Aedes aegypti OX=7159 GN=AAEL013262 PE=4 SV=1 Q16JP0_AEDAE 20,081.40

AAEL013876-PA OS=Aedes aegypti OX=7159 GN=5578833 PE=2 SV=1 Q1HQR1_AEDAE 18,329.50

AAEL017299-PA OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017299 PE=4 SV=1 J9HTH8_AEDAE 99,921.20

AAEL002783-PA OS=Aedes aegypti OX=7159 GN=AAEL002783 PE=4 SV=1 Q17H25_AEDAE 47,902.90

Leukotriene A(4) hydrolase OS=Aedes aegypti OX=7159 GN=AAEL003666 PE=3 SV=1 Q17EU2_AEDAE 69,193.80

AAEL000092-PA OS=Aedes aegypti OX=7159 GN=GSTX1 PE=4 SV=1 Q0C791_AEDAE 24,833.00

Catalase OS=Aedes aegypti OX=7159 GN=CAT1B PE=3 SV=1 Q16J86_AEDAE 56,899.60

AAEL005114-PA OS=Aedes aegypti OX=7159 GN=AAEL005114 PE=4 SV=1 Q16ED0_AEDAE 27,319.40

AAEL009934-PA OS=Aedes aegypti OX=7159 GN=AAEL009934 PE=4 SV=1 Q16UD0_AEDAE 138,384.00

AAEL002761-PB OS=Aedes aegypti OX=7159 GN=5575995 PE=3 SV=1 Q17H72_AEDAE 29,450.40

AAEL013116-PA OS=Aedes aegypti OX=7159 GN=5577257 PE=4 SV=1 Q16K51_AEDAE 42,534.80

Multifunctional fusion protein OS=Aedes aegypti OX=7159 GN=5566485 PE=3 SV=1 Q17A27_AEDAE 63,276.00

40S ribosomal protein S23 OS=Aedes aegypti OX=7159 GN=5576653 PE=2 SV=1 Q1HRM5_AEDAE 16,119.00

Cytochrome b-c1 complex subunit 7 OS=Aedes aegypti OX=7159 GN=5569738 PE=2 SV=1 Q5MM88_AEDAE 13,262.50

Alpha-amylase OS=Aedes aegypti OX=7159 GN=AAEL007673 PE=3 SV=1 Q171E2_AEDAE 56,588.80

AAEL005122-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL005122 PE=4 SV=2 Q17B28_AEDAE 63,402.20

AAEL004646-PA OS=Aedes aegypti OX=7159 GN=AAEL004646 PE=3 SV=1 Q17C85_AEDAE 38,161.90 Dihydropyrimidine dehydrogenase [NADP(+)] OS=Aedes aegypti OX=7159 GN=AAEL010204 PE=3 SV=1 Q16TK6_AEDAE 114,360.00

AAEL012421-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL012421 PE=4 SV=1 Q16M52_AEDAE 159,115.80

AAEL000138-PA OS=Aedes aegypti OX=7159 GN=AAEL000138 PE=2 SV=1 Q17Q29_AEDAE 14,890.60 Carboxylic ester hydrolase (Fragment) OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017071 PE=3 SV=1 J9HJ23_AEDAE 60,501.10

AAEL001852-PA OS=Aedes aegypti OX=7159 GN=AAEL001852 PE=4 SV=1 Q17G53_AEDAE 20,922.90

AAEL009637-PA OS=Aedes aegypti OX=7159 GN=CAT-B3 PE=2 SV=1 Q1EGF0_AEDAE 37,447.30

AAEL005069-PA OS=Aedes aegypti OX=7159 GN=5565927 PE=4 SV=1 Q17B74_AEDAE 22,808.50

AAEL015162-PA OS=Aedes aegypti OX=7159 GN=AAEL015162 PE=4 SV=1 Q16EH8_AEDAE,Q177U4_AEDAE 60,771.00

AAEL000802-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL000802 PE=4 SV=1 Q17N30_AEDAE 99,389.40

60S ribosomal protein L35 OS=Aedes aegypti OX=7159 GN=5566772 PE=2 SV=1 Q1HRM8_AEDAE 14,292.30 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial OS=Aedes aegypti OX=7159 GN=AAEL010008 PE=3 SV=1 Q16U65_AEDAE 40,779.10

AAEL005127-PA OS=Aedes aegypti OX=7159 GN=5566028 PE=4 SV=1 Q17B09_AEDAE 14,411.60

AAEL002135-PA OS=Aedes aegypti OX=7159 GN=5580062 PE=4 SV=1 Q17J51_AEDAE 27,116.50

AAEL014890-PA OS=Aedes aegypti OX=7159 GN=CYP6CC1 PE=3 SV=2 Q16F55_AEDAE 57,348.10

AAEL008207-PA OS=Aedes aegypti OX=7159 GN=AAEL008207 PE=3 SV=1 Q16ZF6_AEDAE 31,186.60

135 AAEL005481-PA OS=Aedes aegypti OX=7159 GN=5566566 PE=3 SV=1 Q179V8_AEDAE 83,648.30

Carboxypeptidase OS=Aedes aegypti OX=7159 GN=AAEL009291 PE=3 SV=1 Q16W90_AEDAE 54,530.70

AAEL009042-PB OS=Aedes aegypti OX=7159 GN=AAEL009042 PE=4 SV=1 Q16WZ1_AEDAE,Q16WZ2_AEDAE 33,898.50

AAEL002362-PA OS=Aedes aegypti OX=7159 GN=5574354 PE=4 SV=1 Q17IG8_AEDAE 35,533.10

Phosphotransferase OS=Aedes aegypti OX=7159 GN=5571932 PE=3 SV=1 J9HT37_AEDAE 51,553.90

AAEL012561-PA OS=Aedes aegypti OX=7159 GN=AAEL012561 PE=4 SV=1 Q16LQ3_AEDAE 101,080.90

AAEL002924-PA OS=Aedes aegypti OX=7159 GN=AAEL002924 PE=4 SV=1 Q17GP0_AEDAE 39,161.80

UDP-glucuronosyltransferase OS=Aedes aegypti OX=7159 GN=5572427 PE=3 SV=1 Q17K53_AEDAE 59,887.60

AAEL003993-PA OS=Aedes aegypti OX=7159 GN=5563904 PE=3 SV=1 Q17E10_AEDAE 31,530.90

AAEL001247-PA OS=Aedes aegypti OX=7159 GN=5569590 PE=2 SV=1 Q1HR37_AEDAE 8,676.00

AAEL003733-PA OS=Aedes aegypti OX=7159 GN=AAEL003733 PE=3 SV=1 Q17EP1_AEDAE 171,219.10

40S ribosomal protein S19 OS=Aedes aegypti OX=7159 GN=AAEL010756 PE=2 SV=1 Q1HRR8_AEDAE 17,328.70

Carboxypeptidase OS=Aedes aegypti OX=7159 GN=5569780 PE=3 SV=1 Q170F9_AEDAE 50,062.20

AAEL013966-PA OS=Aedes aegypti OX=7159 GN=5579027 PE=4 SV=1 Q16HN4_AEDAE 68,606.50

AAEL011129-PA OS=Aedes aegypti OX=7159 GN=5574403 PE=3 SV=1 Q16R00_AEDAE 39,328.40

AP-2 complex subunit alpha OS=Aedes aegypti OX=7159 GN=5564871 PE=3 SV=1 Q17CP2_AEDAE 104,403.00

AAEL000574-PA OS=Aedes aegypti OX=7159 GN=5564319 PE=4 SV=1 Q17NU0_AEDAE,Q17NU1_AEDAE 37,052.70

AAEL010241-PA OS=Aedes aegypti OX=7159 GN=AAEL010241 PE=3 SV=1 Q16TH8_AEDAE 65,720.50

AAEL012457-PA OS=Aedes aegypti OX=7159 GN=AAEL012457 PE=4 SV=1 Q16M07_AEDAE 36,510.80

AAEL011112-PA OS=Aedes aegypti OX=7159 GN=AAEL011112 PE=3 SV=1 Q16R03_AEDAE 38,154.60

U2 snRNP auxiliary factor large subunit OS=Aedes aegypti OX=7159 GN=AAEL002818 PE=3 SV=1 Q17H60_AEDAE 46,763.60

AAEL005458-PA OS=Aedes aegypti OX=7159 GN=5566521 PE=4 SV=1 Q179Z5_AEDAE 89,224.50

ATP synthase subunit gamma OS=Aedes aegypti OX=7159 GN=5571150 PE=3 SV=1 Q16XK3_AEDAE 32,752.10

AAEL007204-PA OS=Aedes aegypti OX=7159 GN=AAEL007204 PE=4 SV=1 Q173A8_AEDAE 37,650.00

Tyrosine--tRNA ligase OS=Aedes aegypti OX=7159 GN=AAEL001044 PE=3 SV=1 Q17MF1_AEDAE 58,503.80

Importin subunit alpha OS=Aedes aegypti OX=7159 GN=5575103 PE=3 SV=1 Q16PF9_AEDAE 57,450.60

ER membrane protein complex subunit 4 OS=Aedes aegypti OX=7159 GN=5567465 PE=3 SV=1 Q17MQ6_AEDAE 18,899.10

AAEL003916-PA OS=Aedes aegypti OX=7159 GN=5563713 PE=4 SV=1 Q17E60_AEDAE 30,939.70 NEDD8-activating enzyme E1 regulatory subunit OS=Aedes aegypti OX=7159 GN=AAEL012097 PE=3 SV=1 Q16N42_AEDAE,Q170Z9_AEDAE 58,349.00

Lipase OS=Aedes aegypti OX=7159 GN=AAEL012344 PE=3 SV=1 Q16MD0_AEDAE 45,282.30

AAEL014906-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL014906 PE=4 SV=1 Q16F40_AEDAE 55,817.70

L-lactate dehydrogenase OS=Aedes aegypti OX=7159 GN=5575706 PE=3 SV=1 Q16ND1_AEDAE 35,548.90

AAEL012134-PA OS=Aedes aegypti OX=7159 GN=AAEL012134 PE=4 SV=1 Q16N05_AEDAE 30,998.80

AAEL001484-PA OS=Aedes aegypti OX=7159 GN=AAEL001484 PE=4 SV=1 Q17L27_AEDAE 121,323.20

AAEL007717-PA OS=Aedes aegypti OX=7159 GN=AAEL007717 PE=3 SV=1 Q0IEX8_AEDAE 13,570.80

AAEL004620-PA OS=Aedes aegypti OX=7159 GN=AAEL004620 PE=4 SV=1 Q17CA9_AEDAE 37,222.80

AAEL011210-PA OS=Aedes aegypti OX=7159 GN=5574534 PE=4 SV=1 Q16QQ2_AEDAE 51,001.30 26S proteasome regulatory complex subunit RPN11 OS=Aedes aegypti OX=7159 GN=5565318 PE=2 SV=1 Q1HQQ2_AEDAE 34,644.00

AAEL007816-PA OS=Aedes aegypti OX=7159 GN=CYP4D23 PE=3 SV=2 Q170T4_AEDAE 57,139.40

Carboxylic ester hydrolase (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL000904 PE=3 SV=1 Q17MV6_AEDAE 64,155.90

Aminopeptidase OS=Aedes aegypti OX=7159 GN=AAEL012778 PE=3 SV=1 Q16L33_AEDAE 112,036.50

136 Methionine aminopeptidase 2 OS=Aedes aegypti OX=7159 GN=5565353 PE=3 SV=1 Q17BZ1_AEDAE 55,633.20

Calcium-transporting ATPase OS=Aedes aegypti OX=7159 GN=AAEL005561 PE=3 SV=1 Q179M3_AEDAE 117,429.50

Serine--pyruvate aminotransferase OS=Aedes aegypti OX=7159 GN=AAEL003508 PE=1 SV=1 Q0IG34_AEDAE 44,691.90

AAEL009168-PA OS=Aedes aegypti OX=7159 GN=AAEL009168 PE=4 SV=1 Q16WN1_AEDAE 56,894.70

AAEL009225-PA OS=Aedes aegypti OX=7159 GN=AAEL009225 PE=4 SV=1 Q16WG4_AEDAE 29,082.00

AAEL013652-PA OS=Aedes aegypti OX=7159 GN=AAEL013652 PE=3 SV=1 Q16II2_AEDAE 70,031.30 Succinyl-CoA:3-ketoacid-coenzyme A transferase OS=Aedes aegypti OX=7159 GN=AAEL011137 PE=3 SV=1 Q16QY3_AEDAE 49,553.60

60S ribosomal protein L9 OS=Aedes aegypti OX=7159 GN=AAEL007699 PE=2 SV=1 Q1HR72_AEDAE 21,436.80

Oxysterol-binding protein OS=Aedes aegypti OX=7159 GN=AAEL005852 PE=3 SV=1 Q178J4_AEDAE 52,118.40

AAEL007760-PA OS=Aedes aegypti OX=7159 GN=5569556 PE=4 SV=1 Q170Y4_AEDAE 20,527.20

AAEL005605-PA OS=Aedes aegypti OX=7159 GN=AAEL005605 PE=3 SV=1 Q179J5_AEDAE 69,802.70

PRA1 family protein OS=Aedes aegypti OX=7159 GN=AAEL001930 PE=3 SV=1 Q17JS5_AEDAE 21,057.90

AAEL011442-PA OS=Aedes aegypti OX=7159 GN=AAEL011442 PE=4 SV=1 Q16Q28_AEDAE 50,102.60

AAEL001216-PA OS=Aedes aegypti OX=7159 GN=5569076 PE=2 SV=1 Q1HR75_AEDAE 48,783.80

AAEL000581-PA OS=Aedes aegypti OX=7159 GN=5564314 PE=4 SV=1 Q17NT3_AEDAE 140,703.60

AAEL009185-PA OS=Aedes aegypti OX=7159 GN=5571596 PE=2 SV=1 Q1HR67_AEDAE 39,875.50

AAEL003957-PA OS=Aedes aegypti OX=7159 GN=AAEL003957 PE=2 SV=1 Q1HQF5_AEDAE 17,105.80

AAEL006634-PA OS=Aedes aegypti OX=7159 GN=AAEL006634 PE=3 SV=1 Q175J7_AEDAE 43,262.30

AAEL002725-PA OS=Aedes aegypti OX=7159 GN=5575766 PE=4 SV=1 Q17HE0_AEDAE 13,285.80

Phosphoglycerate mutase OS=Aedes aegypti OX=7159 GN=5567423 PE=3 SV=1 Q177P3_AEDAE 28,556.60

AAEL008698-PA OS=Aedes aegypti OX=7159 GN=AAEL008698 PE=4 SV=1 Q16Y05_AEDAE 57,654.40

AAEL000572-PA OS=Aedes aegypti OX=7159 GN=AAEL000572 PE=4 SV=1 Q17NU2_AEDAE 80,497.90

AAEL009066-PA OS=Aedes aegypti OX=7159 GN=5571429 PE=4 SV=1 Q16WX6_AEDAE 18,802.00

AAEL005884-PA OS=Aedes aegypti OX=7159 GN=AAEL005884 PE=4 SV=1 Q178I4_AEDAE 14,318.90

Nicotinate phosphoribosyltransferase OS=Aedes aegypti OX=7159 GN=AAEL014217 PE=3 SV=1 Q16GY8_AEDAE 38,376.40

UDP-glucuronosyltransferase OS=Aedes aegypti OX=7159 GN=AAEL003099 PE=3 SV=1 Q17GE2_AEDAE 59,603.50

AAEL017320-PA OS=Aedes aegypti OX=7159 GN=FOHSDR-2 PE=2 SV=1 D2WKE0_AEDAE 26,712.60

AAEL003570-PA OS=Aedes aegypti OX=7159 GN=AAEL003570 PE=4 SV=1 Q17F46_AEDAE 28,450.50

AAEL003855-PA OS=Aedes aegypti OX=7159 GN=AAEL003855 PE=4 SV=1 Q17ED4_AEDAE 144,230.70

AAEL003907-PA OS=Aedes aegypti OX=7159 GN=AAEL003907 PE=4 SV=1 Q17E52_AEDAE 101,648.30

AAEL002774-PB OS=Aedes aegypti OX=7159 GN=AAEL002774 PE=4 SV=1 Q17H17_AEDAE 140,474.50

AAEL007334-PA OS=Aedes aegypti OX=7159 GN=AAEL007334 PE=3 SV=1 Q16I76_AEDAE 16,587.80

AAEL008770-PA OS=Aedes aegypti OX=7159 GN=5571045 PE=4 SV=1 Q16XT2_AEDAE 25,623.90

AAEL004969-PA OS=Aedes aegypti OX=7159 GN=AAEL004969 PE=4 SV=1 Q17BE3_AEDAE 491,128.00

Integrin beta (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL001829 PE=3 SV=1 Q17K64_AEDAE 84,528.90

AAEL010284-PA OS=Aedes aegypti OX=7159 GN=5573103 PE=4 SV=1 Q16TC0_AEDAE 43,665.80

AAEL008642-PA OS=Aedes aegypti OX=7159 GN=AAEL008642 PE=4 SV=1 Q16Y78_AEDAE 276,071.20

AAEL007173-PB OS=Aedes aegypti OX=7159 GN=AAEL007173 PE=4 SV=1 Q173D3_AEDAE 23,440.70

40S ribosomal protein S2 OS=Aedes aegypti OX=7159 GN=5579525 PE=2 SV=1 Q1HRI6_AEDAE 17,566.80

AAEL005772-PA OS=Aedes aegypti OX=7159 GN=5567053 PE=1 SV=1 Q1HRL7_AEDAE 15,866.20 alpha-1,2-Mannosidase OS=Aedes aegypti OX=7159 GN=AAEL014721 PE=3 SV=1 Q16FK8_AEDAE,Q16IH0_AEDAE 52,211.60

137 AAEL013800-PA OS=Aedes aegypti OX=7159 GN=AAEL013800 PE=4 SV=1 Q16I44_AEDAE 61,508.00

AAEL012446-PA OS=Aedes aegypti OX=7159 GN=IAP6 PE=4 SV=2 Q16M36_AEDAE 532,477.70

AAEL013320-PA OS=Aedes aegypti OX=7159 GN=5577687 PE=4 SV=1 Q16JI4_AEDAE 18,213.80

AAEL002504-PB OS=Aedes aegypti OX=7159 GN=AaeL_AAEL002504 PE=3 SV=1 J9HS62_AEDAE 16,972.90 Actin-related protein 2/3 complex subunit 3 OS=Aedes aegypti OX=7159 GN=AAEL004475 PE=2 SV=1 Q1HR60_AEDAE 20,329.30

60S ribosomal protein L24 OS=Aedes aegypti OX=7159 GN=5570432 PE=2 SV=1 Q1HR85_AEDAE 17,352.50

Galectin OS=Aedes aegypti OX=7159 GN=GALE8B_b PE=4 SV=1 Q16ND5_AEDAE 16,223.40

AAEL013138-PA OS=Aedes aegypti OX=7159 GN=5577284 PE=4 SV=1 Q16K31_AEDAE 31,047.20

AAEL007286-PA OS=Aedes aegypti OX=7159 GN=5569016 PE=2 SV=1 Q1HRA5_AEDAE 19,895.20

AAEL002857-PA OS=Aedes aegypti OX=7159 GN=AAEL002857 PE=4 SV=1 Q17GW8_AEDAE 46,636.90

AAEL010496-PA OS=Aedes aegypti OX=7159 GN=AAEL010496 PE=3 SV=1 Q16ST6_AEDAE 45,954.00

AAEL012683-PA OS=Aedes aegypti OX=7159 GN=5576652 PE=4 SV=1 Q16LD6_AEDAE 56,703.60

AAEL001859-PA OS=Aedes aegypti OX=7159 GN=5572652 PE=3 SV=1 Q17JZ4_AEDAE 71,854.10

Synaptosomal-associated protein OS=Aedes aegypti OX=7159 GN=AAEL004559 PE=3 SV=1 Q17CJ4_AEDAE 23,683.50

AAEL011206-PA OS=Aedes aegypti OX=7159 GN=5574529 PE=4 SV=1 Q16QR1_AEDAE,Q16QR2_AEDAE 46,437.20

Serine hydroxymethyltransferase OS=Aedes aegypti OX=7159 GN=AAEL002510 PE=3 SV=1 Q17I00_AEDAE 62,216.00

AAEL004307-PB OS=Aedes aegypti OX=7159 GN=5564541 PE=4 SV=1 Q17D69_AEDAE 47,559.20

AAEL010858-PA OS=Aedes aegypti OX=7159 GN=AAEL010858 PE=4 SV=1 Q16RT8_AEDAE 59,627.60

AAEL002691-PA OS=Aedes aegypti OX=7159 GN=AAEL002691 PE=4 SV=1 Q17HF9_AEDAE 143,246.80

AAEL005733-PB OS=Aedes aegypti OX=7159 GN=AAEL005733 PE=3 SV=1 Q178Y4_AEDAE 224,215.30

AAEL001329-PA OS=Aedes aegypti OX=7159 GN=5570062 PE=3 SV=1 Q17LJ4_AEDAE 42,584.80

Clathrin heavy chain OS=Aedes aegypti OX=7159 GN=AAEL013614 PE=3 SV=1 Q16IM0_AEDAE 191,518.90

AAEL014059-PA OS=Aedes aegypti OX=7159 GN=5579221 PE=4 SV=1 Q16HD8_AEDAE 97,028.50

Tetraspanin OS=Aedes aegypti OX=7159 GN=AAEL003210 PE=3 SV=1 Q17FZ6_AEDAE 19,522.90

AAEL002175-PA OS=Aedes aegypti OX=7159 GN=AAEL002175 PE=4 SV=1 Q17J43_AEDAE 48,108.70

AAEL002703-PB OS=Aedes aegypti OX=7159 GN=AAEL002703 PE=3 SV=1 Q17HC0_AEDAE 27,555.30

Adenylyl cyclase-associated protein OS=Aedes aegypti OX=7159 GN=AAEL013074 PE=3 SV=1 Q16K93_AEDAE 72,636.60

AAEL012513-PA OS=Aedes aegypti OX=7159 GN=AAEL012513 PE=4 SV=1 Q16LV3_AEDAE 20,515.40

AAEL006049-PA OS=Aedes aegypti OX=7159 GN=AAEL006049 PE=4 SV=1 Q1DGH1_AEDAE 19,677.00

AAEL005170-PA OS=Aedes aegypti OX=7159 GN=AAEL005170 PE=4 SV=1 Q17AX5_AEDAE 46,499.70

AAEL001969-PA OS=Aedes aegypti OX=7159 GN=5573138 PE=4 SV=1 Q17JK8_AEDAE 14,430.20

AAEL010537-PA OS=Aedes aegypti OX=7159 GN=AAEL010537 PE=4 SV=1 Q16SN4_AEDAE 66,927.30

AAEL013835-PA OS=Aedes aegypti OX=7159 GN=AAEL013835 PE=4 SV=1 Q16I08_AEDAE,Q171N4_AEDAE 15,346.50

AAEL005610-PA OS=Aedes aegypti OX=7159 GN=5566726 PE=4 SV=1 Q179J9_AEDAE 27,040.60

AAEL005862-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL005862 PE=4 SV=1 Q178J3_AEDAE 30,900.90

AAEL011230-PA OS=Aedes aegypti OX=7159 GN=5574554 PE=3 SV=1 Q16QN5_AEDAE 26,991.90

AAEL002794-PA OS=Aedes aegypti OX=7159 GN=AAEL002794 PE=4 SV=1 Q17H52_AEDAE 30,896.00

Alkaline phosphatase OS=Aedes aegypti OX=7159 GN=AAEL003298 PE=3 SV=1 Q17FS9_AEDAE 57,972.10

AAEL007944-PA OS=Aedes aegypti OX=7159 GN=5569864 PE=4 SV=1 Q170C1_AEDAE 23,791.00

AAEL011925-PA OS=Aedes aegypti OX=7159 GN=AAEL011925 PE=4 SV=1 Q16NN5_AEDAE 42,839.90

AAEL004178-PB OS=Aedes aegypti OX=7159 GN=AAEL004178 PE=3 SV=1 Q0IFT8_AEDAE,Q0IFT9_AEDAE 38,815.80

AAEL013530-PA OS=Aedes aegypti OX=7159 GN=5578149 PE=3 SV=1 Q16IV9_AEDAE 90,337.70

138 AAEL012695-PA OS=Aedes aegypti OX=7159 GN=AAEL012695 PE=4 SV=1 Q16LC1_AEDAE 11,210.00

AAEL011920-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL011920 PE=4 SV=1 Q16NM3_AEDAE 27,759.50

AAEL006180-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL006180 PE=4 SV=1 Q177B7_AEDAE 94,481.80

AAEL009706-PA OS=Aedes aegypti OX=7159 GN=AAEL009706 PE=4 SV=1 Q16V35_AEDAE 88,283.60

AAEL009017-PA (Fragment) OS=Aedes aegypti OX=7159 GN=GSTt1 PE=2 SV=1 Q5PY76_AEDAE 26,831.60

AAEL013780-PA OS=Aedes aegypti OX=7159 GN=5578588 PE=4 SV=1 Q16I68_AEDAE 30,644.20

AAEL001833-PA OS=Aedes aegypti OX=7159 GN=AAEL001833 PE=4 SV=1 Q17K18_AEDAE 41,444.10

GrpE protein homolog OS=Aedes aegypti OX=7159 GN=5564769 PE=3 SV=1 Q17CT4_AEDAE 25,410.00

AAEL009833-PA OS=Aedes aegypti OX=7159 GN=AAEL009833 PE=4 SV=1 Q16UP8_AEDAE 30,448.90

AAEL010048-PA OS=Aedes aegypti OX=7159 GN=AAEL010048 PE=4 SV=1 Q16U24_AEDAE 45,442.70

AAEL009350-PA OS=Aedes aegypti OX=7159 GN=AAEL009350 PE=4 SV=1 Q16W31_AEDAE 44,805.70

Cation-transporting ATPase OS=Aedes aegypti OX=7159 GN=5573389 PE=3 SV=1 Q17JE6_AEDAE 133,504.30

AAEL007555-PA OS=Aedes aegypti OX=7159 GN=5569333 PE=3 SV=1 Q171S4_AEDAE 46,411.50

V-type proton ATPase subunit G OS=Aedes aegypti OX=7159 GN=5576835 PE=2 SV=1 Q1HQI4_AEDAE 13,564.90

AAEL011711-PA OS=Aedes aegypti OX=7159 GN=5575242 PE=4 SV=1 Q16PA5_AEDAE 23,249.30

AAEL008582-PA OS=Aedes aegypti OX=7159 GN=AAEL008582 PE=3 SV=1 Q16YD1_AEDAE 26,486.30

AAEL011979-PA OS=Aedes aegypti OX=7159 GN=5575645 PE=4 SV=1 Q16NH0_AEDAE 17,210.90

AAEL002719-PA OS=Aedes aegypti OX=7159 GN=5575750 PE=4 SV=1 Q17HE7_AEDAE 38,382.40

AAEL004378-PA OS=Aedes aegypti OX=7159 GN=5564636 PE=2 SV=1 Q1HQP4_AEDAE 17,079.80

AAEL011871-PA OS=Aedes aegypti OX=7159 GN=5575492 PE=4 SV=1 Q16NS5_AEDAE 33,191.40

AAEL003859-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL003859 PE=4 SV=1 Q17EE7_AEDAE 42,757.80

AAEL000757-PB OS=Aedes aegypti OX=7159 GN=AAEL000757 PE=4 SV=1 Q17N68_AEDAE 39,624.90

AAEL013394-PB OS=Aedes aegypti OX=7159 GN=AAEL013394 PE=3 SV=1 Q16JB0_AEDAE,Q16JB1_AEDAE 24,621.20

AAEL000589-PA OS=Aedes aegypti OX=7159 GN=AAEL000589 PE=4 SV=1 Q17NU9_AEDAE 70,951.30

AAEL005797-PA OS=Aedes aegypti OX=7159 GN=AAEL005797 PE=2 SV=1 Q1HQE2_AEDAE 25,142.00

AAEL011391-PA OS=Aedes aegypti OX=7159 GN=5580161 PE=4 SV=1 Q16Q53_AEDAE 45,095.70

AAEL003076-PA OS=Aedes aegypti OX=7159 GN=5576972 PE=4 SV=1 Q0IG96_AEDAE 60,661.10

AAEL008073-PA OS=Aedes aegypti OX=7159 GN=5569984 PE=4 SV=1 Q16ZT8_AEDAE 47,571.40

AAEL000208-PA OS=Aedes aegypti OX=7159 GN=5570017 PE=3 SV=1 Q17PZ5_AEDAE 23,444.80

AAEL005607-PA OS=Aedes aegypti OX=7159 GN=5566739 PE=3 SV=1 Q179I4_AEDAE 27,794.70

AAEL005324-PA OS=Aedes aegypti OX=7159 GN=AAEL005324 PE=4 SV=1 Q17AE9_AEDAE 537,373.20

AAEL006040-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL006040 PE=4 SV=1 Q177S9_AEDAE 106,130.40

AAEL008651-PA OS=Aedes aegypti OX=7159 GN=5570879 PE=4 SV=1 Q16Y59_AEDAE 28,038.50

AAEL007091-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL007091 PE=4 SV=1 Q0IF28_AEDAE 44,642.00

AAEL005165-PA OS=Aedes aegypti OX=7159 GN=AAEL005165 PE=3 SV=1 Q17AX7_AEDAE 42,128.30

AAEL014944-PA OS=Aedes aegypti OX=7159 GN=SGP2D7 PE=2 SV=1 Q1HRJ0_AEDAE 16,975.00

AAEL000854-PA OS=Aedes aegypti OX=7159 GN=AAEL000854 PE=4 SV=1 Q17N03_AEDAE 36,710.80

AAEL005603-PA OS=Aedes aegypti OX=7159 GN=AAEL005603 PE=3 SV=1 Q179I7_AEDAE 28,064.60

AAEL002600-PA OS=Aedes aegypti OX=7159 GN=AAEL002600 PE=3 SV=1 Q17HQ4_AEDAE 97,715.60

139 AAEL012325-PA OS=Aedes aegypti OX=7159 GN=AAEL012325 PE=4 SV=1 Q16ME7_AEDAE 207,905.10

AAEL005500-PA OS=Aedes aegypti OX=7159 GN=5566651 PE=2 SV=1 Q1HQJ2_AEDAE 42,308.80

AAEL012880-PA OS=Aedes aegypti OX=7159 GN=AAEL012880 PE=4 SV=1 Q16KT4_AEDAE 91,295.30

AAEL004127-PA OS=Aedes aegypti OX=7159 GN=5564156 PE=3 SV=1 Q17DJ9_AEDAE 44,045.60

AAEL010592-PA OS=Aedes aegypti OX=7159 GN=AAEL010592 PE=4 SV=1 Q16SI8_AEDAE 32,351.50

AAEL010833-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL010833 PE=4 SV=1 Q16RV8_AEDAE 125,828.20

UMP-CMP kinase OS=Aedes aegypti OX=7159 GN=5570159 PE=3 SV=1 Q16ZN6_AEDAE 32,123.60

AAEL002834-PA OS=Aedes aegypti OX=7159 GN=AAEL002834 PE=4 SV=1 Q17H06_AEDAE 61,114.80

AAEL011881-PA OS=Aedes aegypti OX=7159 GN=5575512 PE=4 SV=1 Q16NR0_AEDAE 42,546.60

AAEL001101-PA OS=Aedes aegypti OX=7159 GN=AAEL001101 PE=4 SV=1 Q17M52_AEDAE 99,868.10

Proteasome subunit beta OS=Aedes aegypti OX=7159 GN=5578121 PE=3 SV=1 Q17FD3_AEDAE 30,421.40

AAEL009636-PB OS=Aedes aegypti OX=7159 GN=AAEL009636 PE=4 SV=1 Q16V92_AEDAE 126,986.20

AAEL003609-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL003609 PE=4 SV=1 Q17F07_AEDAE 123,502.90

3-hydroxyacyl-coa dehyrogenase OS=Aedes aegypti OX=7159 GN=AAEL002842 PE=4 SV=1 Q17H09_AEDAE 31,895.60

AAEL011889-PA OS=Aedes aegypti OX=7159 GN=AAEL011889 PE=3 SV=1 Q16NR3_AEDAE 28,433.70

AAEL014439-PA OS=Aedes aegypti OX=7159 GN=AAEL014439 PE=4 SV=1 Q16GB3_AEDAE 46,575.60

AAEL003995-PA OS=Aedes aegypti OX=7159 GN=5563914 PE=4 SV=1 Q17E09_AEDAE 38,532.70

Sulfhydryl oxidase OS=Aedes aegypti OX=7159 GN=AAEL012054 PE=4 SV=1 Q16N96_AEDAE 74,047.10

AAEL008072-PA OS=Aedes aegypti OX=7159 GN=AAEL008072 PE=3 SV=1 Q16ZS6_AEDAE 24,316.60 26S proteasome non-ATPase regulatory subunit OS=Aedes aegypti OX=7159 GN=AAEL000568 PE=4 SV=1 Q17NV4_AEDAE 41,267.20

AAEL000701-PA OS=Aedes aegypti OX=7159 GN=AAEL000701 PE=4 SV=1 Q17NG2_AEDAE 31,628.80

AAEL006946-PA OS=Aedes aegypti OX=7159 GN=5568526 PE=3 SV=1 Q174C6_AEDAE 58,573.50

AAEL002539-PA OS=Aedes aegypti OX=7159 GN=AAEL002539 PE=4 SV=1 Q17HT7_AEDAE 78,297.10

AAEL008738-PA OS=Aedes aegypti OX=7159 GN=5571006 PE=4 SV=1 Q16XX4_AEDAE 98,877.40

AAEL008672-PA OS=Aedes aegypti OX=7159 GN=5570930 PE=4 SV=1 Q16Y47_AEDAE 77,685.40

AAEL012026-PA OS=Aedes aegypti OX=7159 GN=AAEL012026 PE=2 SV=1 Q1HR52_AEDAE 48,280.80

AAEL014768-PA OS=Aedes aegypti OX=7159 GN=AAEL014768 PE=4 SV=1 Q16FG2_AEDAE 229,656.00

AAEL009535-PA OS=Aedes aegypti OX=7159 GN=AAEL009535 PE=4 SV=1 Q16VL1_AEDAE 24,670.30

Nuclear pore complex protein OS=Aedes aegypti OX=7159 GN=AAEL003908 PE=3 SV=1 Q17E59_AEDAE 101,390.00

AAEL017524-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017524 PE=4 SV=1 J9HTY0_AEDAE 24,229.00

AAEL010384-PA OS=Aedes aegypti OX=7159 GN=AAEL010384 PE=4 SV=1 Q16T48_AEDAE 140,507.20

AAEL004216-PA OS=Aedes aegypti OX=7159 GN=AAEL004216 PE=4 SV=1 Q17DG1_AEDAE 162,158.10

AAEL010901-PA OS=Aedes aegypti OX=7159 GN=AAEL010901 PE=4 SV=1 Q16RM8_AEDAE 34,560.80

AAEL006372-PA OS=Aedes aegypti OX=7159 GN=AAEL006372 PE=3 SV=1 Q176H5_AEDAE 71,605.00

AAEL011535-PA OS=Aedes aegypti OX=7159 GN=AAEL011535 PE=4 SV=1 Q16EG4_AEDAE 55,448.40

AAEL001411-PB OS=Aedes aegypti OX=7159 GN=AAEL001411 PE=3 SV=1 Q17L97_AEDAE 231,231.70

AAEL007387-PA OS=Aedes aegypti OX=7159 GN=AAEL007387 PE=4 SV=1 Q172H4_AEDAE 83,554.10

60S ribosomal protein L13a OS=Aedes aegypti OX=7159 GN=5572470 PE=3 SV=1 Q16US7_AEDAE 22,054.80

AAEL011933-PA OS=Aedes aegypti OX=7159 GN=AAEL011933 PE=4 SV=1 Q16NL5_AEDAE 52,192.00

AAEL012616-PA OS=Aedes aegypti OX=7159 GN=AAEL012616 PE=4 SV=1 Q16LL0_AEDAE 111,782.30

AAEL006317-PA OS=Aedes aegypti OX=7159 GN=AAEL006317 PE=4 SV=1 Q176M2_AEDAE 34,143.90

140 AAEL012875-PA OS=Aedes aegypti OX=7159 GN=5576934 PE=2 SV=1 Q1HQY2_AEDAE 24,488.30

AAEL002829-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL002829 PE=4 SV=1 Q17GY9_AEDAE 818,476.30

AAEL000412-PA OS=Aedes aegypti OX=7159 GN=5577346 PE=2 SV=1 Q1HQE6_AEDAE 36,136.10

AAEL004112-PA (Fragment) OS=Aedes aegypti OX=7159 GN=TPX2 PE=4 SV=1 Q17DN4_AEDAE 21,437.70

AAEL000386-PA OS=Aedes aegypti OX=7159 GN=5576326 PE=3 SV=1 Q0IGF6_AEDAE 215,705.70

AAEL003729-PA OS=Aedes aegypti OX=7159 GN=HOT_AEDAE PE=4 SV=1 Q17EN5_AEDAE 48,984.60

AAEL017508-PA OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017508 PE=3 SV=1 J9EB97_AEDAE 31,675.00

AAEL005593-PA OS=Aedes aegypti OX=7159 GN=5566701 PE=4 SV=1 Q179M1_AEDAE 19,699.70

AAEL010192-PA OS=Aedes aegypti OX=7159 GN=AAEL010192 PE=4 SV=1 Q16TM4_AEDAE 56,772.30

AAEL009566-PA OS=Aedes aegypti OX=7159 GN=AAEL009566 PE=3 SV=1 Q16VH2_AEDAE 23,140.70

Signal transducer and activator of transcription OS=Aedes aegypti OX=7159 GN=STAT1 PE=3 SV=1 Q16V47_AEDAE 87,216.30

AAEL001582-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL001582 PE=3 SV=1 Q17KS2_AEDAE 200,937.30

Ribonucleoside-diphosphate reductase OS=Aedes aegypti OX=7159 GN=RNR1 PE=2 SV=1 Q8WRS8_AEDAE 95,725.80

AAEL002613-PA OS=Aedes aegypti OX=7159 GN=AAEL002613 PE=4 SV=1 Q17HS2_AEDAE 40,612.20

AP complex subunit beta OS=Aedes aegypti OX=7159 GN=5575109 PE=3 SV=1 Q16PF3_AEDAE 101,815.60

AAEL007705-PA OS=Aedes aegypti OX=7159 GN=AAEL007705 PE=4 SV=1 Q171B1_AEDAE 311,339.30

AAEL009073-PA OS=Aedes aegypti OX=7159 GN=AAEL009073 PE=4 SV=1 Q16WW9_AEDAE 163,455.90

AAEL011590-PA OS=Aedes aegypti OX=7159 GN=AAEL011590 PE=4 SV=1 Q16PM6_AEDAE 36,314.40

UDP-glucuronosyltransferase OS=Aedes aegypti OX=7159 GN=AAEL001533 PE=3 SV=1 Q17KZ7_AEDAE 57,831.90

Histone H2B OS=Aedes aegypti OX=7159 GN=AAEL015684 PE=3 SV=2 Q17ER9_AEDAE 35,910.70 Non-specific serine/threonine protein kinase OS=Aedes aegypti OX=7159 GN=AAEL000489 PE=4 SV=1 Q17P09_AEDAE 59,452.90

AAEL004441-PA OS=Aedes aegypti OX=7159 GN=5564797 PE=4 SV=1 Q17CT1_AEDAE 114,506.20

AAEL006231-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL006231 PE=4 SV=1 Q176W4_AEDAE 127,043.80

AAEL006368-PA OS=Aedes aegypti OX=7159 GN=AAEL006368 PE=4 SV=1 Q176H2_AEDAE 29,360.60

AAEL011913-PA OS=Aedes aegypti OX=7159 GN=AAEL011913 PE=3 SV=1 Q16NM7_AEDAE 27,012.30

AAEL003953-PA OS=Aedes aegypti OX=7159 GN=AAEL003953 PE=4 SV=1 Q17E44_AEDAE 111,777.90

AAEL001094-PB OS=Aedes aegypti OX=7159 GN=5568331 PE=3 SV=1 Q17MD5_AEDAE 23,850.00

60S ribosomal protein L32 OS=Aedes aegypti OX=7159 GN=5577996 PE=2 SV=1 Q1HR34_AEDAE 15,828.10

AAEL013779-PA OS=Aedes aegypti OX=7159 GN=AAEL013779 PE=4 SV=1 Q16I69_AEDAE 28,786.20

AAEL004565-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL004565 PE=3 SV=1 Q17CH1_AEDAE 18,207.90

Protein disulfide-isomerase OS=Aedes aegypti OX=7159 GN=AAEL001432 PE=3 SV=1 Q17L92_AEDAE 55,246.60

AAEL013182-PA OS=Aedes aegypti OX=7159 GN=5577436 PE=4 SV=1 Q16JX7_AEDAE 145,884.30

AAEL001378-PA OS=Aedes aegypti OX=7159 GN=5570348 PE=3 SV=1 Q17LD7_AEDAE 42,615.60

AAEL004697-PA OS=Aedes aegypti OX=7159 GN=AAEL004697 PE=4 SV=1 Q0IFK8_AEDAE 67,516.00

AAEL007044-PA OS=Aedes aegypti OX=7159 GN=AAEL007044 PE=3 SV=1 Q173Q0_AEDAE 41,788.00

AAEL012863-PA OS=Aedes aegypti OX=7159 GN=AAEL012863 PE=4 SV=1 Q16KV1_AEDAE 27,031.10

AAEL002133-PA OS=Aedes aegypti OX=7159 GN=AAEL002133 PE=4 SV=1 Q17J93_AEDAE 47,816.60 26S proteasome regulatory complex ATPase RPT4 OS=Aedes aegypti OX=7159 GN=5565051 PE=2 SV=1 Q1HQM1_AEDAE 44,397.10

AAEL013775-PA OS=Aedes aegypti OX=7159 GN=5578589 PE=4 SV=1 Q16I71_AEDAE 31,428.10

141 AAEL007536-PA OS=Aedes aegypti OX=7159 GN=AAEL007536 PE=3 SV=1 Q171R6_AEDAE 74,494.90

AAEL007777-PA OS=Aedes aegypti OX=7159 GN=5569632 PE=2 SV=1 Q1HRK0_AEDAE 43,377.20

Alpha-mannosidase OS=Aedes aegypti OX=7159 GN=AAEL011978 PE=3 SV=1 Q16NG2_AEDAE 130,235.20

AAEL009396-PA OS=Aedes aegypti OX=7159 GN=AAEL009396 PE=4 SV=1 Q16VW3_AEDAE 54,179.90 Q17A47_AEDAE,Q17A48_AEDAE,Q17A Annexin OS=Aedes aegypti OX=7159 GN=AAEL005407 PE=3 SV=1 49_AEDAE 35,809.00

AAEL005538-PA OS=Aedes aegypti OX=7159 GN=AAEL005538 PE=4 SV=1 Q179C9_AEDAE 17,646.90

AAEL002107-PA OS=Aedes aegypti OX=7159 GN=AAEL002107 PE=4 SV=1 Q17J81_AEDAE 49,514.30

Histone-lysine N-methyltransferase OS=Aedes aegypti OX=7159 GN=AAEL010826 PE=3 SV=1 Q0IEE2_AEDAE 77,573.30

AAEL004025-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL004025 PE=3 SV=1 Q17DW2_AEDAE 59,755.90

AAEL012306-PA OS=Aedes aegypti OX=7159 GN=5576075 PE=4 SV=1 Q16MG4_AEDAE 49,708.00

AAEL004613-PA OS=Aedes aegypti OX=7159 GN=AAEL004613 PE=4 SV=1 Q17C95_AEDAE 65,824.90

AAEL001682-PA OS=Aedes aegypti OX=7159 GN=5571809 PE=4 SV=1 Q17KI6_AEDAE 37,457.70

AAEL005143-PB OS=Aedes aegypti OX=7159 GN=5566059 PE=4 SV=1 J9HFH0_AEDAE 9,486.00

AAEL001869-PA OS=Aedes aegypti OX=7159 GN=AAEL001869 PE=4 SV=1 Q17JX5_AEDAE 76,471.00

AAEL006079-PA OS=Aedes aegypti OX=7159 GN=AAEL006079 PE=4 SV=1 Q177P9_AEDAE 12,213.10

AAEL010012-PA OS=Aedes aegypti OX=7159 GN=5572735 PE=2 SV=1 Q1HR30_AEDAE 21,922.40

V-type proton ATPase subunit a OS=Aedes aegypti OX=7159 GN=5567950 PE=2 SV=1 Q9NJA3_AEDAE 92,239.30

AAEL014889-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL014889 PE=2 SV=1 Q1HQI1_AEDAE 19,901.80

AAEL011937-PA OS=Aedes aegypti OX=7159 GN=AAEL011937 PE=3 SV=1 Q16NL2_AEDAE 60,512.20

AAEL000941-PA OS=Aedes aegypti OX=7159 GN=5567494 PE=2 SV=1 Q1HRI2_AEDAE 10,042.60

AAEL012035-PA OS=Aedes aegypti OX=7159 GN=5575718 PE=2 SV=1 Q1HQT6_AEDAE 25,686.80

AP-1 complex subunit gamma OS=Aedes aegypti OX=7159 GN=AAEL005364 PE=3 SV=1 Q17A99_AEDAE 97,417.60

AAEL003203-PA OS=Aedes aegypti OX=7159 GN=AAEL003203 PE=3 SV=1 Q17G31_AEDAE 41,077.20

AAEL004884-PA OS=Aedes aegypti OX=7159 GN=5565604 PE=4 SV=1 Q17BR0_AEDAE 48,333.90

AAEL002936-PA OS=Aedes aegypti OX=7159 GN=AAEL002936 PE=4 SV=1 Q17GP4_AEDAE 31,125.90

AAEL010912-PA OS=Aedes aegypti OX=7159 GN=AAEL010912 PE=3 SV=1 Q16RL5_AEDAE 89,913.50

AAEL012688-PA OS=Aedes aegypti OX=7159 GN=5576651 PE=4 SV=1 Q16LD7_AEDAE 55,355.00

AAEL012264-PA OS=Aedes aegypti OX=7159 GN=AAEL012264 PE=3 SV=1 Q16ML4_AEDAE 29,299.10

AAEL006829-PA OS=Aedes aegypti OX=7159 GN=5568408 PE=4 SV=1 Q174Q1_AEDAE 17,261.00

Phosphoglycerate kinase OS=Aedes aegypti OX=7159 GN=PGK PE=3 SV=1 Q8WQL0_AEDAE 43,857.30

Carboxylic ester hydrolase (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL005113 PE=3 SV=2 Q17B32_AEDAE 62,352.00

AAEL005833-PA OS=Aedes aegypti OX=7159 GN=AAEL005833 PE=4 SV=1 Q178N4_AEDAE 63,539.00

3-hydroxyacyl-coa dehyrogenase OS=Aedes aegypti OX=7159 GN=AAEL002841 PE=4 SV=1 Q17H10_AEDAE 33,342.50

AAEL000328-PA OS=Aedes aegypti OX=7159 GN=AAEL000328 PE=4 SV=1 Q17PH0_AEDAE 44,306.90

Proteasome subunit alpha type OS=Aedes aegypti OX=7159 GN=5564545 PE=2 SV=1 Q1HQN1_AEDAE 26,929.70

AAEL000101-PA OS=Aedes aegypti OX=7159 GN=AAEL000101 PE=4 SV=1 Q17Q45_AEDAE 59,586.50

AAEL002615-PA OS=Aedes aegypti OX=7159 GN=AAEL002615 PE=4 SV=1 Q17HN9_AEDAE 51,427.60

AAEL007828-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL007828 PE=4 SV=1 Q170Q3_AEDAE 34,817.60

142 AAEL000622-PA OS=Aedes aegypti OX=7159 GN=AAEL000622 PE=4 SV=1 Q17NS6_AEDAE 122,095.70

AAEL014252-PA OS=Aedes aegypti OX=7159 GN=AAEL014252 PE=4 SV=1 Q16GU7_AEDAE 57,375.70 1-acyl-sn-glycerol-3-phosphate acyltransferase OS=Aedes aegypti OX=7159 GN=AAEL011898 PE=3 SV=1 Q16NQ5_AEDAE 30,780.30

AAEL009336-PB OS=Aedes aegypti OX=7159 GN=AaeL_AAEL009336 PE=4 SV=1 J9HG30_AEDAE 18,871.80

AAEL010047-PA OS=Aedes aegypti OX=7159 GN=AAEL010047 PE=4 SV=1 Q16U17_AEDAE 84,905.20

RNA-binding protein 8A OS=Aedes aegypti OX=7159 GN=5568291 PE=3 SV=1 Q175A5_AEDAE 19,021.80

AAEL006820-PA OS=Aedes aegypti OX=7159 GN=5568403 PE=3 SV=1 Q174Q3_AEDAE 35,741.60

AAEL014811-PA OS=Aedes aegypti OX=7159 GN=AAEL014811 PE=4 SV=1 Q16FD4_AEDAE,Q16SV1_AEDAE 22,788.60

AAEL003829-PA OS=Aedes aegypti OX=7159 GN=AAEL003829 PE=3 SV=1 Q17EC7_AEDAE 114,023.00

AAEL002917-PA OS=Aedes aegypti OX=7159 GN=AAEL002917 PE=4 SV=1 Q17GT1_AEDAE 48,303.00

AAEL011518-PA OS=Aedes aegypti OX=7159 GN=AAEL011518 PE=3 SV=1 Q16PV1_AEDAE 59,863.40

AAEL007414-PA OS=Aedes aegypti OX=7159 GN=AAEL007414 PE=4 SV=1 Q0IF05_AEDAE 16,035.20

AAEL004183-PA OS=Aedes aegypti OX=7159 GN=AAEL004183 PE=4 SV=1 Q0IFR6_AEDAE 47,447.80 Folate gamma-glutamyl hydrolase (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL000271 PE=4 Q17PL8_AEDAE,Q17PL9_AEDAE,Q17P SV=1 M0_AEDAE 42,757.60

AAEL005667-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL005667 PE=4 SV=1 Q179D0_AEDAE 130,364.40

AAEL007024-PA OS=Aedes aegypti OX=7159 GN=CYP6AG3 PE=3 SV=1 Q173V3_AEDAE 57,628.80

AAEL009217-PA OS=Aedes aegypti OX=7159 GN=AAEL009217 PE=4 SV=1 Q16WG3_AEDAE 38,039.90

AAEL009128-PA OS=Aedes aegypti OX=7159 GN=CYP6M6 PE=3 SV=1 Q16WR1_AEDAE 56,933.80

AAEL007494-PA OS=Aedes aegypti OX=7159 GN=5569222 PE=4 SV=1 Q171Z1_AEDAE 22,033.90 Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B OS=Aedes aegypti OX=7159 GN=AAEL014042 PE=3 SV=1 Q16HF3_AEDAE 51,220.70

AAEL011157-PA OS=Aedes aegypti OX=7159 GN=5574429 PE=4 SV=1 Q16QW8_AEDAE 11,403.50

AAEL013249-PA OS=Aedes aegypti OX=7159 GN=5577545 PE=4 SV=1 Q16JP6_AEDAE 74,922.80

Nuclear pore protein OS=Aedes aegypti OX=7159 GN=AAEL011682 PE=3 SV=1 Q16PB8_AEDAE 93,382.50

4-Hydroxybutyrate CoA-transferase, putative OS=Aedes aegypti OX=7159 GN=5578926 PE=4 SV=1 Q0IG02_AEDAE 51,849.90

AAEL005709-PA OS=Aedes aegypti OX=7159 GN=AAEL005709 PE=4 SV=1 Q178Z8_AEDAE 23,914.70

AAEL008167-PB OS=Aedes aegypti OX=7159 GN=5570205 PE=3 SV=1 Q16ZL0_AEDAE 54,363.60

AAEL005008-PA OS=Aedes aegypti OX=7159 GN=AAEL005008 PE=2 SV=1 Q1HQS4_AEDAE 26,458.80

AAEL012865-PA OS=Aedes aegypti OX=7159 GN=5576914 PE=4 SV=1 Q16KV5_AEDAE 30,476.40

Aspartate aminotransferase OS=Aedes aegypti OX=7159 GN=mAAT PE=2 SV=1 Q5K6H3_AEDAE 47,263.50

Carboxylic ester hydrolase (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL012509 PE=3 SV=1 Q16LV6_AEDAE 63,703.50

AAEL008664-PB OS=Aedes aegypti OX=7159 GN=AAEL008664 PE=4 SV=1 Q16Y39_AEDAE,Q16Y40_AEDAE 41,751.40

AAEL002207-PA OS=Aedes aegypti OX=7159 GN=AAEL002207 PE=4 SV=1 Q17IT9_AEDAE 16,794.90

AAEL011520-PA OS=Aedes aegypti OX=7159 GN=AAEL011520 PE=4 SV=1 Q16PU8_AEDAE 67,769.40

AAEL005567-PA OS=Aedes aegypti OX=7159 GN=AAEL005567 PE=2 SV=1 Q1HR22_AEDAE 45,615.20

Tubulin beta chain (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL002848 PE=3 SV=1 Q17GX8_AEDAE 48,779.90

AAEL012964-PA OS=Aedes aegypti OX=7159 GN=AAEL012964 PE=4 SV=1 Q16KK3_AEDAE 39,843.40

Galectin OS=Aedes aegypti OX=7159 GN=GALE2 PE=4 SV=1 Q16MZ7_AEDAE 36,496.90

AAEL002309-PA OS=Aedes aegypti OX=7159 GN=TPX4 PE=4 SV=1 Q17IM5_AEDAE 24,895.70

AAEL004436-PA OS=Aedes aegypti OX=7159 GN=5564793 PE=4 SV=1 Q17CV3_AEDAE 17,302.40

AAEL003130-PA OS=Aedes aegypti OX=7159 GN=AAEL003130 PE=4 SV=1 Q17GB1_AEDAE 26,736.30

143 AAEL008736-PA OS=Aedes aegypti OX=7159 GN=5571011 PE=4 SV=1 Q16XW9_AEDAE 11,859.70

Mannose-6-phosphate isomerase OS=Aedes aegypti OX=7159 GN=AAEL015438 PE=2 SV=1 Q1HQJ7_AEDAE 44,521.60

AAEL013888-PA OS=Aedes aegypti OX=7159 GN=AAEL013888 PE=4 SV=1 Q16HV8_AEDAE 73,240.80

AAEL011289-PA OS=Aedes aegypti OX=7159 GN=5574647 PE=4 SV=1 Q16QG9_AEDAE 156,703.60

AAEL006840-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL006840 PE=4 SV=1 Q174L8_AEDAE 30,036.40

AAEL010789-PA OS=Aedes aegypti OX=7159 GN=AAEL010789 PE=4 SV=1 Q16RX5_AEDAE 21,360.40

V-type proton ATPase subunit a OS=Aedes aegypti OX=7159 GN=5578943 PE=3 SV=1 Q0IFY3_AEDAE 97,778.70

AAEL009770-PA OS=Aedes aegypti OX=7159 GN=AAEL009770 PE=2 SV=1 Q1HR94_AEDAE 18,078.80

Transgelin OS=Aedes aegypti OX=7159 GN=5568441 PE=3 SV=1 Q174L5_AEDAE 20,236.10

AAEL009470-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL009470 PE=4 SV=1 Q16VR7_AEDAE 53,494.30

AAEL006622-PA OS=Aedes aegypti OX=7159 GN=AAEL006622 PE=4 SV=1 Q175L6_AEDAE 171,541.60

AAEL012120-PA OS=Aedes aegypti OX=7159 GN=AAEL012120 PE=4 SV=1 Q16N12_AEDAE 57,325.10

AAEL001480-PA OS=Aedes aegypti OX=7159 GN=5570907 PE=4 SV=1 Q17L34_AEDAE 68,705.10

AAEL001499-PA OS=Aedes aegypti OX=7159 GN=AAEL001499 PE=4 SV=1 Q17L31_AEDAE 47,625.80

Proteasome subunit alpha type OS=Aedes aegypti OX=7159 GN=5567100 PE=3 SV=1 Q178M6_AEDAE 28,109.10

AAEL007521-PA OS=Aedes aegypti OX=7159 GN=5569279 PE=4 SV=1 Q171U6_AEDAE 102,125.80

AAEL003882-PA OS=Aedes aegypti OX=7159 GN=AAEL003882 PE=4 SV=1 Q17E94_AEDAE 258,418.50

AAEL005179-PA OS=Aedes aegypti OX=7159 GN=5566110 PE=4 SV=1 Q17AV0_AEDAE 14,388.40

Protoporphyrinogen oxidase OS=Aedes aegypti OX=7159 GN=AAEL003762 PE=3 SV=1 Q0IFY9_AEDAE 52,427.50 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit OS=Aedes aegypti OX=7159 GN=AAEL002174 PE=3 SV=1 Q17J35_AEDAE 49,445.90

AAEL009887-PA OS=Aedes aegypti OX=7159 GN=AAEL009887 PE=4 SV=1 Q16UJ0_AEDAE 109,687.20

AAEL010743-PA OS=Aedes aegypti OX=7159 GN=AAEL010743 PE=3 SV=1 Q16S16_AEDAE 49,171.40

AAEL009422-PC OS=Aedes aegypti OX=7159 GN=AAEL009422 PE=4 SV=1 Q16VV6_AEDAE,Q16VV9_AEDAE 70,029.30

AAEL007070-PA OS=Aedes aegypti OX=7159 GN=5568700 PE=3 SV=1 Q173Q4_AEDAE 36,443.60

AAEL004081-PA OS=Aedes aegypti OX=7159 GN=AAEL004081 PE=4 SV=1 Q17DQ9_AEDAE 19,793.40

AAEL002804-PA OS=Aedes aegypti OX=7159 GN=5576121 PE=4 SV=1 Q17H36_AEDAE 87,588.00

Peptidyl-prolyl cis-trans isomerase OS=Aedes aegypti OX=7159 GN=AAEL009911 PE=4 SV=1 Q16UF6_AEDAE 17,957.70

AAEL001212-PA OS=Aedes aegypti OX=7159 GN=5569085 PE=4 SV=1 Q17LW2_AEDAE 46,153.40

AAEL014413-PA OS=Aedes aegypti OX=7159 GN=CYP304C1 PE=4 SV=1 Q16GE0_AEDAE 59,149.00

AAEL009123-PA OS=Aedes aegypti OX=7159 GN=CYP6Z6 PE=3 SV=1 Q16WQ6_AEDAE 56,200.10

AAEL008264-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL008264 PE=4 SV=1 Q16Z88_AEDAE 37,948.30

AAEL012757-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL012757 PE=4 SV=1 Q16L60_AEDAE 36,246.90

AAEL004457-PA OS=Aedes aegypti OX=7159 GN=AAEL004457 PE=2 SV=1 Q1HRI9_AEDAE 11,761.00

AAEL008389-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL008389 PE=4 SV=1 Q16YX6_AEDAE 160,541.00

AAEL013275-PA OS=Aedes aegypti OX=7159 GN=5577561 PE=4 SV=1 Q0IE87_AEDAE,Q0IE88_AEDAE 97,644.00

AAEL002129-PA OS=Aedes aegypti OX=7159 GN=AAEL002129 PE=4 SV=1 Q17J82_AEDAE 39,755.50

AAEL012710-PB OS=Aedes aegypti OX=7159 GN=AAEL012710 PE=4 SV=1 Q16LA4_AEDAE,Q16LA5_AEDAE 16,572.90

AAEL010538-PA OS=Aedes aegypti OX=7159 GN=AAEL010538 PE=4 SV=1 Q16SP5_AEDAE 45,632.20

144 AAEL001902-PA OS=Aedes aegypti OX=7159 GN=AAEL001902 PE=3 SV=1 Q17JW3_AEDAE 61,994.40

AAEL008291-PA OS=Aedes aegypti OX=7159 GN=5570396 PE=4 SV=1 Q16Z72_AEDAE 31,478.80

AAEL012387-PA OS=Aedes aegypti OX=7159 GN=5576199 PE=4 SV=1 Q16M78_AEDAE 32,943.10

AAEL006915-PA OS=Aedes aegypti OX=7159 GN=5568499 PE=4 SV=1 Q174F2_AEDAE,Q174F3_AEDAE 32,439.70

AAEL004070-PA OS=Aedes aegypti OX=7159 GN=AAEL004070 PE=4 SV=1 Q17DR9_AEDAE 51,782.00

Cystathionine beta-synthase OS=Aedes aegypti OX=7159 GN=5570648 PE=3 SV=1 Q16YQ8_AEDAE 59,721.90

AAEL001293-PA OS=Aedes aegypti OX=7159 GN=CRALBP2 PE=2 SV=1 Q95P61_AEDAE 33,879.00

AAEL009126-PA (Fragment) OS=Aedes aegypti OX=7159 GN=CYP6N6 PE=3 SV=1 Q16WS0_AEDAE 56,812.00

AAEL007669-PA OS=Aedes aegypti OX=7159 GN=AAEL007669 PE=3 SV=1 Q171F3_AEDAE 26,744.10

AAEL001375-PA OS=Aedes aegypti OX=7159 GN=AAEL001375 PE=4 SV=1 Q17LF0_AEDAE 33,743.90

AAEL007762-PA OS=Aedes aegypti OX=7159 GN=AAEL007762 PE=4 SV=1 Q170X2_AEDAE 23,468.30

AAEL011995-PA OS=Aedes aegypti OX=7159 GN=5575684 PE=4 SV=1 Q16NF4_AEDAE 31,777.00

AAEL013389-PA OS=Aedes aegypti OX=7159 GN=5577809 PE=4 SV=1 Q16JA9_AEDAE 43,656.30 Vacuolar protein sorting-associated protein 11 homolog OS=Aedes aegypti OX=7159 GN=AAEL003887 PE=3 SV=1 Q17E85_AEDAE,Q17E86_AEDAE 123,502.20

AAEL001041-PA OS=Aedes aegypti OX=7159 GN=AAEL001041 PE=4 SV=1 Q17MH7_AEDAE 37,119.10

Torsin OS=Aedes aegypti OX=7159 GN=5564767 PE=3 SV=1 Q17CV2_AEDAE 38,724.70

AAEL011180-PA OS=Aedes aegypti OX=7159 GN=5574458 PE=4 SV=1 Q16QU2_AEDAE 30,961.00

AAEL004631-PA OS=Aedes aegypti OX=7159 GN=5565155 PE=3 SV=1 Q17C87_AEDAE 41,788.90

AAEL010704-PA OS=Aedes aegypti OX=7159 GN=AAEL010704 PE=3 SV=1 Q16S47_AEDAE,Q173K2_AEDAE 48,230.80

AAEL004300-PA OS=Aedes aegypti OX=7159 GN=5564503 PE=4 SV=1 Q17D88_AEDAE 43,399.10

AAEL013166-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL013166 PE=4 SV=1 Q16JZ2_AEDAE 41,911.20

AAEL002572-PA OS=Aedes aegypti OX=7159 GN=5580173 PE=4 SV=1 Q17HX1_AEDAE 22,834.40

AAEL001779-PA (Fragment) OS=Aedes aegypti OX=7159 GN=5572285 PE=2 SV=1 Q1HR31_AEDAE 26,442.70

Aminopeptidase OS=Aedes aegypti OX=7159 GN=AAEL005808 PE=3 SV=1 Q178P5_AEDAE 108,297.20

AAEL008197-PA OS=Aedes aegypti OX=7159 GN=AAEL008197 PE=4 SV=1 Q16ZE7_AEDAE 31,461.50

AAEL009129-PA OS=Aedes aegypti OX=7159 GN=CYP6Z9 PE=3 SV=1 Q16WQ3_AEDAE 56,010.80

AAEL011748-PA OS=Aedes aegypti OX=7159 GN=5575289 PE=2 SV=1 Q1HQH3_AEDAE 35,191.00

AAEL017315-PA OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017315 PE=4 SV=1 J9HSH6_AEDAE 90,255.10

Calreticulin OS=Aedes aegypti OX=7159 GN=AAEL001005 PE=3 SV=1 Q17MI1_AEDAE 46,727.80

Transgelin OS=Aedes aegypti OX=7159 GN=AAEL008315 PE=3 SV=1 Q16Z48_AEDAE 27,392.60

AAEL003606-PA OS=Aedes aegypti OX=7159 GN=5578622 PE=3 SV=1 Q17F22_AEDAE 47,267.60

AAEL000965-PA OS=Aedes aegypti OX=7159 GN=5567489 PE=4 SV=1 Q17MM7_AEDAE 90,291.80

40S ribosomal protein S20 OS=Aedes aegypti OX=7159 GN=5572088 PE=2 SV=1 Q1HRS9_AEDAE 13,392.90

Exocyst complex component OS=Aedes aegypti OX=7159 GN=AAEL003736 PE=3 SV=1 Q17EP0_AEDAE 87,532.70

14-3-3 protein sigma, gamma, zeta, beta/alpha OS=Aedes aegypti OX=7159 GN=5574404 PE=3 SV=1 Q16QZ7_AEDAE 29,456.10

Peptidylprolyl isomerase OS=Aedes aegypti OX=7159 GN=AAEL012272 PE=4 SV=1 Q16MK6_AEDAE 44,360.10

AAEL001275-PA OS=Aedes aegypti OX=7159 GN=5569604 PE=4 SV=1 Q17LR4_AEDAE 69,762.50

AAEL001616-PA OS=Aedes aegypti OX=7159 GN=AAEL001616 PE=4 SV=1 Q17KM8_AEDAE 83,117.20

AAEL007990-PA OS=Aedes aegypti OX=7159 GN=AAEL007990 PE=4 SV=1 Q0IET9_AEDAE 18,099.40

145 AAEL014959-PA OS=Aedes aegypti OX=7159 GN=AAEL014959 PE=4 SV=1 Q16EZ6_AEDAE 45,695.00

AAEL005832-PA OS=Aedes aegypti OX=7159 GN=AAEL005832 PE=4 SV=1 Q178N5_AEDAE 53,614.00

AAEL001252-PA OS=Aedes aegypti OX=7159 GN=AAEL001252 PE=4 SV=1 Q17LP7_AEDAE 67,592.20

AAEL016973-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AaeL_AAEL016973 PE=4 SV=1 J9HGL3_AEDAE 53,220.00

AAEL006309-PB OS=Aedes aegypti OX=7159 GN=AAEL006309 PE=4 SV=1 Q176N0_AEDAE 54,594.30

AAEL002083-PA OS=Aedes aegypti OX=7159 GN=AAEL002083 PE=3 SV=1 Q17JB5_AEDAE 75,414.00

AAEL004041-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL004041 PE=3 SV=1 Q17DW6_AEDAE 46,613.10

AAEL017147-PA OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017147 PE=4 SV=1 J9HHW9_AEDAE 53,099.80

AAEL009328-PA OS=Aedes aegypti OX=7159 GN=AAEL009328 PE=3 SV=1 Q16W60_AEDAE 27,014.50

Beta-glucuronidase OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017512 PE=3 SV=1 J9HEW9_AEDAE 75,799.40

AAEL003234-PA OS=Aedes aegypti OX=7159 GN=5577630 PE=2 SV=1 Q1HRM4_AEDAE 12,191.90

Alpha-amylase (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL007675 PE=3 SV=1 Q171E1_AEDAE 57,153.50

AAEL011792-PA OS=Aedes aegypti OX=7159 GN=AAEL011792 PE=4 SV=1 Q16P15_AEDAE 115,547.50

AAEL006389-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL006389 PE=3 SV=1 Q176E8_AEDAE 61,212.80

AAEL006557-PA OS=Aedes aegypti OX=7159 GN=5568113 PE=4 SV=1 Q175U6_AEDAE 14,481.90

AAEL015105-PA OS=Aedes aegypti OX=7159 GN=AAEL015105 PE=4 SV=1 Q16EL9_AEDAE,Q176G8_AEDAE 31,471.40 S-(hydroxymethyl)glutathione dehydrogenase OS=Aedes aegypti OX=7159 GN=AAEL006458 PE=3 SV=1 Q176A6_AEDAE 40,400.30

AAEL001673-PA OS=Aedes aegypti OX=7159 GN=5571832 PE=3 SV=1 Q17KG3_AEDAE 41,777.80

AAEL009629-PA OS=Aedes aegypti OX=7159 GN=AAEL009629 PE=4 SV=1 Q16VA7_AEDAE 60,791.20

AAEL017212-PA OS=Aedes aegypti OX=7159 GN=23687632 PE=4 SV=1 J9EA61_AEDAE 11,644.40

AAEL003716-PA OS=Aedes aegypti OX=7159 GN=5578864 PE=2 SV=1 Q1HQM6_AEDAE 14,442.70

AAEL008403-PA OS=Aedes aegypti OX=7159 GN=AAEL008403 PE=4 SV=1 Q16YW5_AEDAE 24,703.50

AAEL011905-PA OS=Aedes aegypti OX=7159 GN=AAEL011905 PE=3 SV=1 Q16NP7_AEDAE 118,670.10

AAEL006327-PA OS=Aedes aegypti OX=7159 GN=5567887 PE=4 SV=1 Q176K0_AEDAE 38,772.30

AAEL010727-PA OS=Aedes aegypti OX=7159 GN=5573804 PE=4 SV=1 Q16S26_AEDAE 39,945.60

AAEL015386-PA OS=Aedes aegypti OX=7159 GN=AAEL015386 PE=3 SV=1 Q1DH03_AEDAE 84,234.70

AAEL002277-PA OS=Aedes aegypti OX=7159 GN=AAEL002277 PE=4 SV=1 Q17IR9_AEDAE 37,456.70 Electron transfer flavoprotein-ubiquinone oxidoreductase OS=Aedes aegypti OX=7159 GN=AAEL007526 PE=4 SV=1 Q171U3_AEDAE 64,083.20

Glutathione synthetase OS=Aedes aegypti OX=7159 GN=AAEL009154 PE=3 SV=1 Q0IEN7_AEDAE 55,152.40

AAEL009132-PA OS=Aedes aegypti OX=7159 GN=CYP6Y3 PE=3 SV=2 Q16WR2_AEDAE 58,177.30

AAEL000815-PA OS=Aedes aegypti OX=7159 GN=AAEL000815 PE=4 SV=1 Q17N48_AEDAE 211,978.20

AAEL009246-PA OS=Aedes aegypti OX=7159 GN=AAEL009246 PE=4 SV=1 Q16WF5_AEDAE 116,290.00

AAEL004148-PA OS=Aedes aegypti OX=7159 GN=5564161 PE=4 SV=1 Q17DL1_AEDAE 37,919.50

ATP synthase subunit beta OS=Aedes aegypti OX=7159 GN=5576214 PE=3 SV=1 Q17H12_AEDAE 53,912.60

AAEL009583-PA OS=Aedes aegypti OX=7159 GN=AAEL009583 PE=4 SV=1 Q16VF7_AEDAE 246,591.20

AAEL004045-PA OS=Aedes aegypti OX=7159 GN=AAEL004045 PE=4 SV=1 Q17DT8_AEDAE 192,276.10

AAEL003514-PA OS=Aedes aegypti OX=7159 GN=AAEL003514 PE=4 SV=1 Q0IG45_AEDAE 58,422.60

AAEL002292-PA OS=Aedes aegypti OX=7159 GN=5574188 PE=4 SV=1 Q17IN0_AEDAE 52,857.20

AAEL009634-PC OS=Aedes aegypti OX=7159 GN=AAEL009634 PE=3 SV=1 Q16V97_AEDAE 34,787.00

AAEL006648-PA OS=Aedes aegypti OX=7159 GN=5568208 PE=4 SV=1 Q175J1_AEDAE 40,856.80

146 AAEL010843-PA OS=Aedes aegypti OX=7159 GN=SUI1 PE=2 SV=1 Q5QC99_AEDAE 12,356.10

AAEL006741-PA OS=Aedes aegypti OX=7159 GN=5568302 PE=4 SV=1 Q174Z3_AEDAE 63,492.10

AAEL006912-PA OS=Aedes aegypti OX=7159 GN=AAEL006912 PE=3 SV=1 Q174F7_AEDAE 40,997.10

AAEL002295-PA OS=Aedes aegypti OX=7159 GN=5574204 PE=4 SV=1 Q17IL4_AEDAE 57,684.30

AAEL006242-PA OS=Aedes aegypti OX=7159 GN=AAEL006242 PE=4 SV=1 Q176W5_AEDAE 476,733.60

AAEL012631-PA OS=Aedes aegypti OX=7159 GN=AAEL012631 PE=3 SV=1 Q16LJ3_AEDAE 116,208.20

Triosephosphate isomerase OS=Aedes aegypti OX=7159 GN=5580166 PE=3 SV=1 Q17HW3_AEDAE 26,322.00

AAEL006364-PA OS=Aedes aegypti OX=7159 GN=AAEL006364 PE=4 SV=1 Q176F9_AEDAE 42,619.40

ER membrane protein complex subunit 3 OS=Aedes aegypti OX=7159 GN=AAEL006611 PE=3 SV=1 Q175K6_AEDAE 29,000.60

DNA-(apurinic or apyrimidinic site) lyase OS=Aedes aegypti OX=7159 GN=5573854 PE=3 SV=1 Q16S00_AEDAE 65,943.10

AAEL014797-PA OS=Aedes aegypti OX=7159 GN=AAEL014797 PE=3 SV=1 Q16FF1_AEDAE,Q16IJ3_AEDAE 46,590.80

Dipeptidyl peptidase 3 OS=Aedes aegypti OX=7159 GN=AAEL002870 PE=3 SV=1 Q17GV2_AEDAE 81,880.70

AAEL010163-PA OS=Aedes aegypti OX=7159 GN=AAEL010163 PE=4 SV=1 Q16TN0_AEDAE 33,650.10

AAEL005499-PA OS=Aedes aegypti OX=7159 GN=AAEL005499 PE=4 SV=1 Q179U3_AEDAE 155,847.80

AAEL011055-PA OS=Aedes aegypti OX=7159 GN=5574282 PE=3 SV=1 Q16R72_AEDAE 53,953.00

AAEL012131-PA OS=Aedes aegypti OX=7159 GN=Slif PE=2 SV=1 Q16N01_AEDAE 67,425.90

AAEL013640-PA OS=Aedes aegypti OX=7159 GN=AAEL013640 PE=4 SV=1 Q16IJ6_AEDAE 25,838.90

AAEL005528-PA OS=Aedes aegypti OX=7159 GN=5579809 PE=4 SV=1 Q179S6_AEDAE 80,986.20

AAEL006353-PA OS=Aedes aegypti OX=7159 GN=AAEL006353 PE=4 SV=1 Q176K6_AEDAE 38,325.40

AAEL004294-PA OS=Aedes aegypti OX=7159 GN=5564492 PE=4 SV=1 Q17DA3_AEDAE 53,833.70 tr|Q16K27|Q16K27_AEDAE-DECOY AAEL013136-PA OS=Aedes aegypti OX=7159 GN=AAEL013136... Q16K27_AEDAE-DECOY 0

AAEL001471-PA OS=Aedes aegypti OX=7159 GN=AAEL001471 PE=4 SV=1 Q17L15_AEDAE 81,740.90

AAEL009130-PA (Fragment) OS=Aedes aegypti OX=7159 GN=CYP6Z7 PE=3 SV=2 Q16WQ5_AEDAE 40,592.50

AAEL013491-PA OS=Aedes aegypti OX=7159 GN=5578054 PE=3 SV=1 Q16J03_AEDAE 35,986.80 Solute carrier organic anion transporter family member OS=Aedes aegypti OX=7159 GN=AAEL010921 PE=3 SV=1 Q16RK9_AEDAE 84,235.70

AAEL007815-PA OS=Aedes aegypti OX=7159 GN=CYP4D24 PE=3 SV=2 Q170T0_AEDAE 57,227.90

AAEL012086-PA OS=Aedes aegypti OX=7159 GN=AAEL012086 PE=4 SV=1 Q16N51_AEDAE 56,556.10

V-type proton ATPase subunit C OS=Aedes aegypti OX=7159 GN=AAEL005173 PE=3 SV=1 Q17AU2_AEDAE 79,723.90

Bleomycin hydrolase OS=Aedes aegypti OX=7159 GN=5569945 PE=2 SV=1 Q1HQS7_AEDAE 52,221.40

Calcium load-activated calcium channel OS=Aedes aegypti OX=7159 GN=AAEL012123 PE=3 SV=1 Q16HD0_AEDAE 20,884.70

Histone H3 OS=Aedes aegypti OX=7159 GN=5567559 PE=3 SV=1 Q177E2_AEDAE 15,328.70

AAEL010689-PA OS=Aedes aegypti OX=7159 GN=AAEL010689 PE=4 SV=1 Q16S70_AEDAE 79,582.50

AAEL007160-PA OS=Aedes aegypti OX=7159 GN=5568862 PE=4 SV=1 Q173F1_AEDAE 55,205.20

AAEL009038-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL009038 PE=4 SV=1 Q16X18_AEDAE 56,442.00

AAEL004977-PA OS=Aedes aegypti OX=7159 GN=AAEL004977 PE=4 SV=1 Q17BF4_AEDAE 120,342.60

Glutathione peroxidase OS=Aedes aegypti OX=7159 GN=GPXH1 PE=3 SV=2 Q16N54_AEDAE 18,991.10

AAEL004587-PA OS=Aedes aegypti OX=7159 GN=AAEL004587 PE=4 SV=1 Q17CF5_AEDAE 159,431.80

Glucose-6-phosphate isomerase OS=Aedes aegypti OX=7159 GN=5577095 PE=3 SV=1 Q16KI0_AEDAE 63,203.50

AAEL011686-PA OS=Aedes aegypti OX=7159 GN=AAEL011686 PE=4 SV=1 Q16PC7_AEDAE,Q16SE5_AEDAE 79,592.40

147 AAEL003658-PA OS=Aedes aegypti OX=7159 GN=AAEL003658 PE=4 SV=1 Q17EW2_AEDAE 197,694.00

Adenylosuccinate lyase OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017333 PE=3 SV=1 J9HT71_AEDAE 54,019.20

AAEL009131-PA OS=Aedes aegypti OX=7159 GN=CYP6Z8 PE=3 SV=1 Q16WQ4_AEDAE 55,938.50

AAEL008858-PA OS=Aedes aegypti OX=7159 GN=AAEL008858 PE=4 SV=1 Q16XJ1_AEDAE 41,858.20

AAEL014019-PA OS=Aedes aegypti OX=7159 GN=CYP4J17 PE=3 SV=2 Q16HI0_AEDAE 58,619.00

AAEL003365-PB OS=Aedes aegypti OX=7159 GN=AAEL003365 PE=4 SV=1 Q17FK2_AEDAE 23,604.00

AAEL009672-PA OS=Aedes aegypti OX=7159 GN=AAEL009672 PE=4 SV=1 Q16V66_AEDAE 69,853.20

AAEL017395-PA OS=Aedes aegypti OX=7159 GN=23687815 PE=3 SV=1 J9HS73_AEDAE 33,663.60

Tubulin beta chain OS=Aedes aegypti OX=7159 GN=5565955 PE=3 SV=1 Q17B45_AEDAE 50,600.80

AAEL011998-PA OS=Aedes aegypti OX=7159 GN=AAEL011998 PE=4 SV=1 Q16NE6_AEDAE 56,784.80

AAEL000126-PA OS=Aedes aegypti OX=7159 GN=5567757 PE=3 SV=1 Q17Q71_AEDAE 52,545.90

AAEL006041-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL006041 PE=4 SV=1 Q177U7_AEDAE 60,100.30

AAEL007068-PA OS=Aedes aegypti OX=7159 GN=5568697 PE=3 SV=1 Q173Q8_AEDAE 37,600.50

Fructose-bisphosphate aldolase OS=Aedes aegypti OX=7159 GN=5567031 PE=3 SV=1 Q178U8_AEDAE 39,484.90

S-formylglutathione hydrolase OS=Aedes aegypti OX=7159 GN=5579885 PE=3 SV=1 Q17MG9_AEDAE 31,361.30

AAEL012835-PA OS=Aedes aegypti OX=7159 GN=AAEL012835 PE=4 SV=1 Q16KY2_AEDAE 90,192.90

AAEL009884-PA OS=Aedes aegypti OX=7159 GN=AAEL009884 PE=4 SV=1 Q16UJ4_AEDAE 293,541.50

AAEL012674-PA OS=Aedes aegypti OX=7159 GN=5576648 PE=4 SV=1 Q16LE7_AEDAE 36,936.60

AAEL012329-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL012329 PE=3 SV=1 Q16ME8_AEDAE 59,424.20

AAEL001058-PA OS=Aedes aegypti OX=7159 GN=AAEL001058 PE=4 SV=1 Q16FI4_AEDAE 37,769.60

AAEL014619-PA OS=Aedes aegypti OX=7159 GN=AAEL014619 PE=3 SV=1 Q16FW6_AEDAE 61,061.20

AAEL005976-PA OS=Aedes aegypti OX=7159 GN=5579863 PE=2 SV=1 Q1HQP5_AEDAE 20,058.40

AAEL008714-PA OS=Aedes aegypti OX=7159 GN=AAEL008714 PE=4 SV=1 Q16Y01_AEDAE 127,033.30

AAEL007307-PA OS=Aedes aegypti OX=7159 GN=AAEL007307 PE=4 SV=1 Q172R1_AEDAE 81,201.60

AAEL013863-PA OS=Aedes aegypti OX=7159 GN=AAEL013863 PE=4 SV=1 Q16HY5_AEDAE 71,135.10

AAEL001009-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL001009 PE=4 SV=1 Q17MI2_AEDAE 90,638.60

AAEL001421-PA OS=Aedes aegypti OX=7159 GN=5570534 PE=4 SV=1 Q17LA3_AEDAE 139,766.30 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 OS=Aedes aegypti OX=7159 GN=5580330 PE=3 SV=1 Q16K94_AEDAE 52,242.30

60S ribosomal protein L35A, putative OS=Aedes aegypti OX=7159 GN=5566843 PE=3 SV=1 Q17N60_AEDAE 18,888.00

AAEL006025-PA OS=Aedes aegypti OX=7159 GN=AAEL006025 PE=4 SV=1 Q177T0_AEDAE 29,205.60

AAEL014219-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL014219 PE=4 SV=1 Q16GY6_AEDAE,Q16GY7_AEDAE 25,707.50

Vacuolar protein sorting-associated protein 35 OS=Aedes aegypti OX=7159 GN=AAEL013386 PE=3 SV=1 Q16JB7_AEDAE 92,404.50

AAEL010312-PA OS=Aedes aegypti OX=7159 GN=5573231 PE=4 SV=1 Q0IEH6_AEDAE 108,114.90

AAEL014965-PA OS=Aedes aegypti OX=7159 GN=AAEL014965 PE=4 SV=1 Q16EY8_AEDAE 49,459.00

AAEL014296-PA OS=Aedes aegypti OX=7159 GN=5564078 PE=4 SV=1 Q16GR0_AEDAE 59,298.40

AAEL004023-PA OS=Aedes aegypti OX=7159 GN=5563971 PE=4 SV=1 Q17DW7_AEDAE 48,679.60

AAEL005515-PA OS=Aedes aegypti OX=7159 GN=AAEL005515 PE=4 SV=1 Q179T1_AEDAE 29,846.00

148 AAEL000119-PA OS=Aedes aegypti OX=7159 GN=5567781 PE=4 SV=1 Q17Q43_AEDAE 61,566.40

AAEL010254-PA OS=Aedes aegypti OX=7159 GN=AAEL010254 PE=4 SV=1 Q16TF5_AEDAE 56,767.40

AAEL014657-PA OS=Aedes aegypti OX=7159 GN=5564916 PE=4 SV=1 Q16FS1_AEDAE 14,840.60

AAEL008489-PA OS=Aedes aegypti OX=7159 GN=5570663 PE=2 SV=1 Q1HQR5_AEDAE 24,023.40

AAEL005508-PA OS=Aedes aegypti OX=7159 GN=5566654 PE=2 SV=1 Q1HRL6_AEDAE 26,530.20

AAEL006795-PA OS=Aedes aegypti OX=7159 GN=CYP9J15 PE=3 SV=2 Q174T6_AEDAE 61,714.80 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial OS=Aedes aegypti OX=7159 GN=5567821 PE=3 SV=1 Q17MK2_AEDAE 20,117.10

Carboxylic ester hydrolase (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL003181 PE=3 SV=1 Q17G42_AEDAE 62,883.00

Alpha-mannosidase OS=Aedes aegypti OX=7159 GN=5567015 PE=3 SV=1 Q178W1_AEDAE 115,559.10

AAEL014529-PA OS=Aedes aegypti OX=7159 GN=AAEL014529 PE=4 SV=1 Q16G44_AEDAE 48,608.50

AAEL008461-PA OS=Aedes aegypti OX=7159 GN=5570653 PE=2 SV=1 Q1HQL8_AEDAE 30,435.90

Peptidylprolyl isomerase OS=Aedes aegypti OX=7159 GN=5573443 PE=4 SV=1 Q16ST4_AEDAE,Q16ST5_AEDAE 50,896.60

AAEL012685-PA OS=Aedes aegypti OX=7159 GN=AAEL012685 PE=4 SV=1 Q16LD5_AEDAE 49,430.60

AAEL012003-PA OS=Aedes aegypti OX=7159 GN=GALE6B PE=4 SV=1 Q16ND6_AEDAE,Q17AG2_AEDAE 16,366.40

AAEL011395-PA OS=Aedes aegypti OX=7159 GN=5580157 PE=3 SV=1 Q16Q55_AEDAE 88,105.30

60S ribosomal protein L18a OS=Aedes aegypti OX=7159 GN=5579919 PE=3 SV=1 Q174U3_AEDAE 21,231.50

AAEL006519-PA OS=Aedes aegypti OX=7159 GN=AAEL006519 PE=4 SV=1 Q0IF41_AEDAE 76,618.80

AAEL013784-PA OS=Aedes aegypti OX=7159 GN=AAEL013784 PE=4 SV=1 Q16I61_AEDAE 66,213.60

AAEL006786-PA OS=Aedes aegypti OX=7159 GN=AAEL006786 PE=4 SV=1 Q174R0_AEDAE 21,094.50

AAEL014607-PA OS=Aedes aegypti OX=7159 GN=CYP9J27 PE=2 SV=1 Q16FX1_AEDAE 61,651.60

AAEL000204-PA OS=Aedes aegypti OX=7159 GN=AAEL000204 PE=4 SV=1 Q17PV9_AEDAE 43,848.40

AAEL014107-PA OS=Aedes aegypti OX=7159 GN=AAEL014107 PE=4 SV=1 Q16H92_AEDAE 50,916.80

40S ribosomal protein S15/S22 OS=Aedes aegypti OX=7159 GN=5571564 PE=2 SV=1 Q1HRQ6_AEDAE 14,772.80

AAEL011641-PA OS=Aedes aegypti OX=7159 GN=5575085 PE=4 SV=1 Q16PI3_AEDAE 85,597.10

AAEL005656-PA OS=Aedes aegypti OX=7159 GN=AAEL005656 PE=3 SV=1 Q179E8_AEDAE 221,469.60

AAEL017153-PA OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017153 PE=3 SV=1 J9HU29_AEDAE 131,222.30

Proteasome subunit alpha type OS=Aedes aegypti OX=7159 GN=5572867 PE=3 SV=1 Q16TY4_AEDAE 28,857.90

AAEL006048-PA OS=Aedes aegypti OX=7159 GN=AAEL006048 PE=4 SV=1 Q177Q9_AEDAE 44,319.20

AAEL014360-PA OS=Aedes aegypti OX=7159 GN=AAEL014360 PE=4 SV=1 Q16GJ3_AEDAE,Q16UE8_AEDAE 173,739.70

AAEL001668-PA OS=Aedes aegypti OX=7159 GN=AAEL001668 PE=3 SV=1 Q17KK5_AEDAE 46,622.60

AAEL004435-PA OS=Aedes aegypti OX=7159 GN=5564787 PE=4 SV=1 Q17CS8_AEDAE 53,507.10

AAEL006971-PA OS=Aedes aegypti OX=7159 GN=5568623 PE=4 SV=1 Q173Y4_AEDAE 40,585.40

AAEL010754-PA OS=Aedes aegypti OX=7159 GN=AAEL010754 PE=4 SV=1 Q0IEG4_AEDAE 10,012.90

AAEL015320-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL015320 PE=4 SV=1 Q16E95_AEDAE 70,505.80

Alpha-galactosidase OS=Aedes aegypti OX=7159 GN=5566514 PE=3 SV=1 Q17A03_AEDAE 52,354.20

AAEL005921-PA OS=Aedes aegypti OX=7159 GN=5567262 PE=4 SV=1 Q178E1_AEDAE 56,538.60

AAEL004434-PA OS=Aedes aegypti OX=7159 GN=5564768 PE=4 SV=1 Q17CT0_AEDAE 67,934.00

AAEL011276-PA OS=Aedes aegypti OX=7159 GN=AAEL011276 PE=3 SV=1 Q16QJ1_AEDAE 33,942.60

AAEL004086-PA OS=Aedes aegypti OX=7159 GN=AAEL004086 PE=4 SV=1 Q17DN1_AEDAE,Q17DN2_AEDAE 32,311.30

AAEL009526-PA OS=Aedes aegypti OX=7159 GN=5572121 PE=4 SV=1 Q16VJ9_AEDAE 10,910.90

Protein disulfide-isomerase OS=Aedes aegypti OX=7159 GN=5565441 PE=2 SV=1 Q1HR78_AEDAE 55,954.30

149 AAEL011813-PA OS=Aedes aegypti OX=7159 GN=AAEL011813 PE=4 SV=1 Q16NY9_AEDAE 34,612.00

AAEL012703-PA OS=Aedes aegypti OX=7159 GN=AAEL012703 PE=4 SV=1 Q16LC0_AEDAE 11,309.00

AAEL012351-PA OS=Aedes aegypti OX=7159 GN=AAEL012351 PE=4 SV=1 Q16MC1_AEDAE 54,909.90

Replication protein A subunit OS=Aedes aegypti OX=7159 GN=AAEL012826 PE=3 SV=1 Q16KY9_AEDAE 67,744.20

AAEL013731-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL013731 PE=4 SV=1 Q16IC0_AEDAE 14,364.40

AAEL007948-PA OS=Aedes aegypti OX=7159 GN=GSTE7 PE=3 SV=1 Q170C8_AEDAE 25,356.30

2-oxoisovalerate dehydrogenase subunit alpha OS=Aedes aegypti OX=7159 GN=5570559 PE=3 SV=1 Q16Z06_AEDAE 49,847.90

AAEL000219-PA OS=Aedes aegypti OX=7159 GN=5572023 PE=4 SV=1 Q17PU4_AEDAE 32,426.50

AAEL006627-PA OS=Aedes aegypti OX=7159 GN=AAEL006627 PE=3 SV=1 Q175L8_AEDAE 26,750.20

Carbonic anhydrase OS=Aedes aegypti OX=7159 GN=AAEL000816 PE=3 SV=1 Q17N64_AEDAE 25,279.50

AAEL006554-PA OS=Aedes aegypti OX=7159 GN=AAEL006554 PE=4 SV=1 Q175T9_AEDAE 31,385.00

Guanine deaminase OS=Aedes aegypti OX=7159 GN=AAEL003213 PE=3 SV=1 Q17FY0_AEDAE 50,657.80

AAEL002407-PB OS=Aedes aegypti OX=7159 GN=AAEL002407 PE=4 SV=1 Q17I87_AEDAE 126,249.30

AAEL010159-PA OS=Aedes aegypti OX=7159 GN=5572967 PE=4 SV=1 Q16TN4_AEDAE 124,059.60

Dihydrolipoyl dehydrogenase OS=Aedes aegypti OX=7159 GN=AAEL006928 PE=3 SV=1 Q174D6_AEDAE 53,658.90

AAEL009413-PA OS=Aedes aegypti OX=7159 GN=AAEL009413 PE=4 SV=1 Q16VX0_AEDAE 52,191.00

AAEL001352-PA OS=Aedes aegypti OX=7159 GN=5570070 PE=4 SV=1 Q17LJ1_AEDAE 91,021.50

Prohibitin OS=Aedes aegypti OX=7159 GN=5571854 PE=2 SV=1 Q1HR13_AEDAE 29,903.40

AAEL001767-PB OS=Aedes aegypti OX=7159 GN=AAEL001767 PE=4 SV=1 Q17K75_AEDAE 10,770.40

AAEL005760-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL005760 PE=4 SV=1 Q178X0_AEDAE 7,118.70

Prefoldin subunit 4 OS=Aedes aegypti OX=7159 GN=5574333 PE=3 SV=1 Q17IJ1_AEDAE 15,973.90

AAEL008565-PA OS=Aedes aegypti OX=7159 GN=AAEL008565 PE=3 SV=1 Q16YE9_AEDAE 84,147.80

AAEL009945-PA OS=Aedes aegypti OX=7159 GN=5572618 PE=4 SV=1 Q16UD6_AEDAE 32,985.80

Microtubule-associated protein OS=Aedes aegypti OX=7159 GN=AAEL012206 PE=4 SV=1 Q16MS6_AEDAE 31,725.30 Ubiquinone biosynthesis monooxygenase COQ6, mitochondrial OS=Aedes aegypti OX=7159 GN=coq6 PE=3 SV=1 Q0IFQ5_AEDAE 50,923.90

V-type proton ATPase subunit H OS=Aedes aegypti OX=7159 GN=5568081 PE=3 SV=1 Q0IF50_AEDAE 54,790.10

AAEL000199-PA OS=Aedes aegypti OX=7159 GN=AAEL000199 PE=3 SV=1 Q17PZ4_AEDAE 75,633.90

AAEL000311-PA OS=Aedes aegypti OX=7159 GN=AAEL000311 PE=4 SV=1 Q17PF8_AEDAE 67,033.60

AAEL009369-PA OS=Aedes aegypti OX=7159 GN=AAEL009369 PE=4 SV=1 Q16W14_AEDAE 25,562.50

AAEL017385-PA OS=Aedes aegypti OX=7159 GN=23687805 PE=4 SV=1 J9HSX8_AEDAE 52,186.60

AAEL005150-PA OS=Aedes aegypti OX=7159 GN=AAEL005150 PE=4 SV=1 Q17AY4_AEDAE 17,998.50

AAEL004973-PA OS=Aedes aegypti OX=7159 GN=5565765 PE=4 SV=1 Q17BE9_AEDAE 33,176.20

AAEL013798-PA OS=Aedes aegypti OX=7159 GN=CYP4H33 PE=3 SV=1 Q16I47_AEDAE 58,509.50

AAEL001525-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL001525 PE=4 SV=1 Q17L00_AEDAE 76,995.60

AAEL007236-PA OS=Aedes aegypti OX=7159 GN=AAEL007236 PE=2 SV=1 Q1HQW1_AEDAE 31,706.30

AAEL009324-PA OS=Aedes aegypti OX=7159 GN=AAEL009324 PE=3 SV=1 Q16W59_AEDAE 26,882.10

ATP-dependent 6-phosphofructokinase OS=Aedes aegypti OX=7159 GN=AAEL006895 PE=3 SV=1 Q174J0_AEDAE 86,551.20

AAEL014379-PA OS=Aedes aegypti OX=7159 GN=AAEL014379 PE=4 SV=1 Q16GH4_AEDAE 19,174.10

150 AAEL009547-PA OS=Aedes aegypti OX=7159 GN=AAEL009547 PE=4 SV=1 Q16VJ0_AEDAE 105,616.60

AAEL003801-PA OS=Aedes aegypti OX=7159 GN=AAEL003801 PE=3 SV=1 Q17EJ6_AEDAE 51,415.80

AAEL010402-PA OS=Aedes aegypti OX=7159 GN=AAEL010402 PE=3 SV=1 Q16T16_AEDAE 80,102.30

AAEL008782-PA OS=Aedes aegypti OX=7159 GN=AAEL008782 PE=3 SV=1 Q16XU1_AEDAE 28,695.50

AAEL010230-PA OS=Aedes aegypti OX=7159 GN=5580036 PE=3 SV=1 Q16TI5_AEDAE 17,651.40

AAEL006776-PA OS=Aedes aegypti OX=7159 GN=AAEL006776 PE=4 SV=1 Q174W5_AEDAE 57,359.50

AAEL004137-PA OS=Aedes aegypti OX=7159 GN=AAEL004137 PE=3 SV=1 Q17DJ8_AEDAE 43,761.00 Actin-related protein 2/3 complex subunit 4 OS=Aedes aegypti OX=7159 GN=AAEL009041 PE=3 SV=1 Q16WZ0_AEDAE 19,691.60

AAEL005579-PA OS=Aedes aegypti OX=7159 GN=5566689 PE=4 SV=1 Q179N3_AEDAE 40,989.10

AAEL003439-PA OS=Aedes aegypti OX=7159 GN=CASPS18 PE=3 SV=1 Q17FE2_AEDAE 32,630.40

AAEL005521-PA OS=Aedes aegypti OX=7159 GN=5579822 PE=4 SV=1 Q179R9_AEDAE 53,232.90

AAEL013095-PA OS=Aedes aegypti OX=7159 GN=AAEL013095 PE=4 SV=1 Q16K78_AEDAE 45,962.70

AAEL010938-PA OS=Aedes aegypti OX=7159 GN=AAEL010938 PE=4 SV=1 Q16RI9_AEDAE 34,517.80

AAEL017366-PA OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017366 PE=3 SV=1 J9HJJ4_AEDAE 29,211.60

2-hydroxyphytanoyl-coa lyase OS=Aedes aegypti OX=7159 GN=AAEL014707 PE=3 SV=1 Q16FM3_AEDAE 62,449.70

AAEL001588-PA OS=Aedes aegypti OX=7159 GN=5571265 PE=4 SV=1 Q17KV3_AEDAE 53,496.30

AAEL011962-PA OS=Aedes aegypti OX=7159 GN=AAEL011962 PE=4 SV=1 Q16NI8_AEDAE 31,198.80

AAEL003844-PA OS=Aedes aegypti OX=7159 GN=GALE5 PE=4 SV=1 Q17EC8_AEDAE 41,948.00

AAEL012558-PA OS=Aedes aegypti OX=7159 GN=5576506 PE=4 SV=1 Q16LR0_AEDAE 32,888.30

60S ribosomal protein L27 OS=Aedes aegypti OX=7159 GN=AAEL011587 PE=3 SV=1 Q16FB1_AEDAE 16,042.90 J9HJH3_AEDAE,J9HTT6_AEDAE,J9I002 AAEL017012-PB OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017012 PE=4 SV=1 _AEDAE 38,117.30

Proteasome subunit beta OS=Aedes aegypti OX=7159 GN=5568716 PE=3 SV=1 Q173N6_AEDAE 29,943.20

AAEL008692-PA OS=Aedes aegypti OX=7159 GN=5570960 PE=2 SV=1 Q1HRI3_AEDAE 10,013.60

2-oxoglutarate dehydrogenase OS=Aedes aegypti OX=7159 GN=AAEL006721 PE=4 SV=1 Q175A3_AEDAE 118,620.80

AAEL000765-PA OS=Aedes aegypti OX=7159 GN=AAEL000765 PE=4 SV=1 Q17NB0_AEDAE 80,656.00

AAEL002670-PA OS=Aedes aegypti OX=7159 GN=5575581 PE=4 SV=1 Q17HI1_AEDAE 55,917.00

AAEL007042-PC OS=Aedes aegypti OX=7159 GN=AAEL007042 PE=4 SV=1 Q173N8_AEDAE,Q173N9_AEDAE 73,812.80

AAEL014039-PA OS=Aedes aegypti OX=7159 GN=AAEL014039 PE=4 SV=1 Q16HG0_AEDAE 9,082.80

Anoctamin OS=Aedes aegypti OX=7159 GN=AAEL010243 PE=3 SV=1 Q16TH0_AEDAE 92,581.00

AAEL007858-PA OS=Aedes aegypti OX=7159 GN=AAEL007858 PE=4 SV=1 Q170N9_AEDAE 63,903.30

AAEL012394-PA OS=Aedes aegypti OX=7159 GN=AAEL012394 PE=4 SV=1 Q16M80_AEDAE 63,038.90 Isocitrate dehydrogenase [NAD] subunit, mitochondrial OS=Aedes aegypti OX=7159 GN=AAEL010143 PE=3 SV=1 Q16TS5_AEDAE 40,563.50

AAEL004152-PA OS=Aedes aegypti OX=7159 GN=AAEL004152 PE=3 SV=1 Q0IFU0_AEDAE 22,513.40

AAEL005659-PA OS=Aedes aegypti OX=7159 GN=AAEL005659 PE=4 SV=1 Q179E7_AEDAE 39,581.70

AAEL008045-PA OS=Aedes aegypti OX=7159 GN=AAEL008045 PE=4 SV=1 Q16ZX2_AEDAE 84,118.00

AAEL009432-PA OS=Aedes aegypti OX=7159 GN=SCRBQ3 PE=3 SV=2 Q16VV1_AEDAE 55,440.10

AAEL004317-PA OS=Aedes aegypti OX=7159 GN=5564549 PE=4 SV=1 Q17D57_AEDAE 63,989.00

Proteasome subunit alpha type OS=Aedes aegypti OX=7159 GN=5579168 PE=3 SV=1 Q17EA3_AEDAE 27,685.70

AAEL006811-PA OS=Aedes aegypti OX=7159 GN=CYP9J8 PE=3 SV=2 Q174S7_AEDAE 61,675.80

151 Histone H4 OS=Aedes aegypti OX=7159 GN=5578499 PE=3 SV=1 Q16IE4_AEDAE 11,381.80

AAEL006222-PA OS=Aedes aegypti OX=7159 GN=AAEL006222 PE=4 SV=1 Q176Z3_AEDAE 297,368.30

AAEL004505-PA OS=Aedes aegypti OX=7159 GN=AAEL004505 PE=4 SV=1 Q0IFP9_AEDAE 27,405.00

Ferritin OS=Aedes aegypti OX=7159 GN=AAEL007383 PE=3 SV=1 Q172H3_AEDAE 25,061.00

Superoxide dismutase OS=Aedes aegypti OX=7159 GN=MNSOD1 PE=3 SV=1 Q17BT9_AEDAE 24,462.10

AAEL010945-PA OS=Aedes aegypti OX=7159 GN=5574138 PE=4 SV=1 Q16RH4_AEDAE 25,297.40

Peptidoglycan-recognition protein OS=Aedes aegypti OX=7159 GN=PGRPS5_b PE=3 SV=1 Q173S9_AEDAE 20,099.40

AAEL014493-PA OS=Aedes aegypti OX=7159 GN=AAEL014493 PE=4 SV=1 Q16G83_AEDAE 149,019.00

Coatomer subunit beta OS=Aedes aegypti OX=7159 GN=5565050 PE=4 SV=1 Q17CI5_AEDAE 107,076.30

AAEL007891-PB (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL007891 PE=4 SV=1 Q170H4_AEDAE 57,523.80

AAEL008802-PA OS=Aedes aegypti OX=7159 GN=AAEL008802 PE=2 SV=1 Q1HRP8_AEDAE 9,291.50

AAEL007639-PA OS=Aedes aegypti OX=7159 GN=AAEL007639 PE=4 SV=1 Q171H5_AEDAE 113,583.00 Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex OS=Aedes aegypti OX=7159 GN=5572378 PE=3 SV=1 Q16UX6_AEDAE 50,037.30

AAEL014719-PA OS=Aedes aegypti OX=7159 GN=AAEL014719 PE=4 SV=1 Q16FL1_AEDAE 39,735.70

AAEL009124-PA OS=Aedes aegypti OX=7159 GN=CYP6N12 PE=3 SV=1 Q16WR9_AEDAE 56,156.60

AAEL010784-PA OS=Aedes aegypti OX=7159 GN=5573866 PE=4 SV=1 Q16RX6_AEDAE 44,522.40

AAEL000179-PA OS=Aedes aegypti OX=7159 GN=5570014 PE=3 SV=1 Q17PZ8_AEDAE 17,632.30

AAEL009099-PA OS=Aedes aegypti OX=7159 GN=5571454 PE=4 SV=1 Q16WT5_AEDAE 29,468.70

AAEL008615-PA OS=Aedes aegypti OX=7159 GN=AAEL008615 PE=4 SV=1 Q16Y96_AEDAE 88,069.80

SURF1-like protein OS=Aedes aegypti OX=7159 GN=AAEL011244 PE=3 SV=1 Q16QM3_AEDAE 33,222.70

AAEL003206-PA OS=Aedes aegypti OX=7159 GN=5577509 PE=4 SV=1 Q17G46_AEDAE 23,373.30

AAEL013662-PA OS=Aedes aegypti OX=7159 GN=AAEL013662 PE=4 SV=1 Q16IH7_AEDAE 34,734.60

AAEL008160-PA OS=Aedes aegypti OX=7159 GN=AAEL008160 PE=4 SV=1 Q16ZI9_AEDAE 264,148.70

Ribosomal protein OS=Aedes aegypti OX=7159 GN=5577478 PE=2 SV=1 Q1HRJ3_AEDAE 24,611.10

AAEL012996-PA OS=Aedes aegypti OX=7159 GN=5577094 PE=2 SV=1 Q1HQJ5_AEDAE 23,089.80

AAEL011929-PA OS=Aedes aegypti OX=7159 GN=AAEL011929 PE=3 SV=1 Q16NM6_AEDAE 26,669.80

AAEL004060-PB OS=Aedes aegypti OX=7159 GN=5564053 PE=4 SV=1 Q17DS3_AEDAE 6,738.80

AAEL012801-PA OS=Aedes aegypti OX=7159 GN=AAEL012801 PE=3 SV=1 Q16KB1_AEDAE 37,369.00

Small ubiquitin-related modifier OS=Aedes aegypti OX=7159 GN=5566079 PE=3 SV=1 Q16EQ3_AEDAE 10,882.40

AAEL001715-PA OS=Aedes aegypti OX=7159 GN=AAEL001715 PE=3 SV=1 Q17KD5_AEDAE 59,123.20

AAEL005319-PA OS=Aedes aegypti OX=7159 GN=AAEL005319 PE=4 SV=1 Q17AF2_AEDAE 522,830.40

AAEL012227-PA OS=Aedes aegypti OX=7159 GN=AAEL012227 PE=4 SV=1 Q16MP9_AEDAE 25,427.00 Pyruvate dehydrogenase E1 component subunit alpha OS=Aedes aegypti OX=7159 GN=AAEL005308 PE=4 SV=1 Q17AH1_AEDAE 45,901.50

Aminopeptidase OS=Aedes aegypti OX=7159 GN=5576800 PE=2 SV=1 Q16L31_AEDAE 107,577.60

AAEL005947-PB OS=Aedes aegypti OX=7159 GN=5567290 PE=4 SV=1 Q178C4_AEDAE 52,149.70

AAEL007650-PA OS=Aedes aegypti OX=7159 GN=AAEL007650 PE=3 SV=1 Q171G0_AEDAE 53,174.50 cGMP-dependent protein kinase OS=Aedes aegypti OX=7159 GN=AAEL007826 PE=3 SV=1 Q170R4_AEDAE 94,092.60 Q16V79_AEDAE,Q16V80_AEDAE,Q16V Trehalase OS=Aedes aegypti OX=7159 GN=AAEL009658 PE=3 SV=1 81_AEDAE 70,832.30

AAEL007439-PB OS=Aedes aegypti OX=7159 GN=5569183 PE=4 SV=1 Q172D2_AEDAE 16,788.90

Fumarylacetoacetase OS=Aedes aegypti OX=7159 GN=AAEL011973 PE=3 SV=1 Q16NG1_AEDAE 46,008.20 Angiotensin-converting enzyme (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL009316 PE=3 SV=1 Q16W82_AEDAE 62,629.50

152 AAEL001353-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL001353 PE=4 SV=1 Q17LI3_AEDAE 68,596.70

AAEL001583-PA OS=Aedes aegypti OX=7159 GN=AAEL001583 PE=4 SV=1 Q17KT7_AEDAE 281,418.90

AAEL009078-PA OS=Aedes aegypti OX=7159 GN=5571450 PE=4 SV=1 Q16WV4_AEDAE 22,001.70

AAEL004829-PA OS=Aedes aegypti OX=7159 GN=AAEL004829 PE=4 SV=1 Q0IFI1_AEDAE 18,100.30

AAEL013012-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL013012 PE=4 SV=1 Q16KG1_AEDAE 184,072.20

AAEL003970-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL003970 PE=4 SV=1 Q17E30_AEDAE 47,843.00

AAEL009241-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL009241 PE=4 SV=1 Q16WE5_AEDAE 110,864.40

AAEL012786-PA OS=Aedes aegypti OX=7159 GN=AAEL012786 PE=4 SV=1 Q16L36_AEDAE 24,645.60

AAEL005719-PA OS=Aedes aegypti OX=7159 GN=AAEL005719 PE=4 SV=1 Q0IFE2_AEDAE 82,826.70

AAEL004739-PA OS=Aedes aegypti OX=7159 GN=AAEL004739 PE=3 SV=1 Q17BX4_AEDAE 69,052.80

AAEL005877-PA OS=Aedes aegypti OX=7159 GN=AAEL005877 PE=4 SV=1 Q178H4_AEDAE 39,635.50 tr|Q17C72|Q17C72_AEDAE-DECOY AAEL004675-PA OS=Aedes aegypti OX=7159 GN=5565229 PE=4... Q17C72_AEDAE-DECOY 0

AAEL002178-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL002178 PE=4 SV=1 Q17J32_AEDAE 48,146.00

AAEL005045-PA OS=Aedes aegypti OX=7159 GN=AAEL005045 PE=4 SV=1 Q17B96_AEDAE 169,943.60

AAEL006620-PA OS=Aedes aegypti OX=7159 GN=AAEL006620 PE=4 SV=1 Q175N3_AEDAE 47,727.00

AAEL000102-PB OS=Aedes aegypti OX=7159 GN=AAEL000102 PE=4 SV=1 Q17Q55_AEDAE,Q17Q56_AEDAE 32,440.50

Acyl carrier protein OS=Aedes aegypti OX=7159 GN=AAEL010611 PE=3 SV=1 Q16PC9_AEDAE 17,856.30

Serine/threonine-protein phosphatase OS=Aedes aegypti OX=7159 GN=5564487 PE=3 SV=1 Q17D89_AEDAE 35,039.90

AAEL006145-PA OS=Aedes aegypti OX=7159 GN=5567521 PE=4 SV=1 Q177H6_AEDAE 138,167.70

AAEL007811-PA OS=Aedes aegypti OX=7159 GN=5569668 PE=2 SV=1 Q1HQF3_AEDAE 45,417.20

60S ribosomal protein L10 OS=Aedes aegypti OX=7159 GN=5574993 PE=2 SV=1 Q1HRT6_AEDAE 25,439.90

AAEL006992-PA OS=Aedes aegypti OX=7159 GN=CYP6AG6 PE=3 SV=1 Q173V5_AEDAE 57,101.00

SUMO-activating enzyme subunit OS=Aedes aegypti OX=7159 GN=AAEL010641 PE=3 SV=1 Q16SB9_AEDAE 70,518.10

AAEL011158-PA OS=Aedes aegypti OX=7159 GN=AAEL011158 PE=4 SV=1 Q16QW1_AEDAE 61,982.00

AAEL003373-PA OS=Aedes aegypti OX=7159 GN=AAEL003373 PE=4 SV=1 Q17FI9_AEDAE 119,007.40

AAEL008857-PA OS=Aedes aegypti OX=7159 GN=AAEL008857 PE=4 SV=1 Q16XJ3_AEDAE 48,357.40

DNA replication licensing factor MCM7 OS=Aedes aegypti OX=7159 GN=5567850 PE=3 SV=1 Q17ML5_AEDAE 80,793.30

AAEL005401-PB OS=Aedes aegypti OX=7159 GN=AAEL005401 PE=4 SV=1 Q17A29_AEDAE,Q17A30_AEDAE 34,429.20

AAEL003684-PA OS=Aedes aegypti OX=7159 GN=AAEL003684 PE=4 SV=1 Q17EU1_AEDAE 76,025.10

AAEL017016-PA OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017016 PE=4 SV=1 J9HSN0_AEDAE 9,944.70

AAEL004027-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL004027 PE=3 SV=1 Q17DW3_AEDAE 61,995.20

Carboxylic ester hydrolase (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL005112 PE=3 SV=2 Q17B31_AEDAE 67,017.00

AAEL009178-PA OS=Aedes aegypti OX=7159 GN=GNBPB4 PE=4 SV=1 Q16WM4_AEDAE 44,239.60

AAEL003318-PA OS=Aedes aegypti OX=7159 GN=AAEL003318 PE=4 SV=1 Q17FR8_AEDAE 81,293.00

AAEL003923-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL003923 PE=4 SV=1 Q0IFX4_AEDAE 182,147.20

AAEL013521-PA OS=Aedes aegypti OX=7159 GN=AAEL013521 PE=3 SV=1 Q16IW5_AEDAE 47,100.10

AAEL009117-PA OS=Aedes aegypti OX=7159 GN=CYP6M5 PE=3 SV=1 Q16WQ9_AEDAE 57,361.30

AAEL009601-PA OS=Aedes aegypti OX=7159 GN=5572209 PE=4 SV=1 Q16VB1_AEDAE 33,773.30

AAEL006053-PA OS=Aedes aegypti OX=7159 GN=5567396 PE=4 SV=1 Q177R5_AEDAE 14,860.80

AAEL013759-PA OS=Aedes aegypti OX=7159 GN=AAEL013759 PE=4 SV=1 Q16I89_AEDAE 84,328.20

153 AAEL014452-PA OS=Aedes aegypti OX=7159 GN=5564469 PE=3 SV=1 Q16GA1_AEDAE 45,572.50

AAEL004532-PA OS=Aedes aegypti OX=7159 GN=AAEL004532 PE=3 SV=1 Q17CL4_AEDAE 35,506.00

AAEL014684-PA OS=Aedes aegypti OX=7159 GN=CYP6F3 PE=3 SV=1 Q16FQ1_AEDAE 57,907.50

AAEL003326-PA OS=Aedes aegypti OX=7159 GN=AAEL003326 PE=3 SV=1 Q17FN9_AEDAE 42,335.50

AAEL008454-PA OS=Aedes aegypti OX=7159 GN=AAEL008454 PE=4 SV=1 Q16YR3_AEDAE 22,695.40 Glycerol-3-phosphate dehydrogenase [NAD(+)] OS=Aedes aegypti OX=7159 GN=AAEL001593 PE=3 Q17KS3_AEDAE,Q17KS4_AEDAE,Q17 SV=1 KS5_AEDAE 38,903.00

AAEL008097-PA OS=Aedes aegypti OX=7159 GN=AAEL008097 PE=3 SV=1 Q16ZR4_AEDAE 31,609.70

AAEL004680-PA OS=Aedes aegypti OX=7159 GN=AAEL004680 PE=4 SV=1 Q17C53_AEDAE 71,455.30

Ferritin OS=Aedes aegypti OX=7159 GN=5580073 PE=2 SV=1 Q17J46_AEDAE 24,201.40

Alpha-amylase OS=Aedes aegypti OX=7159 GN=5577944 PE=3 SV=1 Q16J70_AEDAE 54,491.20

AAEL005190-PA OS=Aedes aegypti OX=7159 GN=5566137 PE=4 SV=1 Q17AT6_AEDAE 15,025.30

Aminopeptidase OS=Aedes aegypti OX=7159 GN=AAEL008163 PE=3 SV=1 Q16ZL8_AEDAE 105,831.00

AAEL000541-PA OS=Aedes aegypti OX=7159 GN=AAEL000541 PE=4 SV=1 Q17NX2_AEDAE 40,511.40

Phosphoserine aminotransferase OS=Aedes aegypti OX=7159 GN=AAEL012578 PE=3 SV=1 Q16LP7_AEDAE 39,584.60

AAEL013697-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL013697 PE=4 SV=1 Q16IF0_AEDAE 142,121.80

Ribosomal protein S6 kinase OS=Aedes aegypti OX=7159 GN=AAEL000728 PE=3 SV=1 Q17ND6_AEDAE 61,987.00

AAEL011584-PA OS=Aedes aegypti OX=7159 GN=5575032 PE=3 SV=1 Q16PM9_AEDAE 60,794.10

AAEL000427-PA OS=Aedes aegypti OX=7159 GN=AAEL000427 PE=4 SV=1 Q17P93_AEDAE 66,132.00

Alkaline phosphatase OS=Aedes aegypti OX=7159 GN=AAEL003313 PE=3 SV=1 Q17FS6_AEDAE 60,873.80

AAEL008257-PA OS=Aedes aegypti OX=7159 GN=5570318 PE=2 SV=1 Q1HR40_AEDAE 42,224.20 26S proteasome non-ATPase regulatory subunit 1 OS=Aedes aegypti OX=7159 GN=AAEL002906 PE=3 SV=1 Q17GS7_AEDAE 111,392.00

T-complex protein 1 subunit delta OS=Aedes aegypti OX=7159 GN=5569514 PE=3 SV=1 Q171B7_AEDAE 57,263.70

AAEL009243-PA OS=Aedes aegypti OX=7159 GN=AAEL009243 PE=3 SV=1 Q16WF4_AEDAE 61,039.30

AAEL012507-PA OS=Aedes aegypti OX=7159 GN=AAEL012507 PE=4 SV=1 Q16LV2_AEDAE 17,953.60

AAEL007830-PA OS=Aedes aegypti OX=7159 GN=CYP4H29 PE=3 SV=1 Q170R1_AEDAE 58,735.90

AAEL012034-PA OS=Aedes aegypti OX=7159 GN=AAEL012034 PE=4 SV=1 Q16NB8_AEDAE 47,428.40

AAEL002296-PA OS=Aedes aegypti OX=7159 GN=5574197 PE=3 SV=1 Q17IM1_AEDAE 50,753.50

AAEL012866-PA OS=Aedes aegypti OX=7159 GN=AAEL012866 PE=4 SV=1 Q16KV4_AEDAE 18,756.40

AAEL013892-PA OS=Aedes aegypti OX=7159 GN=AAEL013892 PE=4 SV=1 Q16HV4_AEDAE 31,621.80

DNA helicase OS=Aedes aegypti OX=7159 GN=AAEL007007 PE=3 SV=1 Q173T8_AEDAE 100,671.60

AAEL007928-PA OS=Aedes aegypti OX=7159 GN=AAEL007928 PE=4 SV=1 Q170G6_AEDAE 108,688.20

AAEL001872-PA (Fragment) OS=Aedes aegypti OX=7159 GN=VDAC PE=2 SV=1 Q1HR57_AEDAE 30,696.50

Protein RER1 OS=Aedes aegypti OX=7159 GN=AAEL010361 PE=3 SV=1 Q16T78_AEDAE 22,266.40

AAEL013890-PA OS=Aedes aegypti OX=7159 GN=AAEL013890 PE=4 SV=1 Q16HV7_AEDAE 24,861.90

AAEL011038-PA OS=Aedes aegypti OX=7159 GN=AAEL011038 PE=3 SV=1 Q16R90_AEDAE 125,374.70

AAEL012310-PA OS=Aedes aegypti OX=7159 GN=5576078 PE=3 SV=1 Q16MG7_AEDAE 47,024.40

AAEL004088-PA OS=Aedes aegypti OX=7159 GN=AAEL004088 PE=4 SV=1 Q17DM5_AEDAE 35,574.20

AAEL000388-PA OS=Aedes aegypti OX=7159 GN=AAEL000388 PE=3 SV=1 Q0IGE7_AEDAE 141,966.70

AAEL008864-PA OS=Aedes aegypti OX=7159 GN=AAEL008864 PE=4 SV=1 Q16XI5_AEDAE 64,463.50

AAEL006730-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL006730 PE=4 SV=1 Q174W9_AEDAE 128,577.30

AAEL006139-PA OS=Aedes aegypti OX=7159 GN=AAEL006139 PE=3 SV=1 Q177I0_AEDAE 68,814.40

154 AAEL003503-PA OS=Aedes aegypti OX=7159 GN=5578276 PE=4 SV=1 Q17F70_AEDAE 23,588.90

AAEL004374-PA OS=Aedes aegypti OX=7159 GN=AAEL004374 PE=3 SV=1 Q17D17_AEDAE 45,879.20

AAEL013675-PA OS=Aedes aegypti OX=7159 GN=AAEL013675 PE=4 SV=1 Q16IG9_AEDAE 41,098.90

AAEL005961-PA OS=Aedes aegypti OX=7159 GN=5567310 PE=3 SV=1 Q178A9_AEDAE 41,643.80

Histone H2A OS=Aedes aegypti OX=7159 GN=5578787 PE=3 SV=1 Q17ER3_AEDAE 13,380.20

AAEL004523-PA OS=Aedes aegypti OX=7159 GN=5564972 PE=3 SV=1 Q17CM3_AEDAE 52,158.50

AAEL001740-PA OS=Aedes aegypti OX=7159 GN=AAEL001740 PE=3 SV=1 Q17KC4_AEDAE 49,253.20

AAEL015076-PA OS=Aedes aegypti OX=7159 GN=AAEL015076 PE=4 SV=1 Q16EP2_AEDAE 44,255.80

AAEL000460-PA OS=Aedes aegypti OX=7159 GN=AAEL000460 PE=4 SV=1 Q17P91_AEDAE 49,301.70

AAEL012262-PA OS=Aedes aegypti OX=7159 GN=AAEL012262 PE=4 SV=1 Q16ML6_AEDAE,Q16ML7_AEDAE 32,065.10

Glutaredoxin OS=Aedes aegypti OX=7159 GN=5568553 PE=3 SV=1 Q17M81_AEDAE 16,079.50

AAEL011936-PA OS=Aedes aegypti OX=7159 GN=5575603 PE=4 SV=1 Q16NL8_AEDAE 28,223.20

AAEL010403-PA OS=Aedes aegypti OX=7159 GN=5573319 PE=3 SV=1 Q16T24_AEDAE 61,355.70

AAEL002077-PA OS=Aedes aegypti OX=7159 GN=AAEL002077 PE=4 SV=1 Q17JC6_AEDAE 38,269.90

AAEL007408-PA OS=Aedes aegypti OX=7159 GN=AAEL007408 PE=4 SV=1 Q172F0_AEDAE 38,384.50

AAEL008610-PA OS=Aedes aegypti OX=7159 GN=AAEL008610 PE=3 SV=1 Q16YB5_AEDAE 245,983.70

AAEL000605-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL000605 PE=4 SV=1 Q17NP5_AEDAE 62,198.80

AAEL012200-PA OS=Aedes aegypti OX=7159 GN=AAEL012200 PE=2 SV=1 Q1HRC0_AEDAE 13,915.10

AAEL002700-PA OS=Aedes aegypti OX=7159 GN=5575775 PE=4 SV=1 Q17HC6_AEDAE,Q17HC7_AEDAE 31,311.60

GDT1 family protein (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL015084 PE=3 SV=1 Q16EN4_AEDAE,Q170F1_AEDAE 13,738.20

AAEL009995-PA OS=Aedes aegypti OX=7159 GN=5572732 PE=4 SV=1 Q16U72_AEDAE 35,964.70

AAEL009320-PA OS=Aedes aegypti OX=7159 GN=AAEL009320 PE=3 SV=1 Q16W74_AEDAE 59,615.50

AAEL001574-PA OS=Aedes aegypti OX=7159 GN=AAEL001574 PE=3 SV=1 Q17KS9_AEDAE 52,863.10

AAEL011778-PA OS=Aedes aegypti OX=7159 GN=5575377 PE=4 SV=1 Q16P29_AEDAE 65,799.30 Staphylococcal nuclease domain-containing protein OS=Aedes aegypti OX=7159 GN=5573778 PE=4 SV=1 Q17PM3_AEDAE 103,379.50

AAEL003763-PA (Fragment) OS=Aedes aegypti OX=7159 GN=CYP329B1 PE=4 SV=1 Q0IG09_AEDAE 59,444.70

AAEL013341-PA OS=Aedes aegypti OX=7159 GN=AAEL013341 PE=3 SV=1 Q16JF5_AEDAE 24,381.40

AAEL006605-PA OS=Aedes aegypti OX=7159 GN=AAEL006605 PE=4 SV=1 Q175N4_AEDAE 48,348.20

CLIP domain-containing serine protease OS=Aedes aegypti OX=7159 GN=5563616 PE=2 SV=1 Q1HRH0_AEDAE 39,656.10

AAEL000759-PA OS=Aedes aegypti OX=7159 GN=AAEL000759 PE=4 SV=1 Q17N98_AEDAE 30,196.30

AAEL012426-PA OS=Aedes aegypti OX=7159 GN=5576273 PE=4 SV=1 Q16M46_AEDAE 47,817.50

AAEL003011-PA OS=Aedes aegypti OX=7159 GN=5580278 PE=4 SV=1 Q17GH9_AEDAE 10,585.50

AAEL012165-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL012165 PE=3 SV=2 Q16MV7_AEDAE 27,291.70

AAEL001071-PA OS=Aedes aegypti OX=7159 GN=GSTD5 PE=4 SV=1 Q17MB1_AEDAE 23,855.10

Deoxyhypusine hydroxylase OS=Aedes aegypti OX=7159 GN=5567528 PE=3 SV=1 Q177G8_AEDAE 33,778.90 Q173G2_AEDAE,Q173G3_AEDAE,Q173 AAEL007151-PC OS=Aedes aegypti OX=7159 GN=AAEL007151 PE=4 SV=1 G4_AEDAE 98,927.70

AAEL001516-PB OS=Aedes aegypti OX=7159 GN=AAEL001516 PE=4 SV=1 Q17KX9_AEDAE 140,489.30

AAEL011288-PA OS=Aedes aegypti OX=7159 GN=5574648 PE=4 SV=1 Q16QH0_AEDAE 48,941.30

AAEL007888-PA OS=Aedes aegypti OX=7159 GN=AAEL007888 PE=4 SV=1 Q170K4_AEDAE 180,776.70

AAEL013786-PA OS=Aedes aegypti OX=7159 GN=AAEL013786 PE=4 SV=1 Q16GF8_AEDAE 21,116.00

AAEL005662-PA OS=Aedes aegypti OX=7159 GN=AAEL005662 PE=3 SV=1 Q179G0_AEDAE 50,330.80

155 UDP-glucose 4-epimerase OS=Aedes aegypti OX=7159 GN=5569141 PE=3 SV=1 Q172F3_AEDAE 38,454.70

AAEL010986-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL010986 PE=3 SV=1 Q16RE1_AEDAE 59,881.70

AAEL007987-PA OS=Aedes aegypti OX=7159 GN=AAEL007987 PE=4 SV=1 Q0IET8_AEDAE 86,412.60

Nicalin OS=Aedes aegypti OX=7159 GN=5567525 PE=3 SV=1 Q177H2_AEDAE 62,557.70

AAEL005429-PA OS=Aedes aegypti OX=7159 GN=AAEL005429 PE=4 SV=1 Q17A22_AEDAE 101,919.20

MICOS complex subunit MIC13 OS=Aedes aegypti OX=7159 GN=5576079 PE=2 SV=1 Q1HRM0_AEDAE 13,626.70

AAEL002023-PA OS=Aedes aegypti OX=7159 GN=AAEL002023 PE=3 SV=1 Q17JL4_AEDAE 48,029.70

Ribosomal protein S6 kinase OS=Aedes aegypti OX=7159 GN=AAEL004474 PE=3 SV=1 Q17CS0_AEDAE 89,039.90

AAEL008411-PA OS=Aedes aegypti OX=7159 GN=5570589 PE=4 SV=1 Q16YW8_AEDAE 28,015.80 3-hydroxyisobutyrate dehydrogenase (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL006850 PE=4 SV=1 Q16YA3_AEDAE 30,599.90

AAEL013889-PA OS=Aedes aegypti OX=7159 GN=AAEL013889 PE=4 SV=1 Q16HV5_AEDAE 9,636.30

AAEL003634-PA OS=Aedes aegypti OX=7159 GN=5578686 PE=2 SV=1 Q1HQM2_AEDAE 35,959.20

AAEL004247-PA OS=Aedes aegypti OX=7159 GN=5564459 PE=4 SV=1 Q17DB4_AEDAE 54,322.90

40S ribosomal protein S12 OS=Aedes aegypti OX=7159 GN=AAEL010299 PE=2 SV=1 Q1HRM3_AEDAE 15,354.80

AAEL010527-PA OS=Aedes aegypti OX=7159 GN=AAEL010527 PE=4 SV=1 Q16SQ0_AEDAE 69,208.90

AAEL004118-PA OS=Aedes aegypti OX=7159 GN=5564118 PE=4 SV=1 Q17DM9_AEDAE 36,410.80

AAEL004665-PA OS=Aedes aegypti OX=7159 GN=AAEL004665 PE=4 SV=1 Q17C71_AEDAE 17,807.50

AAEL011176-PA OS=Aedes aegypti OX=7159 GN=AAEL011176 PE=3 SV=1 Q16QU0_AEDAE 26,034.70

AAEL008217-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL008217 PE=3 SV=1 Q16ZF1_AEDAE 24,479.80

AAEL008328-PA OS=Aedes aegypti OX=7159 GN=AAEL008328 PE=4 SV=1 Q16Z33_AEDAE 14,799.10

AAEL004490-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL004490 PE=4 SV=1 Q0IFN4_AEDAE 31,647.10

AAEL010836-PA OS=Aedes aegypti OX=7159 GN=5568730 PE=4 SV=1 Q16RU1_AEDAE 59,308.80

AAEL017349-PA OS=Aedes aegypti OX=7159 GN=23687769 PE=2 SV=1 Q1HR69_AEDAE 72,288.30

AAEL005180-PA OS=Aedes aegypti OX=7159 GN=5566133 PE=4 SV=1 Q17AT7_AEDAE 85,449.20

AAEL006717-PA OS=Aedes aegypti OX=7159 GN=5568289 PE=4 SV=1 Q175A7_AEDAE 80,357.20

AAEL008508-PA OS=Aedes aegypti OX=7159 GN=5564517 PE=4 SV=1 Q16YK8_AEDAE 26,593.70

AAEL008562-PA OS=Aedes aegypti OX=7159 GN=5570792 PE=4 SV=1 Q16YF3_AEDAE 64,994.20

NAD kinase 2, mitochondrial OS=Aedes aegypti OX=7159 GN=AAEL011703 PE=3 SV=1 Q16PA6_AEDAE 46,071.70

AAEL005688-PA OS=Aedes aegypti OX=7159 GN=5566937 PE=3 SV=1 Q178Z5_AEDAE 60,987.10

AAEL011197-PA OS=Aedes aegypti OX=7159 GN=AAEL011197 PE=3 SV=1 Q16QR7_AEDAE 41,822.70

AAEL003188-PA OS=Aedes aegypti OX=7159 GN=AAEL003188 PE=3 SV=1 Q17G38_AEDAE 59,754.20

AAEL014935-PA OS=Aedes aegypti OX=7159 GN=AAEL014935 PE=3 SV=1 Q16F12_AEDAE,Q16U40_AEDAE 11,862.90

AAEL011017-PA OS=Aedes aegypti OX=7159 GN=AAEL011017 PE=4 SV=1 Q16RA8_AEDAE 82,523.60

60S ribosomal protein L2/L8 OS=Aedes aegypti OX=7159 GN=5567848 PE=2 SV=1 Q1HR32_AEDAE 28,632.10

AAEL000006-PA OS=Aedes aegypti OX=7159 GN=AAEL000006 PE=3 SV=1 Q0C737_AEDAE 71,633.50

AAEL007799-PA OS=Aedes aegypti OX=7159 GN=AAEL007799 PE=4 SV=1 Q170U4_AEDAE 55,436.80

AAEL000758-PB OS=Aedes aegypti OX=7159 GN=5566596 PE=3 SV=1 Q17N85_AEDAE,Q17N86_AEDAE 121,244.50

DNA helicase OS=Aedes aegypti OX=7159 GN=AAEL010086 PE=3 SV=1 Q16TZ0_AEDAE 97,796.40

AAEL003415-PA OS=Aedes aegypti OX=7159 GN=AAEL003415 PE=3 SV=1 Q17FG6_AEDAE 63,937.20

156 AAEL006386-PB OS=Aedes aegypti OX=7159 GN=AAEL006386 PE=4 SV=1 Q176F0_AEDAE 37,228.60

AAEL006171-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL006171 PE=4 SV=1 Q177C7_AEDAE 37,693.20

AAEL003509-PA OS=Aedes aegypti OX=7159 GN=AAEL003509 PE=4 SV=1 Q0IG44_AEDAE 50,125.80

AAEL012614-PA OS=Aedes aegypti OX=7159 GN=AAEL012614 PE=4 SV=1 Q16LK8_AEDAE 36,980.50

Mitogen-activated protein kinase OS=Aedes aegypti OX=7159 GN=5570571 PE=4 SV=1 Q16YY2_AEDAE,Q1L0R1_AEDAE 41,263.80

Proteasome subunit alpha type OS=Aedes aegypti OX=7159 GN=5565869 PE=3 SV=1 Q16EV7_AEDAE,Q16K65_AEDAE 28,322.70

AAEL006911-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL006911 PE=4 SV=1 Q174F6_AEDAE 95,850.10

AAEL012864-PA OS=Aedes aegypti OX=7159 GN=AAEL012864 PE=4 SV=1 Q16KU6_AEDAE 28,139.30

Proline dehydrogenase (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL013431 PE=3 SV=1 Q16J67_AEDAE 44,293.50

AAEL013359-PB OS=Aedes aegypti OX=7159 GN=AAEL013359 PE=2 SV=1 Q1HR82_AEDAE 45,559.20

AAEL002764-PA OS=Aedes aegypti OX=7159 GN=AAEL002764 PE=4 SV=1 Q17H89_AEDAE 51,972.20

AAEL013113-PA OS=Aedes aegypti OX=7159 GN=5577258 PE=4 SV=1 Q16K50_AEDAE 32,331.60

Alpha-mannosidase (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL005763 PE=3 SV=1 Q178V9_AEDAE 115,351.80

AAEL010841-PA OS=Aedes aegypti OX=7159 GN=AAEL010841 PE=4 SV=1 Q16RU8_AEDAE 130,274.80

Ubiquitin carboxyl-terminal hydrolase OS=Aedes aegypti OX=7159 GN=AAEL010966 PE=3 SV=1 Q16RF6_AEDAE 37,171.40

AAEL012479-PA OS=Aedes aegypti OX=7159 GN=AAEL012479 PE=4 SV=1 Q16LZ4_AEDAE 84,447.00

AAEL001605-PA OS=Aedes aegypti OX=7159 GN=5571484 PE=4 SV=1 Q17KQ2_AEDAE 29,747.00

AAEL012952-PA OS=Aedes aegypti OX=7159 GN=5577028 PE=1 SV=1 Q16KL9_AEDAE 25,385.50

AAEL004527-PA OS=Aedes aegypti OX=7159 GN=5564994 PE=4 SV=1 Q17CL6_AEDAE 26,077.60

AAEL002723-PA OS=Aedes aegypti OX=7159 GN=AAEL002723 PE=3 SV=1 Q17HF0_AEDAE 34,026.50 Mothers against decapentaplegic homolog (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL013896 PE=3 SV=1 Q16HU7_AEDAE 71,730.60

AAEL013538-PA OS=Aedes aegypti OX=7159 GN=AAEL013538 PE=4 SV=1 Q16IV8_AEDAE 51,336.30

AAEL003664-PB OS=Aedes aegypti OX=7159 GN=5578794 PE=4 SV=1 Q17EQ5_AEDAE 45,698.80

AAEL000750-PA OS=Aedes aegypti OX=7159 GN=AAEL000750 PE=4 SV=1 Q17NB6_AEDAE 75,275.70

AAEL002493-PA OS=Aedes aegypti OX=7159 GN=AAEL002493 PE=3 SV=1 Q17I51_AEDAE 36,351.70

AAEL004583-PC OS=Aedes aegypti OX=7159 GN=AAEL004583 PE=4 SV=1 Q17CF1_AEDAE 35,886.60

AAEL005258-PA OS=Aedes aegypti OX=7159 GN=5566233 PE=4 SV=1 Q17AK2_AEDAE 26,652.30

AAEL004450-PA OS=Aedes aegypti OX=7159 GN=5564862 PE=3 SV=1 Q17CQ6_AEDAE 12,441.90

AAEL001054-PA (Fragment) OS=Aedes aegypti OX=7159 GN=GSTD4 PE=4 SV=2 Q17MB8_AEDAE 24,101.80

Sphingomyelin phosphodiesterase OS=Aedes aegypti OX=7159 GN=AAEL002413 PE=3 SV=1 Q17IB7_AEDAE 73,004.00

AAEL001061-PB OS=Aedes aegypti OX=7159 GN=GSTD1 PE=3 SV=1 J9HHL7_AEDAE 23,794.30

AAEL015304-PA OS=Aedes aegypti OX=7159 GN=AAEL015304 PE=4 SV=1 Q16EA5_AEDAE,Q17B27_AEDAE 35,727.20

AAEL009188-PA OS=Aedes aegypti OX=7159 GN=AAEL009188 PE=4 SV=1 Q16WL2_AEDAE 26,720.80

AAEL008862-PA OS=Aedes aegypti OX=7159 GN=AAEL008862 PE=4 SV=1 Q16XJ0_AEDAE 112,912.60

AAEL005611-PA OS=Aedes aegypti OX=7159 GN=5566734 PE=3 SV=1 Q179I9_AEDAE 29,244.70

AAEL000081-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL000081 PE=4 SV=1 Q0C7B7_AEDAE 102,825.20

AAEL005856-PA OS=Aedes aegypti OX=7159 GN=5579854 PE=4 SV=1 Q178J5_AEDAE 69,734.70

Mitochondrial pyruvate carrier OS=Aedes aegypti OX=7159 GN=5571755 PE=3 SV=1 Q16WA8_AEDAE 13,293.80

Actin-related protein 2/3 complex subunit OS=Aedes aegypti OX=7159 GN=AAEL007546 PE=3 SV=1 Q171R5_AEDAE 41,679.50

157 AAEL007752-PA OS=Aedes aegypti OX=7159 GN=5569566 PE=2 SV=1 Q1HRM7_AEDAE 9,829.50

MICOS complex subunit OS=Aedes aegypti OX=7159 GN=AAEL005897 PE=4 SV=1 Q0IFC3_AEDAE 25,149.20

AAEL006473-PA OS=Aedes aegypti OX=7159 GN=5568016 PE=4 SV=1 Q176A9_AEDAE 27,185.50

AAEL014749-PA OS=Aedes aegypti OX=7159 GN=AAEL014749 PE=4 SV=1 Q16FI0_AEDAE 22,518.70

AAEL006031-PA OS=Aedes aegypti OX=7159 GN=AAEL006031 PE=4 SV=1 Q177U6_AEDAE 70,587.10 Trafficking protein particle complex subunit OS=Aedes aegypti OX=7159 GN=AAEL007988 PE=3 SV=1 Q0IEU7_AEDAE 20,592.90

AAEL013757-PA OS=Aedes aegypti OX=7159 GN=AAEL013757 PE=4 SV=1 Q16I87_AEDAE 83,886.50

AAEL004486-PA OS=Aedes aegypti OX=7159 GN=AAEL004486 PE=4 SV=1 Q0IFN8_AEDAE 39,097.80

AAEL009948-PA OS=Aedes aegypti OX=7159 GN=AAEL009948 PE=3 SV=1 Q16UC5_AEDAE 52,671.70

AAEL014177-PA OS=Aedes aegypti OX=7159 GN=5563849 PE=3 SV=1 Q16H28_AEDAE 20,183.10

AAEL014539-PA OS=Aedes aegypti OX=7159 GN=AAEL014539 PE=4 SV=1 Q16G34_AEDAE 114,832.30

AAEL001698-PA OS=Aedes aegypti OX=7159 GN=5571825 PE=4 SV=1 Q17KG9_AEDAE 25,036.20

AAEL007892-PA OS=Aedes aegypti OX=7159 GN=AAEL007892 PE=3 SV=1 Q170J3_AEDAE 68,346.10

AAEL012427-PA OS=Aedes aegypti OX=7159 GN=AAEL012427 PE=4 SV=1 Q16M47_AEDAE 50,341.70

AAEL000642-PA OS=Aedes aegypti OX=7159 GN=5565449 PE=4 SV=1 Q17NL6_AEDAE 70,057.10

AAEL008599-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL008599 PE=4 SV=1 Q16YB8_AEDAE 44,807.20

AAEL001154-PA OS=Aedes aegypti OX=7159 GN=AAEL001154 PE=4 SV=1 Q17M31_AEDAE 35,878.00

Oxysterol-binding protein OS=Aedes aegypti OX=7159 GN=AAEL011953 PE=3 SV=1 Q16NJ5_AEDAE 57,396.80

AAEL011873-PA OS=Aedes aegypti OX=7159 GN=AAEL011873 PE=2 SV=1 Q1HR39_AEDAE 16,326.00

AAEL014799-PB OS=Aedes aegypti OX=7159 GN=AAEL014799 PE=4 SV=1 Q16FE9_AEDAE 28,803.40

Phosphoacetylglucosamine mutase OS=Aedes aegypti OX=7159 GN=5574930 PE=3 SV=1 Q16PT5_AEDAE 60,608.10

AAEL009088-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL009088 PE=4 SV=1 Q16WV9_AEDAE 64,545.40

AAEL011130-PA OS=Aedes aegypti OX=7159 GN=5574396 PE=3 SV=1 Q16R02_AEDAE 39,261.20

AAEL006810-PA OS=Aedes aegypti OX=7159 GN=CYP9J19 PE=3 SV=1 Q174S8_AEDAE 62,167.10

UDP-glucuronosyltransferase (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL010386 PE=3 SV=1 Q16T56_AEDAE 58,979.00

T-complex protein 1 subunit gamma OS=Aedes aegypti OX=7159 GN=5572840 PE=3 SV=1 Q16U15_AEDAE 59,615.00

AAEL010345-PA OS=Aedes aegypti OX=7159 GN=5573242 PE=4 SV=1 Q16TA3_AEDAE 25,686.20

T-complex protein 1 subunit eta OS=Aedes aegypti OX=7159 GN=5578459 PE=3 SV=1 Q17P27_AEDAE 59,645.30

AAEL006793-PA OS=Aedes aegypti OX=7159 GN=CYP9J9 PE=3 SV=2 Q174T1_AEDAE 62,566.00

AAEL010340-PA OS=Aedes aegypti OX=7159 GN=AAEL010340 PE=2 SV=1 Q1HQW9_AEDAE 20,413.60

AAEL014734-PA OS=Aedes aegypti OX=7159 GN=5565118 PE=4 SV=1 Q16FJ9_AEDAE 102,772.30

AAEL003886-PA OS=Aedes aegypti OX=7159 GN=5579164 PE=4 SV=1 Q17EA7_AEDAE 44,295.20

Eukaryotic translation initiation factor 2A OS=Aedes aegypti OX=7159 GN=AAEL008248 PE=3 SV=1 Q16ZB6_AEDAE 69,744.80

AAEL007488-PA OS=Aedes aegypti OX=7159 GN=AAEL007488 PE=4 SV=1 Q171X2_AEDAE 57,084.70

AAEL006815-PA OS=Aedes aegypti OX=7159 GN=CYP9J16 PE=3 SV=1 Q174T4_AEDAE 61,668.80

AAEL005428-PA OS=Aedes aegypti OX=7159 GN=5566457 PE=4 SV=1 Q17A64_AEDAE 12,971.00

AAEL013069-PA OS=Aedes aegypti OX=7159 GN=5580329 PE=2 SV=1 Q1HRQ2_AEDAE 34,891.90

AAEL011527-PA OS=Aedes aegypti OX=7159 GN=5574929 PE=4 SV=1 Q16PT4_AEDAE 36,230.60 Succinate--CoA ligase [GDP-forming] subunit beta, mitochondrial OS=Aedes aegypti OX=7159 GN=AAEL005552 PE=3 SV=1 Q179P9_AEDAE 45,647.60

158 AAEL003909-PA OS=Aedes aegypti OX=7159 GN=5563704 PE=4 SV=1 Q17E72_AEDAE 45,934.20

Glycogen [starch] synthase OS=Aedes aegypti OX=7159 GN=5564353 PE=3 SV=1 Q17DG0_AEDAE 79,597.80

AAEL005991-PA OS=Aedes aegypti OX=7159 GN=5567322 PE=3 SV=1 Q177Y5_AEDAE 34,759.00

AAEL005990-PA OS=Aedes aegypti OX=7159 GN=AAEL005990 PE=4 SV=1 Q177Y1_AEDAE 27,726.10

AAEL002683-PA OS=Aedes aegypti OX=7159 GN=AAEL002683 PE=4 SV=1 Q17HF7_AEDAE 148,813.30

AAEL004467-PA OS=Aedes aegypti OX=7159 GN=AAEL004467 PE=2 SV=1 Q1HQQ4_AEDAE 20,635.60

AAEL004425-PA OS=Aedes aegypti OX=7159 GN=5564775 PE=4 SV=1 Q17CU1_AEDAE 24,837.80 1-acyl-sn-glycerol-3-phosphate acyltransferase OS=Aedes aegypti OX=7159 GN=AAEL011902 PE=3 SV=1 Q16NQ2_AEDAE 34,736.80 1-acyl-sn-glycerol-3-phosphate acyltransferase OS=Aedes aegypti OX=7159 GN=AAEL001000 PE=3 SV=1 Q17MK3_AEDAE 45,439.50

26S proteasome subunit S9 OS=Aedes aegypti OX=7159 GN=5576266 PE=4 SV=1 Q16M56_AEDAE 46,782.20

AAEL009700-PA OS=Aedes aegypti OX=7159 GN=AAEL009700 PE=4 SV=1 Q16V29_AEDAE 33,122.40

Arp2/3 complex 34 kDa subunit OS=Aedes aegypti OX=7159 GN=5572799 PE=3 SV=1 Q17JV8_AEDAE 35,168.80

26S proteasome regulatory subunit 7, psd7 OS=Aedes aegypti OX=7159 GN=5573753 PE=4 SV=1 Q17PP0_AEDAE 37,851.20

AAEL002565-PA OS=Aedes aegypti OX=7159 GN=AAEL002565 PE=4 SV=1 Q17HV9_AEDAE 797,131.70

Kinesin-like protein OS=Aedes aegypti OX=7159 GN=AAEL008542 PE=3 SV=1 Q16YJ5_AEDAE 105,854.30

AAEL011255-PA OS=Aedes aegypti OX=7159 GN=5574612 PE=4 SV=1 Q16QL1_AEDAE 68,856.10

NADH-cytochrome b5 reductase OS=Aedes aegypti OX=7159 GN=AAEL013225 PE=3 SV=1 Q16JT1_AEDAE 35,581.50

AAEL001173-PA OS=Aedes aegypti OX=7159 GN=5568818 PE=4 SV=1 Q17M12_AEDAE 60,400.80

AAEL014186-PA OS=Aedes aegypti OX=7159 GN=AAEL801117_a PE=4 SV=1 Q16H20_AEDAE,Q1HQV4_AEDAE 37,575.20

Spectrin beta chain OS=Aedes aegypti OX=7159 GN=AAEL005845 PE=3 SV=1 Q178J6_AEDAE 266,203.00

AAEL004320-PA OS=Aedes aegypti OX=7159 GN=5564550 PE=4 SV=1 Q17D61_AEDAE 183,929.00

AAEL017373-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017373 PE=4 SV=1 J9HT77_AEDAE 9,345.40

AAEL000840-PA OS=Aedes aegypti OX=7159 GN=AAEL000840 PE=4 SV=1 Q17N17_AEDAE 58,564.90

AAEL001158-PB OS=Aedes aegypti OX=7159 GN=AAEL001158 PE=3 SV=1 Q17M23_AEDAE 37,312.90

AAEL003645-PA OS=Aedes aegypti OX=7159 GN=AAEL003645 PE=3 SV=1 Q17EY3_AEDAE 45,015.10

UTP--glucose-1-phosphate uridylyltransferase OS=Aedes aegypti OX=7159 GN=UGP PE=2 SV=1 Q58I82_AEDAE 57,973.00

AAEL007532-PA OS=Aedes aegypti OX=7159 GN=AAEL007532 PE=4 SV=1 Q171U4_AEDAE 27,990.70

AAEL009646-PA OS=Aedes aegypti OX=7159 GN=AAEL009646 PE=4 SV=1 Q0IEL0_AEDAE 66,775.40

Eukaryotic translation initiation factor 6 OS=Aedes aegypti OX=7159 GN=5578734 PE=3 SV=1 Q17EW3_AEDAE 26,086.90

AAEL003876-PA OS=Aedes aegypti OX=7159 GN=AAEL003876 PE=4 SV=1 Q17E92_AEDAE 39,554.20

AAEL006365-PA OS=Aedes aegypti OX=7159 GN=AAEL006365 PE=4 SV=1 Q176H1_AEDAE 29,323.50

AAEL002065-PA OS=Aedes aegypti OX=7159 GN=5573392 PE=4 SV=1 Q17JE1_AEDAE 34,590.60

Acyl-coenzyme A oxidase OS=Aedes aegypti OX=7159 GN=5570810 PE=3 SV=1 Q16YD0_AEDAE 74,962.40

AAEL008702-PA OS=Aedes aegypti OX=7159 GN=AAEL008702 PE=4 SV=1 Q16Y04_AEDAE 57,138.90

AAEL001840-PA OS=Aedes aegypti OX=7159 GN=AAEL001840 PE=4 SV=1 Q17K16_AEDAE 48,074.70

AAEL011088-PA OS=Aedes aegypti OX=7159 GN=5574368 PE=4 SV=1 Q16R40_AEDAE 32,645.40

AAEL003106-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL003106 PE=3 SV=1 Q17GE1_AEDAE 49,561.50

AAEL004465-PA OS=Aedes aegypti OX=7159 GN=AAEL004465 PE=3 SV=1 Q17CP6_AEDAE 26,488.50

AAEL008185-PA OS=Aedes aegypti OX=7159 GN=5570228 PE=4 SV=1 Q16ZJ0_AEDAE 45,265.50

AAEL002929-PA OS=Aedes aegypti OX=7159 GN=AAEL002929 PE=4 SV=1 Q17GP6_AEDAE 62,085.40

Annexin OS=Aedes aegypti OX=7159 GN=5566468 PE=3 SV=1 Q17A52_AEDAE 36,102.50

159 AAEL017481-PA OS=Aedes aegypti OX=7159 GN=23687901 PE=4 SV=1 J9HJK5_AEDAE 18,679.20

AAEL010057-PA OS=Aedes aegypti OX=7159 GN=5572845 PE=4 SV=1 Q16U07_AEDAE 44,677.50

AAEL005666-PA OS=Aedes aegypti OX=7159 GN=5566822 PE=3 SV=1 Q179D2_AEDAE 63,953.50

AAEL002705-PA OS=Aedes aegypti OX=7159 GN=AAEL002705 PE=4 SV=1 Q17HC3_AEDAE 139,144.60

AAEL003444-PA OS=Aedes aegypti OX=7159 GN=CASPS19 PE=3 SV=1 Q17FE3_AEDAE 33,549.60

AAEL013967-PA OS=Aedes aegypti OX=7159 GN=AAEL013967 PE=4 SV=1 Q16HN6_AEDAE 63,448.50

AAEL008358-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL008358 PE=4 SV=1 Q0IEQ0_AEDAE 81,284.40

AAEL012743-PA OS=Aedes aegypti OX=7159 GN=5576748 PE=3 SV=1 Q16L82_AEDAE 79,497.80

Signal recognition particle subunit SRP68 OS=Aedes aegypti OX=7159 GN=5572847 PE=3 SV=1 Q16U06_AEDAE 69,588.10

AAEL008594-PA OS=Aedes aegypti OX=7159 GN=5570821 PE=4 SV=1 Q16YB4_AEDAE 27,580.20

AAEL014829-PA OS=Aedes aegypti OX=7159 GN=AAEL014829 PE=3 SV=1 Q16FC2_AEDAE 52,685.70

AAEL001769-PA OS=Aedes aegypti OX=7159 GN=AAEL001769 PE=3 SV=1 Q17KA8_AEDAE 78,789.30

AAEL013020-PA OS=Aedes aegypti OX=7159 GN=AAEL013020 PE=4 SV=1 Q16KF3_AEDAE 36,456.50

AAEL004239-PA OS=Aedes aegypti OX=7159 GN=5564398 PE=4 SV=1 Q17DE4_AEDAE 26,399.60

AAEL004367-PA OS=Aedes aegypti OX=7159 GN=AAEL004367 PE=3 SV=1 Q17D18_AEDAE 22,964.40

AAEL013233-PA OS=Aedes aegypti OX=7159 GN=PIWI5 PE=3 SV=1 Q16JS2_AEDAE 100,526.90

AAEL008687-PA OS=Aedes aegypti OX=7159 GN=AAEL008687 PE=2 SV=1 Q16Y15_AEDAE 36,379.70

AAEL009020-PA OS=Aedes aegypti OX=7159 GN=GSTT3 PE=3 SV=2 Q16X21_AEDAE 27,208.00

AAEL013936-PD (Fragment) OS=Aedes aegypti OX=7159 GN=SRPN4 PE=3 SV=1 J9HTU0_AEDAE 60,231.70

AAEL009414-PA OS=Aedes aegypti OX=7159 GN=5571907 PE=4 SV=1 Q16VZ4_AEDAE 46,068.40

40S ribosomal protein S7 OS=Aedes aegypti OX=7159 GN=5572090 PE=3 SV=1 Q0IEM1_AEDAE 22,106.30

AAEL000003-PA OS=Aedes aegypti OX=7159 GN=AAEL000003 PE=4 SV=1 Q0C764_AEDAE 74,456.70

AAEL004855-PA OS=Aedes aegypti OX=7159 GN=5565544 PE=2 SV=1 Q1HRU0_AEDAE 32,953.30

AAEL008878-PB OS=Aedes aegypti OX=7159 GN=5571189 PE=4 SV=1 Q16XF8_AEDAE 39,942.20

AAEL007693-PA OS=Aedes aegypti OX=7159 GN=AAEL007693 PE=4 SV=1 Q171D6_AEDAE 88,480.00

AAEL006337-PA OS=Aedes aegypti OX=7159 GN=5567902 PE=4 SV=1 Q176I2_AEDAE 67,430.20

AAEL009556-PA OS=Aedes aegypti OX=7159 GN=5572143 PE=4 SV=1 Q16VI3_AEDAE 17,665.00

AAEL009951-PA OS=Aedes aegypti OX=7159 GN=AAEL009951 PE=4 SV=1 Q16UC6_AEDAE 37,961.40

AAEL010371-PA OS=Aedes aegypti OX=7159 GN=AAEL010371 PE=4 SV=1 Q16T50_AEDAE 24,742.70 Mitochondrial import inner membrane translocase subunit TIM44 OS=Aedes aegypti OX=7159 GN=5576864 PE=3 SV=1 Q16KX3_AEDAE 49,027.70

AAEL012679-PA OS=Aedes aegypti OX=7159 GN=5576655 PE=4 SV=1 Q16LD8_AEDAE 49,202.20

AAEL001865-PA OS=Aedes aegypti OX=7159 GN=5572650 PE=4 SV=1 Q17JZ6_AEDAE 19,427.80

AAEL005054-PA OS=Aedes aegypti OX=7159 GN=AAEL005054 PE=4 SV=1 Q17B69_AEDAE 33,628.70

AAEL008663-PA OS=Aedes aegypti OX=7159 GN=AAEL008663 PE=4 SV=1 Q16Y52_AEDAE 38,910.30

26S protease regulatory subunit 6a OS=Aedes aegypti OX=7159 GN=5574980 PE=3 SV=1 Q17HZ7_AEDAE 47,756.30

AAEL012781-PA OS=Aedes aegypti OX=7159 GN=AAEL012781 PE=4 SV=1 Q16L37_AEDAE 62,928.80

AAEL007910-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL007910 PE=4 SV=1 Q170I5_AEDAE 30,539.60

Tubulin alpha chain OS=Aedes aegypti OX=7159 GN=5577489 PE=3 SV=1 Q16JS3_AEDAE 49,922.40

40S ribosomal protein S8 OS=Aedes aegypti OX=7159 GN=5570139 PE=2 SV=1 Q1HRQ9_AEDAE 23,417.60

AAEL007631-PA OS=Aedes aegypti OX=7159 GN=AAEL007631 PE=4 SV=1 Q171I6_AEDAE 41,693.60

AAEL001946-PA OS=Aedes aegypti OX=7159 GN=5573016 PE=4 SV=1 Q17JP0_AEDAE 40,416.60

AAEL001266-PA OS=Aedes aegypti OX=7159 GN=AAEL001266 PE=4 SV=1 Q17LT0_AEDAE 17,175.70

160 AAEL006743-PA OS=Aedes aegypti OX=7159 GN=AAEL006743 PE=2 SV=1 Q1HQZ2_AEDAE 21,175.10

AAEL001569-PA OS=Aedes aegypti OX=7159 GN=5571262 PE=2 SV=1 Q1HQF6_AEDAE 19,591.60

AAEL011960-PA OS=Aedes aegypti OX=7159 GN=5575632 PE=4 SV=1 Q16NI7_AEDAE 154,564.40

AAEL003383-PA OS=Aedes aegypti OX=7159 GN=5577991 PE=3 SV=1 Q17FM1_AEDAE 42,716.60 ATP synthase-coupling factor 6, mitochondrial OS=Aedes aegypti OX=7159 GN=AAEL002813 PE=3 SV=1 Q17H51_AEDAE 11,626.70

AAEL011123-PA OS=Aedes aegypti OX=7159 GN=AAEL011123 PE=3 SV=1 Q16QY9_AEDAE 48,265.00

AAEL000213-PA OS=Aedes aegypti OX=7159 GN=AAEL000213 PE=4 SV=1 Q17Q17_AEDAE 38,064.70

AAEL004902-PA OS=Aedes aegypti OX=7159 GN=5565652 PE=4 SV=1 Q17BP4_AEDAE 23,709.40

26S proteasome regulatory subunit S3 OS=Aedes aegypti OX=7159 GN=5574100 PE=4 SV=1 Q17IR8_AEDAE 49,278.20

AAEL008216-PA OS=Aedes aegypti OX=7159 GN=5570276 PE=3 SV=1 Q16ZG5_AEDAE 98,745.60

AAEL000624-PA OS=Aedes aegypti OX=7159 GN=AAEL000624 PE=4 SV=1 Q17NP8_AEDAE 85,321.50

AAEL002886-PA OS=Aedes aegypti OX=7159 GN=5576472 PE=3 SV=1 Q17GT4_AEDAE 56,707.10

AAEL014915-PA OS=Aedes aegypti OX=7159 GN=AAEL014915 PE=4 SV=1 Q16F31_AEDAE 43,224.90

AAEL001218-PA OS=Aedes aegypti OX=7159 GN=5569067 PE=3 SV=1 Q17LY0_AEDAE 108,126.70

AAEL003791-PA OS=Aedes aegypti OX=7159 GN=AAEL003791 PE=4 SV=1 Q17EI0_AEDAE 64,298.50

AAEL015171-PA OS=Aedes aegypti OX=7159 GN=AAEL015171 PE=4 SV=1 Q16EH4_AEDAE,Q16H33_AEDAE 27,155.50

AAEL010506-PA OS=Aedes aegypti OX=7159 GN=5573467 PE=4 SV=1 Q16SS3_AEDAE 41,707.60

AAEL001845-PA OS=Aedes aegypti OX=7159 GN=AAEL001845 PE=4 SV=1 Q17JY1_AEDAE 29,293.20

DNA topoisomerase 2 (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL012584 PE=3 SV=1 Q0IEA2_AEDAE 148,507.00

AAEL001251-PA OS=Aedes aegypti OX=7159 GN=AAEL001251 PE=4 SV=1 Q17LT2_AEDAE 33,714.70

Aminopeptidase OS=Aedes aegypti OX=7159 GN=AAEL005821 PE=3 SV=1 Q178P3_AEDAE 107,219.40

AAEL007962-PA OS=Aedes aegypti OX=7159 GN=GSTe4 PE=2 SV=1 Q5PY78_AEDAE 25,047.40

AAEL011081-PB OS=Aedes aegypti OX=7159 GN=5574363 PE=4 SV=1 Q16R44_AEDAE 29,905.70

AAEL010585-PA OS=Aedes aegypti OX=7159 GN=5573545 PE=3 SV=1 Q16SH1_AEDAE 88,808.80

AAEL007032-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL007032 PE=4 SV=1 Q173S5_AEDAE 51,649.20

AAEL002523-PA OS=Aedes aegypti OX=7159 GN=5574995 PE=4 SV=1 Q17HY2_AEDAE 10,553.40

AAEL000182-PA OS=Aedes aegypti OX=7159 GN=5570020 PE=4 SV=1 Q17PZ2_AEDAE 6,572.00

AAEL009520-PA OS=Aedes aegypti OX=7159 GN=AAEL009520 PE=4 SV=1 Q16VL8_AEDAE 91,225.60

Ferrochelatase OS=Aedes aegypti OX=7159 GN=5566464 PE=3 SV=1 Q17A56_AEDAE 44,274.50

AAEL003418-PA OS=Aedes aegypti OX=7159 GN=5578101 PE=2 SV=1 Q1HRP4_AEDAE 21,737.40

AAEL006224-PA OS=Aedes aegypti OX=7159 GN=AAEL006224 PE=4 SV=1 Q176Z2_AEDAE 29,312.70

AAEL011764-PA OS=Aedes aegypti OX=7159 GN=PPO10 PE=4 SV=1 Q16P45_AEDAE 78,314.70

AAEL009475-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL009475 PE=3 SV=1 Q16VN4_AEDAE 94,994.40

Histone deacetylase OS=Aedes aegypti OX=7159 GN=AAEL004586 PE=3 SV=1 Q17CF0_AEDAE 55,240.90

AAEL009764-PB OS=Aedes aegypti OX=7159 GN=AAEL009764 PE=3 SV=1 Q16UX2_AEDAE 68,354.50

AAEL011076-PA OS=Aedes aegypti OX=7159 GN=AAEL011076 PE=4 SV=1 Q16R47_AEDAE 38,800.40

Receptor expression-enhancing protein OS=Aedes aegypti OX=7159 GN=AAEL009604 PE=3 SV=1 Q16VD7_AEDAE 20,607.90

AAEL017207-PA OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017207 PE=4 SV=1 J9EB92_AEDAE 157,802.20

60S acidic ribosomal protein P1 OS=Aedes aegypti OX=7159 GN=5578368 PE=2 SV=1 Q1HRP7_AEDAE 11,479.30

ATP synthase subunit d, mitochondrial OS=Aedes aegypti OX=7159 GN=5564798 PE=2 SV=1 Q1HR21_AEDAE 19,557.20

Lon protease homolog, mitochondrial OS=Aedes aegypti OX=7159 GN=5568011 PE=3 SV=1 Q176B8_AEDAE 107,751.40

161 AAEL010296-PA OS=Aedes aegypti OX=7159 GN=5573091 PE=4 SV=1 Q16TC4_AEDAE 77,233.40

AAEL015235-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL015235 PE=3 SV=1 Q16EE7_AEDAE,Q16N99_AEDAE 45,752.60

AAEL008166-PA OS=Aedes aegypti OX=7159 GN=AAEL008166 PE=4 SV=1 Q16ZI5_AEDAE 44,274.30

AAEL002833-PA OS=Aedes aegypti OX=7159 GN=AAEL002833 PE=3 SV=1 Q17H05_AEDAE 38,046.40

AAEL002340-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL002340 PE=4 SV=1 Q17IJ7_AEDAE 113,252.80

AAEL001627-PA OS=Aedes aegypti OX=7159 GN=UAP PE=2 SV=1 Q6GW02_AEDAE 54,599.60

AAEL005609-PA OS=Aedes aegypti OX=7159 GN=5566737 PE=3 SV=1 Q179I6_AEDAE 27,695.40

AAEL011143-PA OS=Aedes aegypti OX=7159 GN=AAEL011143 PE=4 SV=1 Q16QX7_AEDAE 33,899.50

AAEL001069-PA OS=Aedes aegypti OX=7159 GN=AAEL001069 PE=4 SV=1 Q17MD0_AEDAE 118,745.40

AAEL017437-PA OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017437 PE=4 SV=1 J9HSJ4_AEDAE 59,196.10

AAEL009483-PA OS=Aedes aegypti OX=7159 GN=5572008 PE=4 SV=1 Q16VN1_AEDAE 18,007.50

Polyadenylate-binding protein OS=Aedes aegypti OX=7159 GN=5573211 PE=2 SV=1 Q1HR66_AEDAE 69,724.00

AAEL012238-PA OS=Aedes aegypti OX=7159 GN=5576010 PE=2 SV=1 Q1HQU6_AEDAE 14,213.00

AAEL006415-PA OS=Aedes aegypti OX=7159 GN=AAEL006415 PE=3 SV=1 Q0IF77_AEDAE 134,879.40

AAEL006677-PA OS=Aedes aegypti OX=7159 GN=AAEL006677 PE=4 SV=1 Q175G1_AEDAE 87,435.30

AAEL002386-PA OS=Aedes aegypti OX=7159 GN=AAEL002386 PE=4 SV=1 Q17ID2_AEDAE 71,304.40

Glycylpeptide N-tetradecanoyltransferase OS=Aedes aegypti OX=7159 GN=5565981 PE=3 SV=1 Q17B42_AEDAE 57,451.20

Kinase OS=Aedes aegypti OX=7159 GN=AAEL002846 PE=3 SV=1 Q17H08_AEDAE 47,018.10

AAEL009490-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL009490 PE=3 SV=1 Q16VN7_AEDAE 150,594.00

Anion exchange protein (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL001269 PE=3 SV=1 Q17LT4_AEDAE 130,722.30

AAEL014441-PA OS=Aedes aegypti OX=7159 GN=AAEL014441 PE=4 SV=1 Q16GB2_AEDAE 46,787.60

AAEL011776-PA OS=Aedes aegypti OX=7159 GN=5575372 PE=4 SV=1 Q16P33_AEDAE 33,058.70

AAEL005839-PA OS=Aedes aegypti OX=7159 GN=AAEL005839 PE=4 SV=1 Q178N8_AEDAE 40,089.70

AAEL009160-PA OS=Aedes aegypti OX=7159 GN=AAEL009160 PE=3 SV=1 Q0IEP2_AEDAE 18,368.10

AAEL010798-PA OS=Aedes aegypti OX=7159 GN=5573885 PE=3 SV=1 Q16RW0_AEDAE 19,190.40

AAEL004284-PA OS=Aedes aegypti OX=7159 GN=5564516 PE=4 SV=1 Q17D81_AEDAE 12,120.10

AAEL004264-PA OS=Aedes aegypti OX=7159 GN=AAEL004264 PE=4 SV=1 Q17DD6_AEDAE 32,109.00

AAEL007506-PA OS=Aedes aegypti OX=7159 GN=AAEL007506 PE=4 SV=1 Q171W5_AEDAE 390,100.40

AAEL006196-PA OS=Aedes aegypti OX=7159 GN=5567616 PE=4 SV=1 Q177B1_AEDAE 66,957.00

AAEL010582-PA OS=Aedes aegypti OX=7159 GN=GSTD11 PE=3 SV=1 Q16SH7_AEDAE 25,897.10

AAEL004778-PA OS=Aedes aegypti OX=7159 GN=5565367 PE=3 SV=1 Q17BX3_AEDAE 67,795.90

AAEL007763-PA OS=Aedes aegypti OX=7159 GN=5569581 PE=4 SV=1 Q0IEV8_AEDAE,Q1HR51_AEDAE 44,711.00

AAEL000339-PA OS=Aedes aegypti OX=7159 GN=AAEL000339 PE=3 SV=1 Q17PE9_AEDAE 53,689.20

Clathrin light chain (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL000934 PE=3 SV=1 Q17MM9_AEDAE,Q17MN0_AEDAE 32,394.70

AAEL007946-PA OS=Aedes aegypti OX=7159 GN=GSTE6 PE=4 SV=2 Q170C7_AEDAE 24,754.80

AAEL014038-PA OS=Aedes aegypti OX=7159 GN=5579201 PE=4 SV=1 Q16HG3_AEDAE 33,147.00

AAEL001022-PA OS=Aedes aegypti OX=7159 GN=AAEL001022 PE=4 SV=1 Q17ME9_AEDAE 34,132.30

AAEL008164-PA OS=Aedes aegypti OX=7159 GN=5570204 PE=4 SV=1 Q16ZL1_AEDAE 39,501.60

AAEL010042-PA OS=Aedes aegypti OX=7159 GN=AAEL010042 PE=4 SV=1 Q16U28_AEDAE 76,595.80

AAEL012167-PA OS=Aedes aegypti OX=7159 GN=AAEL012167 PE=4 SV=1 Q16MW4_AEDAE 49,384.40

AAEL010514-PA OS=Aedes aegypti OX=7159 GN=AAEL010514 PE=4 SV=1 Q16SR4_AEDAE 35,041.30

162 26S protease regulatory subunit OS=Aedes aegypti OX=7159 GN=5577035 PE=3 SV=1 Q16KL0_AEDAE 48,616.20

60S ribosomal protein L19 OS=Aedes aegypti OX=7159 GN=AAEL012733 PE=4 SV=1 Q16L85_AEDAE 20,257.00

AAEL002031-PA OS=Aedes aegypti OX=7159 GN=CYP12F7 PE=3 SV=2 Q17JN3_AEDAE 59,250.90

AAEL008006-PA OS=Aedes aegypti OX=7159 GN=AAEL008006 PE=4 SV=1 Q0IEU5_AEDAE 35,069.70

AAEL007696-PA OS=Aedes aegypti OX=7159 GN=REL1 PE=2 SV=1 Q534Q6_AEDAE 64,869.90

26S proteasome regulatory chain 4 OS=Aedes aegypti OX=7159 GN=5575828 PE=2 SV=1 Q1HQY1_AEDAE 49,133.20

AAEL014436-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL014436 PE=4 SV=1 Q16GB6_AEDAE 94,682.50

AAEL001194-PA OS=Aedes aegypti OX=7159 GN=AAEL001194 PE=4 SV=1 Q17M16_AEDAE 265,059.10

AAEL013983-PA OS=Aedes aegypti OX=7159 GN=AAEL013983 PE=4 SV=1 Q16HL3_AEDAE 83,496.40

AAEL003671-PA OS=Aedes aegypti OX=7159 GN=AAEL003671 PE=4 SV=1 Q17EV9_AEDAE 142,934.50

AAEL014613-PA OS=Aedes aegypti OX=7159 GN=CYP9J24 PE=3 SV=1 Q16FW9_AEDAE 61,153.40

AAEL003709-PA OS=Aedes aegypti OX=7159 GN=5578855 PE=4 SV=1 Q17EN7_AEDAE 29,564.90

Alpha-amylase OS=Aedes aegypti OX=7159 GN=AAEL008451 PE=3 SV=1 Q16YR2_AEDAE 54,132.80

AAEL004065-PA OS=Aedes aegypti OX=7159 GN=AAEL004065 PE=4 SV=1 Q17DU1_AEDAE 21,483.00

AAEL010906-PA OS=Aedes aegypti OX=7159 GN=5574060 PE=4 SV=1 Q16RM7_AEDAE 16,641.60

AAEL000217-PA OS=Aedes aegypti OX=7159 GN=AAEL000217 PE=4 SV=1 Q17Q09_AEDAE 110,021.00

AAEL005822-PA OS=Aedes aegypti OX=7159 GN=AAEL005822 PE=3 SV=1 Q178R3_AEDAE 43,801.60 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial OS=Aedes aegypti OX=7159 GN=5577026 PE=2 SV=1 Q1HQV6_AEDAE 47,114.30

AAEL007698-PA OS=Aedes aegypti OX=7159 GN=PIWI4 PE=3 SV=1 Q171B3_AEDAE 98,584.60

AAEL003180-PA OS=Aedes aegypti OX=7159 GN=5577510 PE=4 SV=1 Q17G45_AEDAE 19,102.40

AAEL013466-PA OS=Aedes aegypti OX=7159 GN=AAEL013466 PE=4 SV=1 Q16J24_AEDAE 178,649.20

AAEL003781-PA OS=Aedes aegypti OX=7159 GN=AAEL003781 PE=4 SV=1 Q17EH2_AEDAE 49,474.80

AAEL008871-PA OS=Aedes aegypti OX=7159 GN=5571173 PE=2 SV=1 Q1HRJ9_AEDAE 18,782.70

Proliferating cell nuclear antigen OS=Aedes aegypti OX=7159 GN=PCNA PE=2 SV=1 Q4PKD7_AEDAE 28,957.30

AAEL012701-PA OS=Aedes aegypti OX=7159 GN=AAEL012701 PE=4 SV=1 Q16LB5_AEDAE 182,480.50

AAEL003785-PA OS=Aedes aegypti OX=7159 GN=AAEL003785 PE=4 SV=1 Q17EK4_AEDAE 101,220.80

AAEL004567-PA OS=Aedes aegypti OX=7159 GN=5565048 PE=4 SV=1 Q17CH3_AEDAE 80,975.60

AAEL015061-PA OS=Aedes aegypti OX=7159 GN=5566074 PE=4 SV=1 Q16EQ6_AEDAE 20,965.60

AAEL007282-PB OS=Aedes aegypti OX=7159 GN=5569005 PE=3 SV=1 Q172R6_AEDAE 67,361.20

AAEL004327-PA OS=Aedes aegypti OX=7159 GN=AAEL004327 PE=3 SV=1 Q17D48_AEDAE 118,655.70

AAEL000516-PA OS=Aedes aegypti OX=7159 GN=AAEL000516 PE=4 SV=1 Q17P58_AEDAE 50,243.50

AAEL009634-PA OS=Aedes aegypti OX=7159 GN=AAEL009634 PE=3 SV=1 Q16V96_AEDAE 34,062.80

Coatomer subunit alpha OS=Aedes aegypti OX=7159 GN=AAEL013098 PE=4 SV=1 Q16K68_AEDAE 139,115.10 Phosphorylase b kinase regulatory subunit OS=Aedes aegypti OX=7159 GN=AAEL007651 PE=3 SV=1 Q171G3_AEDAE 140,526.50

AAEL008635-PA OS=Aedes aegypti OX=7159 GN=AAEL008635 PE=4 SV=1 Q16Y84_AEDAE 76,511.70

Signal recognition particle 54 kDa protein OS=Aedes aegypti OX=7159 GN=SRP54 PE=3 SV=1 Q172G4_AEDAE 39,473.10

AAEL002957-PA OS=Aedes aegypti OX=7159 GN=AAEL002957 PE=4 SV=1 Q17GM1_AEDAE 54,643.90

AAEL013076-PA OS=Aedes aegypti OX=7159 GN=AAEL013076 PE=4 SV=1 Q16K92_AEDAE 44,184.70

AAEL013536-PA OS=Aedes aegypti OX=7159 GN=AAEL013536 PE=4 SV=1 Q16IV1_AEDAE 17,997.60

AAEL017384-PA OS=Aedes aegypti OX=7159 GN=23687804 PE=4 SV=1 J9E937_AEDAE 15,708.80

AAEL014250-PA OS=Aedes aegypti OX=7159 GN=5563946 PE=4 SV=1 Q16GV5_AEDAE 26,368.10

163 AAEL012697-PA OS=Aedes aegypti OX=7159 GN=AAEL012697 PE=4 SV=1 Q1DGF0_AEDAE 11,114.00

AAEL010359-PA OS=Aedes aegypti OX=7159 GN=5573260 PE=4 SV=1 Q16T85_AEDAE 79,576.80

AAEL011554-PA OS=Aedes aegypti OX=7159 GN=AAEL011554 PE=4 SV=1 Q16PR0_AEDAE 46,241.10

AAEL010823-PA OS=Aedes aegypti OX=7159 GN=5573968 PE=3 SV=1 Q0IEE4_AEDAE 22,604.30

AAEL010099-PA OS=Aedes aegypti OX=7159 GN=AAEL010099 PE=3 SV=1 Q16TW0_AEDAE 35,178.20

Metalloendopeptidase OS=Aedes aegypti OX=7159 GN=AAEL011557 PE=4 SV=1 Q16PR7_AEDAE 18,261.00

AAEL006866-PA OS=Aedes aegypti OX=7159 GN=AAEL006866 PE=4 SV=1 Q174L3_AEDAE 52,729.60

AAEL007379-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL007379 PE=4 SV=1 Q172J6_AEDAE 37,895.10

AAEL012655-PA OS=Aedes aegypti OX=7159 GN=AAEL012655 PE=3 SV=1 Q16LG8_AEDAE 47,052.90

AAEL002776-PA OS=Aedes aegypti OX=7159 GN=AAEL002776 PE=4 SV=1 Q17H31_AEDAE 42,741.50

AAEL014195-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL014195 PE=4 SV=1 Q16H10_AEDAE 65,832.90

AAEL007549-PA OS=Aedes aegypti OX=7159 GN=5569310 PE=2 SV=1 Q1HQT8_AEDAE 23,213.10

AAEL004278-PA OS=Aedes aegypti OX=7159 GN=5564510 PE=3 SV=1 Q17D83_AEDAE 51,190.50

40S ribosomal protein S5 OS=Aedes aegypti OX=7159 GN=5578313 PE=2 SV=1 Q1HRT9_AEDAE 24,636.70

AAEL002048-PA OS=Aedes aegypti OX=7159 GN=5573411 PE=3 SV=1 Q17JC2_AEDAE 58,003.70

AAEL000301-PA OS=Aedes aegypti OX=7159 GN=5573731 PE=3 SV=1 Q17PR3_AEDAE 79,785.10

Pyrroline-5-carboxylate reductase OS=Aedes aegypti OX=7159 GN=AAEL009831 PE=3 SV=1 Q16UQ2_AEDAE 27,798.20

AAEL010467-PA OS=Aedes aegypti OX=7159 GN=AAEL010467 PE=4 SV=1 Q16SW8_AEDAE 38,146.80

AAEL004461-PA OS=Aedes aegypti OX=7159 GN=AAEL004461 PE=4 SV=1 Q17CR3_AEDAE 37,871.50

AAEL000132-PA OS=Aedes aegypti OX=7159 GN=AAEL000132 PE=4 SV=1 Q17Q44_AEDAE 41,230.80

AAEL006751-PA OS=Aedes aegypti OX=7159 GN=5568303 PE=4 SV=1 Q174Z2_AEDAE 71,889.90

AAEL005214-PA OS=Aedes aegypti OX=7159 GN=AAEL005214 PE=4 SV=1 Q17AP3_AEDAE 83,934.40

AAEL003165-PA OS=Aedes aegypti OX=7159 GN=AAEL003165 PE=4 SV=1 Q17G80_AEDAE 22,991.10

GTP:AMP phosphotransferase, mitochondrial OS=Aedes aegypti OX=7159 GN=5564849 PE=3 SV=1 Q17NS5_AEDAE 24,549.90

AAEL011105-PA OS=Aedes aegypti OX=7159 GN=AAEL011105 PE=4 SV=1 Q16R24_AEDAE 78,648.90

AAEL002856-PA OS=Aedes aegypti OX=7159 GN=AAEL002856 PE=4 SV=1 Q17GW1_AEDAE 29,632.10

AAEL006081-PA OS=Aedes aegypti OX=7159 GN=AAEL006081 PE=4 SV=1 Q177M9_AEDAE 34,582.50

60S ribosomal protein L21 OS=Aedes aegypti OX=7159 GN=AAEL007715 PE=2 SV=1 Q1HRN4_AEDAE 18,471.00

Beta-hexosaminidase OS=Aedes aegypti OX=7159 GN=AAEL004661 PE=3 SV=1 Q17C82_AEDAE 69,381.90

AAEL004415-PA OS=Aedes aegypti OX=7159 GN=AAEL004415 PE=4 SV=1 Q17CW3_AEDAE 72,926.10

AAEL010464-PA OS=Aedes aegypti OX=7159 GN=GDH PE=2 SV=1 Q2KQ98_AEDAE 61,035.70

AAEL001496-PA OS=Aedes aegypti OX=7159 GN=AAEL001496 PE=4 SV=1 Q17L48_AEDAE 34,207.80

AAEL006754-PA OS=Aedes aegypti OX=7159 GN=AAEL006754 PE=4 SV=1 Q174Y0_AEDAE 140,289.50

AAEL000417-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL000417 PE=4 SV=1 Q17P96_AEDAE 81,454.00

Protein transport protein Sec61 subunit beta OS=Aedes aegypti OX=7159 GN=5579041 PE=2 SV=1 Q1HR43_AEDAE 10,336.00

AAEL012464-PA OS=Aedes aegypti OX=7159 GN=AAEL012464 PE=3 SV=1 Q16M11_AEDAE 54,166.00

AAEL008232-PA OS=Aedes aegypti OX=7159 GN=AAEL008232 PE=3 SV=1 Q16ZD3_AEDAE,Q17EH6_AEDAE 57,146.50

AAEL004176-PB OS=Aedes aegypti OX=7159 GN=5564231 PE=4 SV=1 Q0IFU3_AEDAE,Q1HQN7_AEDAE 32,610.80

Sphingomyelin phosphodiesterase OS=Aedes aegypti OX=7159 GN=AAEL006381 PE=3 SV=1 Q176G6_AEDAE 72,790.60

164 AAEL014504-PA OS=Aedes aegypti OX=7159 GN=AAEL014504 PE=4 SV=1 Q16G69_AEDAE,Q16SP8_AEDAE 24,206.90

AAEL012161-PA OS=Aedes aegypti OX=7159 GN=AAEL012161 PE=4 SV=1 Q16MV6_AEDAE 21,947.30

AAEL012207-PA OS=Aedes aegypti OX=7159 GN=AAEL012207 PE=4 SV=1 Q16MS4_AEDAE 18,137.90

AAEL009576-PA OS=Aedes aegypti OX=7159 GN=AAEL009576 PE=4 SV=1 Q16VG7_AEDAE 25,667.20

Malic enzyme OS=Aedes aegypti OX=7159 GN=AAEL001091 PE=3 SV=1 Q17M99_AEDAE 72,030.00

AAEL006902-PA OS=Aedes aegypti OX=7159 GN=AAEL006902 PE=3 SV=1 Q174G7_AEDAE 30,419.40

AAEL008609-PA OS=Aedes aegypti OX=7159 GN=AAEL008609 PE=4 SV=1 Q16YB9_AEDAE 51,358.10 Ubiquitin carboxyl-terminal hydrolase OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017159 PE=3 SV=1 J9HTX4_AEDAE 61,781.90

AAEL002121-PA OS=Aedes aegypti OX=7159 GN=AAEL002121 PE=4 SV=1 Q17J99_AEDAE 8,491.00

AAEL008271-PA OS=Aedes aegypti OX=7159 GN=5570364 PE=4 SV=1 Q16ZA0_AEDAE 35,766.40

AAEL011496-PA OS=Aedes aegypti OX=7159 GN=AAEL011496 PE=3 SV=1 Q16PY6_AEDAE 45,288.50

Aminopeptidase OS=Aedes aegypti OX=7159 GN=AAEL008158 PE=3 SV=1 Q16ZL5_AEDAE 104,566.90

AAEL002610-PA OS=Aedes aegypti OX=7159 GN=AAEL002610 PE=4 SV=1 Q17HM6_AEDAE 48,302.90

AAEL012326-PA OS=Aedes aegypti OX=7159 GN=5580239 PE=2 SV=1 Q1HQX3_AEDAE 16,811.00

AAEL012883-PA OS=Aedes aegypti OX=7159 GN=5574853 PE=4 SV=1 Q16KU4_AEDAE,Q16Q11_AEDAE 11,479.90

AAEL014352-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL014352 PE=4 SV=1 Q16GK4_AEDAE 73,169.30

NADPH--cytochrome P450 reductase OS=Aedes aegypti OX=7159 GN=AAEL003349 PE=3 SV=1 Q17FM7_AEDAE 77,488.70

AAEL012240-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL012240 PE=3 SV=1 Q16MP1_AEDAE 39,581.30

Amino acid transporter OS=Aedes aegypti OX=7159 GN=AAEL004496 PE=3 SV=1 Q0IFN0_AEDAE 52,249.60

AAEL009317-PA OS=Aedes aegypti OX=7159 GN=5571789 PE=2 SV=1 Q1HQR4_AEDAE 24,304.90

AAEL004802-PA OS=Aedes aegypti OX=7159 GN=5565494 PE=4 SV=1 Q17BU9_AEDAE,Q17BV0_AEDAE 92,516.50

AAEL005037-PA OS=Aedes aegypti OX=7159 GN=5565854 PE=4 SV=1 Q17BB4_AEDAE 55,969.10

AAEL006531-PA OS=Aedes aegypti OX=7159 GN=AAEL006531 PE=4 SV=1 Q0IF61_AEDAE 64,949.80

AAEL012564-PA OS=Aedes aegypti OX=7159 GN=AAEL012564 PE=4 SV=1 Q16LQ6_AEDAE 29,056.00

AAEL002687-PA OS=Aedes aegypti OX=7159 GN=AAEL002687 PE=3 SV=1 Q17HG1_AEDAE 59,219.50

60S ribosomal protein L11 OS=Aedes aegypti OX=7159 GN=5577034 PE=3 SV=1 Q16KL2_AEDAE 21,052.40

AAEL006966-PD OS=Aedes aegypti OX=7159 GN=AaeL_AAEL006966 PE=3 SV=1 J9HSR1_AEDAE 37,792.90

AAEL008893-PA OS=Aedes aegypti OX=7159 GN=AAEL008893 PE=3 SV=1 Q16XF1_AEDAE 53,337.60

AAEL009462-PA OS=Aedes aegypti OX=7159 GN=AAEL009462 PE=3 SV=1 Q16VR2_AEDAE 29,367.50

AAEL006303-PA OS=Aedes aegypti OX=7159 GN=AAEL006303 PE=3 SV=1 Q176Q6_AEDAE 20,679.90

DNA helicase OS=Aedes aegypti OX=7159 GN=5576119 PE=3 SV=1 Q17H38_AEDAE 82,421.20

39S ribosomal protein L12, mitochondrial OS=Aedes aegypti OX=7159 GN=5567500 PE=2 SV=1 Q1HQL1_AEDAE 19,781.60

AAEL014414-PA OS=Aedes aegypti OX=7159 GN=5564379 PE=3 SV=1 Q16GE2_AEDAE 45,772.80

AAEL003954-PA OS=Aedes aegypti OX=7159 GN=AAEL003954 PE=4 SV=1 Q17E38_AEDAE 46,807.30

AAEL010525-PA OS=Aedes aegypti OX=7159 GN=AAEL010525 PE=4 SV=1 Q16SQ7_AEDAE 112,603.40

AAEL012522-PA OS=Aedes aegypti OX=7159 GN=AAEL012522 PE=4 SV=1 Q16LU3_AEDAE 60,186.40

AAEL011309-PA OS=Aedes aegypti OX=7159 GN=AAEL011309 PE=3 SV=1 Q16QF3_AEDAE 53,279.70

AAEL002978-PA OS=Aedes aegypti OX=7159 GN=AAEL002978 PE=4 SV=1 Q17GL0_AEDAE 56,092.70 26S proteasome regulatory complex subunit RPN12/PSMD8 OS=Aedes aegypti OX=7159 GN=5576100 PE=2 SV=1 Q1HQV1_AEDAE 30,320.30

AAEL017516-PB OS=Aedes aegypti OX=7159 GN=23687936 PE=3 SV=1 J9HFM9_AEDAE 39,996.20

AAEL008849-PA OS=Aedes aegypti OX=7159 GN=5571153 PE=4 SV=1 Q16XK1_AEDAE 43,488.20

165 AAEL009085-PA OS=Aedes aegypti OX=7159 GN=AAEL009085 PE=4 SV=1 Q16WV5_AEDAE 57,188.40

AAEL013637-PA OS=Aedes aegypti OX=7159 GN=AAEL013637 PE=4 SV=1 Q16IJ1_AEDAE 48,847.10

AAEL006097-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL006097 PE=4 SV=2 Q177K2_AEDAE 64,638.50

AAEL008025-PA OS=Aedes aegypti OX=7159 GN=AAEL008025 PE=4 SV=1 Q16ZX9_AEDAE 33,199.90

60S ribosomal protein L7 OS=Aedes aegypti OX=7159 GN=5580259 PE=2 SV=1 Q1HR81_AEDAE 30,339.50

Mannosyltransferase OS=Aedes aegypti OX=7159 GN=AAEL000004 PE=3 SV=1 Q0C786_AEDAE 59,918.20

AAEL003193-PA OS=Aedes aegypti OX=7159 GN=AAEL003193 PE=4 SV=1 Q17G61_AEDAE 41,660.30

AAEL009682-PA OS=Aedes aegypti OX=7159 GN=5572249 PE=4 SV=1 Q16V54_AEDAE 27,879.70

AAEL007054-PA OS=Aedes aegypti OX=7159 GN=5568708 PE=4 SV=1 Q173P6_AEDAE 11,966.40

AAEL012827-PA OS=Aedes aegypti OX=7159 GN=5576841 PE=3 SV=1 Q16KZ2_AEDAE 91,132.00

AAEL012472-PA OS=Aedes aegypti OX=7159 GN=AAEL012472 PE=4 SV=1 Q16LZ3_AEDAE 58,289.30

AAEL006538-PA OS=Aedes aegypti OX=7159 GN=AAEL006538 PE=3 SV=1 Q175V8_AEDAE 22,131.30

AAEL001427-PA OS=Aedes aegypti OX=7159 GN=AAEL001427 PE=4 SV=1 Q17L80_AEDAE 30,899.00

Acetyl-coenzyme A synthetase OS=Aedes aegypti OX=7159 GN=AAEL000321 PE=3 SV=1 Q16EU8_AEDAE 75,725.50

AAEL008697-PA OS=Aedes aegypti OX=7159 GN=AAEL008697 PE=4 SV=1 Q16KF9_AEDAE 13,679.70

AAEL013845-PA OS=Aedes aegypti OX=7159 GN=AAEL013845 PE=4 SV=1 Q16I00_AEDAE 46,153.60

Glyceraldehyde-3-phosphate dehydrogenase OS=Aedes aegypti OX=7159 GN=23687404 PE=3 SV=1 J9HYM2_AEDAE 35,440.70

AAEL006098-PA OS=Aedes aegypti OX=7159 GN=AAEL006098 PE=4 SV=1 Q177J9_AEDAE 35,844.70

AAEL010206-PA OS=Aedes aegypti OX=7159 GN=AAEL010206 PE=4 SV=1 Q16TL1_AEDAE 60,831.80

AAEL004985-PB OS=Aedes aegypti OX=7159 GN=5565783 PE=2 SV=1 Q1HQH5_AEDAE 32,051.50

AAEL004227-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL004227 PE=3 SV=1 Q17DE9_AEDAE 143,491.90

AAEL007874-PA OS=Aedes aegypti OX=7159 GN=5569749 PE=4 SV=1 Q170K7_AEDAE 46,848.60

AAEL001573-PA OS=Aedes aegypti OX=7159 GN=5571267 PE=4 SV=1 Q17KV1_AEDAE 29,749.60

AAEL004351-PC OS=Aedes aegypti OX=7159 GN=AAEL004351 PE=3 SV=1 Q17D24_AEDAE,Q17D25_AEDAE 51,441.70

AAEL010382-PA OS=Aedes aegypti OX=7159 GN=AAEL010382 PE=4 SV=1 Q16T47_AEDAE 139,593.20

AAEL011090-PA OS=Aedes aegypti OX=7159 GN=AAEL011090 PE=2 SV=1 Q1HR26_AEDAE 30,337.90

AAEL003154-PA OS=Aedes aegypti OX=7159 GN=AAEL003154 PE=4 SV=1 Q17G72_AEDAE 35,660.90

AAEL006023-PA OS=Aedes aegypti OX=7159 GN=AAEL006023 PE=4 SV=1 Q177U2_AEDAE 58,973.50

AAEL009304-PA OS=Aedes aegypti OX=7159 GN=AAEL009304 PE=3 SV=1 Q16WA7_AEDAE 33,711.50

AAEL014272-PA OS=Aedes aegypti OX=7159 GN=AAEL014272 PE=4 SV=1 Q16GT2_AEDAE 37,753.10

AAEL003670-PA OS=Aedes aegypti OX=7159 GN=5578748 PE=4 SV=1 Q17EV4_AEDAE 59,232.00

AAEL005706-PA OS=Aedes aegypti OX=7159 GN=AAEL005706 PE=4 SV=1 Q178Z9_AEDAE 95,044.60

AAEL004653-PA OS=Aedes aegypti OX=7159 GN=5565230 PE=3 SV=1 Q17C74_AEDAE 12,882.00

AAEL015036-PA OS=Aedes aegypti OX=7159 GN=AAEL015036 PE=4 SV=1 Q16ET3_AEDAE 27,397.40

AAEL013710-PA OS=Aedes aegypti OX=7159 GN=5575688 PE=4 SV=1 Q16IE0_AEDAE,Q16NE4_AEDAE 98,780.80

AAEL008221-PA OS=Aedes aegypti OX=7159 GN=AAEL008221 PE=3 SV=1 Q16ZF4_AEDAE 31,129.10

AAEL006189-PA OS=Aedes aegypti OX=7159 GN=5567614 PE=4 SV=1 Q177A9_AEDAE 38,073.40 26S proteasome regulatory complex subunit RPN5/PSMD12 OS=Aedes aegypti OX=7159 GN=5564146 PE=2 SV=1 Q1HQM8_AEDAE 53,002.20

AAEL010698-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL010698 PE=4 SV=1 Q16S64_AEDAE 119,740.40

AAEL011899-PA OS=Aedes aegypti OX=7159 GN=AAEL011899 PE=4 SV=1 Q16NP9_AEDAE 51,463.20

Aminopeptidase OS=Aedes aegypti OX=7159 GN=AAEL012918 PE=3 SV=1 Q16KP9_AEDAE 98,007.40

166 AAEL002016-PA OS=Aedes aegypti OX=7159 GN=AAEL002016 PE=4 SV=1 Q17JG7_AEDAE 78,997.90

AAEL013620-PA OS=Aedes aegypti OX=7159 GN=AAEL013620 PE=2 SV=1 Q1HQU3_AEDAE 23,124.30

UDP-glucuronosyltransferase OS=Aedes aegypti OX=7159 GN=AAEL008568 PE=3 SV=1 Q16YF6_AEDAE 51,869.00

Phospholipid scramblase OS=Aedes aegypti OX=7159 GN=AAEL010661 PE=3 SV=1 Q16S90_AEDAE 38,121.10

AAEL008208-PA OS=Aedes aegypti OX=7159 GN=AAEL008208 PE=3 SV=1 Q16ZF7_AEDAE 31,282.50

AAEL017453-PA OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017453 PE=4 SV=1 J9HSG3_AEDAE 90,661.00

60S ribosomal protein L30 OS=Aedes aegypti OX=7159 GN=AAEL005085 PE=2 SV=1 Q1HR35_AEDAE 12,843.70

AAEL001206-PA OS=Aedes aegypti OX=7159 GN=AAEL001206 PE=3 SV=1 Q17LW8_AEDAE 82,314.10

AAEL008740-PA OS=Aedes aegypti OX=7159 GN=AAEL008740 PE=4 SV=1 Q16XY3_AEDAE 33,896.00

AAEL014893-PA OS=Aedes aegypti OX=7159 GN=CYP6BB2 PE=3 SV=1 Q16F58_AEDAE 57,959.70 Endoplasmic reticulum resident protein 29 OS=Aedes aegypti OX=7159 GN=AAEL014052 PE=4 SV=1 Q16HE7_AEDAE 29,395.00

AAEL011381-PA OS=Aedes aegypti OX=7159 GN=5574746 PE=3 SV=1 Q16Q68_AEDAE 52,835.90

AAEL002784-PA OS=Aedes aegypti OX=7159 GN=AAEL002784 PE=4 SV=1 Q17H47_AEDAE 51,147.90

AAEL012524-PA OS=Aedes aegypti OX=7159 GN=AAEL012524 PE=4 SV=1 Q16LU7_AEDAE 56,077.90

AAEL013498-PA OS=Aedes aegypti OX=7159 GN=ProPO1 PE=4 SV=1 Q9GYW1_AEDAE 78,305.00

AAEL002419-PA OS=Aedes aegypti OX=7159 GN=AAEL002419 PE=4 SV=1 Q17IA1_AEDAE 64,734.30

AAEL008837-PA OS=Aedes aegypti OX=7159 GN=5571156 PE=3 SV=1 Q16XJ8_AEDAE 27,255.60

AAEL010599-PA OS=Aedes aegypti OX=7159 GN=AAEL010599 PE=4 SV=1 Q16SF9_AEDAE 190,832.20

AAEL009127-PA OS=Aedes aegypti OX=7159 GN=CYP6M11 PE=3 SV=2 Q16WQ7_AEDAE 57,596.70

AAEL001965-PA OS=Aedes aegypti OX=7159 GN=AAEL001965 PE=3 SV=1 Q17JL7_AEDAE 48,714.60

AAEL007761-PA OS=Aedes aegypti OX=7159 GN=AAEL007761 PE=4 SV=1 Q170X6_AEDAE 27,768.90

Isocitrate dehydrogenase [NADP] OS=Aedes aegypti OX=7159 GN=5566298 PE=2 SV=1 Q1HQW5_AEDAE 45,839.20

Dipeptidase OS=Aedes aegypti OX=7159 GN=5566868 PE=3 SV=1 Q17N24_AEDAE 48,989.60 39S ribosomal protein L19, mitochondrial precursor OS=Aedes aegypti OX=7159 GN=5564547 PE=4 SV=1 Q17D59_AEDAE 36,899.60

Carboxylic ester hydrolase (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL005200 PE=3 SV=2 Q17AV1_AEDAE 65,184.50

Nucleoside diphosphate kinase OS=Aedes aegypti OX=7159 GN=5576170 PE=3 SV=1 Q16MB4_AEDAE 18,455.70

AAEL014275-PA OS=Aedes aegypti OX=7159 GN=AAEL014275 PE=4 SV=1 Q16GT3_AEDAE 36,610.90

AAEL006096-PA OS=Aedes aegypti OX=7159 GN=AAEL006096 PE=4 SV=1 Q177K9_AEDAE 43,048.60

Protein phosphatase methylesterase 1 OS=Aedes aegypti OX=7159 GN=5568805 PE=3 SV=1 Q17M26_AEDAE 43,743.70

Aminopeptidase OS=Aedes aegypti OX=7159 GN=AAEL008162 PE=3 SV=1 Q16ZL6_AEDAE 105,603.70

AAEL006798-PA OS=Aedes aegypti OX=7159 GN=CYP9J10 PE=3 SV=2 Q174T0_AEDAE 62,583.80

Elongation factor 1-alpha OS=Aedes aegypti OX=7159 GN=23687516 PE=2 SV=1 Q1HR88_AEDAE 50,473.20

Catalase OS=Aedes aegypti OX=7159 GN=CAT1B PE=3 SV=1 J9HGP0_AEDAE 56,841.20

26S protease regulatory subunit 6b OS=Aedes aegypti OX=7159 GN=AAEL007297 PE=3 SV=1 Q172T1_AEDAE 52,428.80

AAEL010508-PA OS=Aedes aegypti OX=7159 GN=AAEL010508 PE=4 SV=1 Q16SR9_AEDAE 368,595.90

AAEL011394-PA OS=Aedes aegypti OX=7159 GN=5580153 PE=3 SV=1 Q16Q50_AEDAE 33,749.00

AAEL005477-PA OS=Aedes aegypti OX=7159 GN=5566542 PE=4 SV=1 Q179X9_AEDAE 63,383.80

AAEL003109-PA OS=Aedes aegypti OX=7159 GN=5577060 PE=4 SV=1 Q17GF2_AEDAE 61,603.90

AAEL011627-PA OS=Aedes aegypti OX=7159 GN=5575082 PE=4 SV=1 Q16PI0_AEDAE 29,194.10

AAEL008134-PA OS=Aedes aegypti OX=7159 GN=AAEL008134 PE=4 SV=1 Q16ZP7_AEDAE 96,608.60

167 AAEL000440-PA OS=Aedes aegypti OX=7159 GN=5577334 PE=4 SV=1 Q17PB8_AEDAE 107,951.30

AAEL017225-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017225 PE=4 SV=1 J9HIC3_AEDAE 64,056.80

Carboxylic ester hydrolase (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL000898 PE=3 SV=2 Q17MV4_AEDAE 57,002.70

AAEL012116-PA OS=Aedes aegypti OX=7159 GN=AAEL012116 PE=4 SV=1 Q16HD2_AEDAE 15,368.60

AAEL003347-PA OS=Aedes aegypti OX=7159 GN=5577908 PE=4 SV=1 Q17FQ9_AEDAE 37,440.80

AAEL004195-PA OS=Aedes aegypti OX=7159 GN=5564249 PE=3 SV=1 Q0IFR2_AEDAE 28,403.00

FACT complex subunit SSRP1 OS=Aedes aegypti OX=7159 GN=5574782 PE=3 SV=1 Q0IEB2_AEDAE 81,307.10

AAEL008768-PB OS=Aedes aegypti OX=7159 GN=5571047 PE=4 SV=1 Q16XS9_AEDAE,Q1HR23_AEDAE 16,144.80

AAEL001937-PA OS=Aedes aegypti OX=7159 GN=AAEL001937 PE=4 SV=1 Q17JR3_AEDAE 54,483.50 Succinate dehydrogenase (quinone) (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL010608 PE=3 SV=1 Q16SE4_AEDAE 72,054.50

AAEL004756-PA OS=Aedes aegypti OX=7159 GN=5565370 PE=4 SV=1 Q17BY2_AEDAE 95,059.70

AAEL009677-PA OS=Aedes aegypti OX=7159 GN=AAEL009677 PE=4 SV=1 Q16V64_AEDAE 128,857.20

AAEL012004-PA OS=Aedes aegypti OX=7159 GN=AAEL012004 PE=4 SV=1 Q16NE5_AEDAE 46,113.10

AAEL007406-PA OS=Aedes aegypti OX=7159 GN=AAEL007406 PE=4 SV=1 Q172E5_AEDAE 26,190.80

AAEL008279-PA OS=Aedes aegypti OX=7159 GN=AAEL008279 PE=4 SV=1 Q16ZA1_AEDAE 38,133.60

40S ribosomal protein S2 OS=Aedes aegypti OX=7159 GN=5572968 PE=2 SV=1 Q1HRV1_AEDAE 29,875.10

AAEL011500-PA OS=Aedes aegypti OX=7159 GN=AAEL011500 PE=4 SV=1 Q16PW1_AEDAE 21,183.50

AAEL012594-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL012594 PE=4 SV=1 Q16LM7_AEDAE 70,416.90

AAEL003497-PA OS=Aedes aegypti OX=7159 GN=5578269 PE=3 SV=1 Q17F78_AEDAE 49,624.70 26S protease (S4) regulatory subunit, putative OS=Aedes aegypti OX=7159 GN=5572552 PE=4 SV=1 Q16UJ3_AEDAE 67,274.50

AAEL005616-PA OS=Aedes aegypti OX=7159 GN=5566740 PE=3 SV=1 Q179I3_AEDAE 30,194.40

AAEL007065-PA OS=Aedes aegypti OX=7159 GN=5568690 PE=2 SV=1 Q1HR73_AEDAE 20,688.70

Alkaline phosphatase OS=Aedes aegypti OX=7159 GN=AAEL003309 PE=3 SV=1 Q17FS5_AEDAE 62,080.70

AAEL014639-PA OS=Aedes aegypti OX=7159 GN=AAEL014639 PE=3 SV=1 Q16FT8_AEDAE 17,350.90

AAEL010223-PA OS=Aedes aegypti OX=7159 GN=AAEL010223 PE=4 SV=1 Q16TJ5_AEDAE 39,221.00

AAEL001916-PB OS=Aedes aegypti OX=7159 GN=5573015 PE=3 SV=1 Q17JP1_AEDAE,Q17JP2_AEDAE 24,238.50

AAEL004936-PA OS=Aedes aegypti OX=7159 GN=AAEL004936 PE=4 SV=1 Q17BK6_AEDAE 89,204.00 Glucosamine 6-phosphate N-acetyltransferase OS=Aedes aegypti OX=7159 GN=AAEL004042 PE=2 SV=1 Q5Q126_AEDAE 23,620.80

AAEL011264-PA OS=Aedes aegypti OX=7159 GN=5574626 PE=4 SV=1 Q16QJ8_AEDAE 24,973.70

39S mitochondrial ribosomal protein L28 OS=Aedes aegypti OX=7159 GN=5570827 PE=2 SV=1 Q1HQI0_AEDAE 32,347.90 Q178C8_AEDAE,Q178C9_AEDAE,Q178 Chloride channel protein (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL005950 PE=3 SV=1 D0_AEDAE 112,139.50

AAEL001418-PA OS=Aedes aegypti OX=7159 GN=AAEL001418 PE=4 SV=1 Q17LA5_AEDAE 23,498.00

AAEL002240-PA OS=Aedes aegypti OX=7159 GN=AAEL002240 PE=4 SV=1 Q17IU1_AEDAE 75,144.20

AAEL014863-PF OS=Aedes aegypti OX=7159 GN=AAEL014863 PE=4 SV=1 Q16F86_AEDAE,Q16F87_AEDAE 64,401.50

Inosine-5'-monophosphate dehydrogenase OS=Aedes aegypti OX=7159 GN=5571747 PE=3 SV=1 Q16WB3_AEDAE 55,890.70

AAEL011184-PA OS=Aedes aegypti OX=7159 GN=AAEL011184 PE=3 SV=1 Q16QS3_AEDAE 38,620.00

AAEL001422-PA OS=Aedes aegypti OX=7159 GN=5570524 PE=4 SV=1 Q17LA8_AEDAE 29,986.50

AAEL008773-PA OS=Aedes aegypti OX=7159 GN=AAEL008773 PE=4 SV=1 Q16XT3_AEDAE 411,921.40 6-phosphogluconate dehydrogenase, decarboxylating OS=Aedes aegypti OX=7159 GN=AAEL005931 PE=3 SV=1 Q178E4_AEDAE 53,058.50

AAEL009330-PA OS=Aedes aegypti OX=7159 GN=AAEL009330 PE=3 SV=1 Q16W62_AEDAE 35,078.80

168 AAEL009795-PA OS=Aedes aegypti OX=7159 GN=AAEL009795 PE=4 SV=1 Q16UT3_AEDAE 286,565.30

AAEL004287-PA OS=Aedes aegypti OX=7159 GN=5564504 PE=4 SV=1 Q17DA0_AEDAE 51,101.50

AAEL007950-PA OS=Aedes aegypti OX=7159 GN=AAEL007950 PE=4 SV=1 Q170D4_AEDAE 53,846.50

Malic enzyme OS=Aedes aegypti OX=7159 GN=AAEL005790 PE=3 SV=1 Q178T5_AEDAE 72,185.80

40S ribosomal protein S18 OS=Aedes aegypti OX=7159 GN=5572365 PE=2 SV=1 Q1HRL8_AEDAE 17,527.90

AAEL012680-PA OS=Aedes aegypti OX=7159 GN=5576656 PE=4 SV=1 Q16LD4_AEDAE 62,734.30

AAEL010125-PA OS=Aedes aegypti OX=7159 GN=AAEL010125 PE=4 SV=1 Q16TT5_AEDAE 43,654.80 26S proteasome non-ATPase regulatory subunit 2 OS=Aedes aegypti OX=7159 GN=5567857 PE=3 SV=1 Q176M6_AEDAE 99,265.10

AAEL001509-PC OS=Aedes aegypti OX=7159 GN=5571113 PE=4 SV=1 Q17KZ3_AEDAE 107,449.80

Phosphomannomutase OS=Aedes aegypti OX=7159 GN=AAEL009497 PE=3 SV=1 Q0IEM8_AEDAE 28,998.30

AAEL003046-PA OS=Aedes aegypti OX=7159 GN=AAEL003046 PE=4 SV=1 Q0IGB5_AEDAE 114,315.90

AAEL010697-PA OS=Aedes aegypti OX=7159 GN=AAEL010697 PE=3 SV=1 Q16S56_AEDAE 41,625.40

AAEL005384-PA OS=Aedes aegypti OX=7159 GN=5566442 PE=3 SV=1 Q17A67_AEDAE 148,188.00

AAEL002373-PA OS=Aedes aegypti OX=7159 GN=AAEL002373 PE=4 SV=1 Q17IF8_AEDAE 47,673.80

AAEL005461-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL005461 PE=4 SV=1 Q179Y3_AEDAE 63,657.30

AAEL005056-PA OS=Aedes aegypti OX=7159 GN=AAEL005056 PE=4 SV=1 Q17B68_AEDAE 22,863.70

AAEL006989-PA OS=Aedes aegypti OX=7159 GN=CYP6AG7 PE=3 SV=1 Q173V4_AEDAE 57,102.80

AAEL008569-PA OS=Aedes aegypti OX=7159 GN=AAEL008569 PE=4 SV=1 Q16YE8_AEDAE 25,472.40

AAEL008199-PA OS=Aedes aegypti OX=7159 GN=5570267 PE=4 SV=1 Q16ZE9_AEDAE 32,611.70

AAEL011551-PA OS=Aedes aegypti OX=7159 GN=AAEL011551 PE=4 SV=1 Q16PR4_AEDAE 99,111.50

4-aminobutyrate aminotransferase OS=Aedes aegypti OX=7159 GN=AAEL012609 PE=3 SV=1 Q16LL9_AEDAE 55,062.80

AAEL001288-PA OS=Aedes aegypti OX=7159 GN=AAEL001288 PE=3 SV=1 Q17LK5_AEDAE 59,745.00

AAEL007898-PA OS=Aedes aegypti OX=7159 GN=AAEL007898 PE=4 SV=1 Q170I4_AEDAE 1,315,647.90

AAEL009068-PA OS=Aedes aegypti OX=7159 GN=5571419 PE=3 SV=1 Q16WY5_AEDAE 81,280.10

AAEL005879-PA OS=Aedes aegypti OX=7159 GN=5567126 PE=4 SV=1 Q178I1_AEDAE 107,188.30 Translocating chain-associated membrane protein OS=Aedes aegypti OX=7159 GN=5577777 PE=2 SV=1 Q1HRQ8_AEDAE 43,211.00

Peptidyl-prolyl cis-trans isomerase OS=Aedes aegypti OX=7159 GN=5575296 PE=3 SV=1 Q16P59_AEDAE 22,311.30

AAEL014709-PA OS=Aedes aegypti OX=7159 GN=AAEL014709 PE=3 SV=1 Q16FM1_AEDAE 108,064.10

Profilin OS=Aedes aegypti OX=7159 GN=AAEL013353 PE=3 SV=1 Q16JE9_AEDAE 13,716.70

AAEL001297-PA OS=Aedes aegypti OX=7159 GN=AAEL001297 PE=4 SV=1 Q17LK8_AEDAE 35,510.00

AAEL013774-PA OS=Aedes aegypti OX=7159 GN=5578590 PE=4 SV=1 Q16I73_AEDAE 25,138.10

CTP synthase OS=Aedes aegypti OX=7159 GN=5566525 PE=3 SV=1 Q17A05_AEDAE 73,547.40

AAEL006371-PA OS=Aedes aegypti OX=7159 GN=AAEL006371 PE=3 SV=1 Q176G7_AEDAE 51,147.80

Transcription factor BTF3 OS=Aedes aegypti OX=7159 GN=AAEL012271 PE=2 SV=1 Q1HRK3_AEDAE 17,112.90

AAEL017539-PA OS=Aedes aegypti OX=7159 GN=CYP6BY1 PE=3 SV=1 J9HEV6_AEDAE 56,277.90

DNA helicase OS=Aedes aegypti OX=7159 GN=AAEL011811 PE=3 SV=1 Q16NY8_AEDAE 91,344.00

Mitogen-activated protein kinase OS=Aedes aegypti OX=7159 GN=AAEL013939 PE=4 SV=1 Q16HR0_AEDAE 38,803.70

AAEL005216-PA OS=Aedes aegypti OX=7159 GN=AAEL005216 PE=3 SV=1 Q17AQ6_AEDAE 36,821.20

AAEL011578-PA OS=Aedes aegypti OX=7159 GN=5575025 PE=4 SV=1 Q16PN5_AEDAE 57,821.60

AAEL000620-PA OS=Aedes aegypti OX=7159 GN=AAEL000620 PE=4 SV=1 Q17NP7_AEDAE 19,588.80

AAEL008784-PA OS=Aedes aegypti OX=7159 GN=5571039 PE=3 SV=1 Q16XU2_AEDAE 27,756.40

169 AAEL000231-PA OS=Aedes aegypti OX=7159 GN=5572024 PE=3 SV=1 Q17PU3_AEDAE 82,703.90

AAEL001273-PA OS=Aedes aegypti OX=7159 GN=5569619 PE=4 SV=1 Q17LP8_AEDAE 131,916.80

Proteasome subunit beta OS=Aedes aegypti OX=7159 GN=5574484 PE=3 SV=1 Q17IE3_AEDAE 23,146.80

AAEL002068-PA OS=Aedes aegypti OX=7159 GN=5573395 PE=3 SV=1 Q17JE4_AEDAE 60,086.30

AAEL004676-PA OS=Aedes aegypti OX=7159 GN=AAEL004676 PE=3 SV=1 Q17C54_AEDAE 39,741.40

AAEL008699-PA OS=Aedes aegypti OX=7159 GN=AAEL008699 PE=4 SV=1 Q16Y07_AEDAE 58,213.50

AAEL001195-PA OS=Aedes aegypti OX=7159 GN=5569079 PE=4 SV=1 Q17LW7_AEDAE 49,875.90 Dolichol-phosphate mannosyltransferase subunit 1 OS=Aedes aegypti OX=7159 GN=5580034 PE=2 SV=1 Q1HR12_AEDAE 27,122.90

AAEL002387-PA OS=Aedes aegypti OX=7159 GN=5574482 PE=4 SV=1 Q17IE6_AEDAE 56,791.70

40S ribosomal protein S9 OS=Aedes aegypti OX=7159 GN=5572284 PE=2 SV=1 Q1HRP3_AEDAE 22,799.60

DNA ligase OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017566 PE=3 SV=1 J9HJ51_AEDAE 101,072.50

AAEL009257-PA OS=Aedes aegypti OX=7159 GN=5571735 PE=2 SV=1 Q1HQE0_AEDAE 8,790.40

AAEL014080-PA OS=Aedes aegypti OX=7159 GN=5563729 PE=3 SV=1 Q16HB6_AEDAE 53,053.20

AAEL008171-PA OS=Aedes aegypti OX=7159 GN=AAEL008171 PE=4 SV=1 Q16ZI1_AEDAE 96,527.10

AAEL004616-PA OS=Aedes aegypti OX=7159 GN=5565156 PE=3 SV=1 Q17C86_AEDAE 41,686.40

AAEL005289-PA OS=Aedes aegypti OX=7159 GN=AAEL005289 PE=3 SV=1 Q17AI0_AEDAE 52,155.50

AAEL011356-PA OS=Aedes aegypti OX=7159 GN=AAEL011356 PE=4 SV=1 Q16Q92_AEDAE 36,749.50

AAEL004984-PA OS=Aedes aegypti OX=7159 GN=5565777 PE=4 SV=1 Q17BE8_AEDAE 138,703.90

Epoxide hydrolase OS=Aedes aegypti OX=7159 GN=5574675 PE=3 SV=1 Q16QD7_AEDAE 53,147.00

AAEL010652-PA OS=Aedes aegypti OX=7159 GN=AAEL010652 PE=4 SV=1 Q16S94_AEDAE 11,566.60

AAEL013554-PA OS=Aedes aegypti OX=7159 GN=CYP4J14 PE=3 SV=1 Q16IS7_AEDAE 58,896.20

AAEL010991-PA OS=Aedes aegypti OX=7159 GN=AAEL010991 PE=4 SV=1 Q16RD8_AEDAE 79,802.20

AAEL007616-PA OS=Aedes aegypti OX=7159 GN=AAEL007616 PE=4 SV=1 Q16SE8_AEDAE 11,095.20

AAEL006929-PA OS=Aedes aegypti OX=7159 GN=AAEL006929 PE=3 SV=1 Q174D9_AEDAE 87,465.40

AAEL002336-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL002336 PE=4 SV=1 Q17IJ6_AEDAE 71,261.40

AAEL005614-PA OS=Aedes aegypti OX=7159 GN=AAEL005614 PE=3 SV=1 Q179I5_AEDAE 27,828.60

AAEL008139-PA OS=Aedes aegypti OX=7159 GN=5563823 PE=4 SV=1 Q16H48_AEDAE 42,991.50

AAEL011676-PA OS=Aedes aegypti OX=7159 GN=AAEL011676 PE=4 SV=1 Q16PD9_AEDAE 113,116.30

AAEL003090-PA OS=Aedes aegypti OX=7159 GN=AAEL003090 PE=4 SV=1 Q0IG61_AEDAE 62,046.00

AAEL008751-PA OS=Aedes aegypti OX=7159 GN=AAEL008751 PE=4 SV=1 Q16XV9_AEDAE 59,457.30

Cytochrome c oxidase subunit OS=Aedes aegypti OX=7159 GN=AAEL008880 PE=3 SV=1 Q16XG7_AEDAE 9,998.60

60S ribosomal protein L4 OS=Aedes aegypti OX=7159 GN=5572725 PE=2 SV=1 Q1HQJ0_AEDAE 48,938.40

AAEL009808-PA OS=Aedes aegypti OX=7159 GN=5572478 PE=2 SV=1 Q1HQU5_AEDAE 27,906.00

AAEL013170-PA OS=Aedes aegypti OX=7159 GN=AAEL013170 PE=4 SV=1 Q16JY8_AEDAE 48,439.00

F-actin-capping protein subunit beta OS=Aedes aegypti OX=7159 GN=AAEL002184 PE=3 SV=1 Q17J03_AEDAE 30,965.20

5'-3' exoribonuclease OS=Aedes aegypti OX=7159 GN=AAEL003800 PE=3 SV=1 Q17EJ8_AEDAE 108,280.80

AAEL001708-PA OS=Aedes aegypti OX=7159 GN=5572075 PE=4 SV=1 Q17KD0_AEDAE 10,110.10

AAEL013899-PA OS=Aedes aegypti OX=7159 GN=AAEL013899 PE=4 SV=1 Q16HU5_AEDAE 82,423.00

AAEL006342-PB OS=Aedes aegypti OX=7159 GN=5567898 PE=4 SV=1 Q176I8_AEDAE 39,635.40

AAEL001851-PA OS=Aedes aegypti OX=7159 GN=AAEL001851 PE=4 SV=1 Q17JZ9_AEDAE 60,967.50 S-(hydroxymethyl)glutathione dehydrogenase OS=Aedes aegypti OX=7159 GN=AAEL006467 PE=3 SV=1 Q176A3_AEDAE 40,665.40

170 AAEL007141-PA OS=Aedes aegypti OX=7159 GN=AAEL007141 PE=4 SV=1 Q173I8_AEDAE 100,718.00

Beta-hexosaminidase OS=Aedes aegypti OX=7159 GN=5565699 PE=3 SV=1 J9HI66_AEDAE,Q17BL1_AEDAE 62,084.80

AAEL005097-PA OS=Aedes aegypti OX=7159 GN=AAEL005097 PE=4 SV=1 Q17B41_AEDAE 16,278.40

AAEL000883-PB OS=Aedes aegypti OX=7159 GN=5567242 PE=4 SV=1 Q17MT0_AEDAE,Q17MT1_AEDAE 36,441.40

AAEL007565-PA OS=Aedes aegypti OX=7159 GN=AAEL007565 PE=4 SV=1 Q171R0_AEDAE 155,158.20

AAEL010787-PA OS=Aedes aegypti OX=7159 GN=5573872 PE=3 SV=1 Q16RY3_AEDAE 65,650.60

AAEL010930-PA OS=Aedes aegypti OX=7159 GN=AAEL010930 PE=4 SV=1 Q16RJ1_AEDAE 41,416.90

AAEL014435-PA OS=Aedes aegypti OX=7159 GN=AAEL014435 PE=4 SV=1 Q16GB1_AEDAE 47,269.90

AAEL005084-PA OS=Aedes aegypti OX=7159 GN=5565954 PE=3 SV=1 Q17B47_AEDAE 50,492.60

AAEL013147-PA OS=Aedes aegypti OX=7159 GN=AAEL013147 PE=4 SV=1 Q16K20_AEDAE 69,808.10

AAEL010532-PA OS=Aedes aegypti OX=7159 GN=AAEL010532 PE=4 SV=1 Q16SN6_AEDAE 68,836.60

AAEL002163-PA OS=Aedes aegypti OX=7159 GN=5580068 PE=3 SV=1 Q17J53_AEDAE 40,197.30

AAEL005457-PA OS=Aedes aegypti OX=7159 GN=5566520 PE=4 SV=1 Q179Z6_AEDAE 37,297.70

AAEL009155-PA OS=Aedes aegypti OX=7159 GN=AAEL009155 PE=4 SV=1 Q0IEP1_AEDAE 18,271.10 Q16R25_AEDAE,Q16R26_AEDAE,Q16R AAEL011089-PB OS=Aedes aegypti OX=7159 GN=AAEL011089 PE=4 SV=1 27_AEDAE 111,383.40

AAEL012515-PA OS=Aedes aegypti OX=7159 GN=AAEL012515 PE=4 SV=1 Q16LW0_AEDAE 44,341.30

Aminopeptidase OS=Aedes aegypti OX=7159 GN=AAEL012774 PE=3 SV=1 Q16L34_AEDAE 102,263.20

AAEL007765-PB OS=Aedes aegypti OX=7159 GN=SRPN10 PE=3 SV=1 Q0IEW2_AEDAE 42,397.40

AAEL005435-PA OS=Aedes aegypti OX=7159 GN=AAEL005435 PE=3 SV=1 Q17A09_AEDAE 52,250.00

AAEL005006-PA OS=Aedes aegypti OX=7159 GN=CYP6CD1 PE=3 SV=1 Q17BD6_AEDAE 58,659.40

AAEL015104-PA OS=Aedes aegypti OX=7159 GN=AAEL015104 PE=4 SV=1 Q16EM1_AEDAE,Q176H0_AEDAE 30,343.20

AAEL014541-PA OS=Aedes aegypti OX=7159 GN=5564618 PE=4 SV=1 Q16G35_AEDAE 86,755.90

AAEL007947-PA OS=Aedes aegypti OX=7159 GN=GSTE3 PE=3 SV=1 Q170C6_AEDAE 24,840.90

AAEL001020-PA OS=Aedes aegypti OX=7159 GN=AAEL001020 PE=4 SV=1 Q17ME8_AEDAE 36,964.10

AAEL002432-PA OS=Aedes aegypti OX=7159 GN=AAEL002432 PE=4 SV=1 Q17IA3_AEDAE 98,037.60

AAEL006378-PA OS=Aedes aegypti OX=7159 GN=AAEL006378 PE=4 SV=1 Q176H3_AEDAE 29,278.60

Protein-serine/threonine kinase OS=Aedes aegypti OX=7159 GN=AAEL007375 PE=3 SV=1 Q172I0_AEDAE 45,859.20 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 2 OS=Aedes aegypti OX=7159 GN=AAEL015572 PE=3 SV=1 Q1DGM6_AEDAE 54,887.80

AAEL002085-PA OS=Aedes aegypti OX=7159 GN=CYP4H31 PE=3 SV=1 Q17JE8_AEDAE 58,068.10

Transmembrane 9 superfamily member OS=Aedes aegypti OX=7159 GN=AAEL012833 PE=3 SV=1 Q16KY5_AEDAE,Q16NC8_AEDAE 67,401.40

AAEL004134-PA OS=Aedes aegypti OX=7159 GN=AAEL004134 PE=4 SV=1 Q17DI5_AEDAE 73,782.80

AAEL000378-PA OS=Aedes aegypti OX=7159 GN=5575137 PE=4 SV=1 Q17PJ5_AEDAE 50,840.00

AAEL013188-PA OS=Aedes aegypti OX=7159 GN=5577451 PE=4 SV=1 Q16JW3_AEDAE 28,521.30

AAEL010850-PA OS=Aedes aegypti OX=7159 GN=5574015 PE=4 SV=1 Q16RS8_AEDAE 24,452.40

AAEL008491-PA OS=Aedes aegypti OX=7159 GN=5570666 PE=4 SV=1 Q16YN5_AEDAE 70,919.00

AAEL005739-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL005739 PE=4 SV=1 Q178X4_AEDAE 69,908.70

Carboxylic ester hydrolase (Fragment) OS=Aedes aegypti OX=7159 GN=5573293 PE=3 SV=1 Q16T49_AEDAE 61,196.10

AAEL005425-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL005425 PE=4 SV=1 Q17A59_AEDAE 124,295.80

Inositol-1-monophosphatase OS=Aedes aegypti OX=7159 GN=AAEL004967 PE=3 SV=1 Q17BI6_AEDAE 30,771.40

AAEL007522-PA OS=Aedes aegypti OX=7159 GN=AAEL007522 PE=4 SV=1 Q171V0_AEDAE 33,132.10

171 AAEL008789-PA OS=Aedes aegypti OX=7159 GN=5571084 PE=4 SV=1 Q16XP0_AEDAE 22,126.00

26S protease regulatory subunit OS=Aedes aegypti OX=7159 GN=AAEL013676 PE=3 SV=1 Q16FL0_AEDAE 45,537.90

AAEL011982-PA OS=Aedes aegypti OX=7159 GN=AAEL011982 PE=4 SV=1 Q16NH5_AEDAE 57,714.20

AAEL004067-PA OS=Aedes aegypti OX=7159 GN=5564072 PE=4 SV=1 Q17DU4_AEDAE 19,743.90

AAEL009080-PB OS=Aedes aegypti OX=7159 GN=AAEL009080 PE=4 SV=1 Q16WV7_AEDAE 80,908.40

Transgelin OS=Aedes aegypti OX=7159 GN=5568503 PE=2 SV=1 Q1HR19_AEDAE 20,721.80

AAEL003720-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL003720 PE=4 SV=1 Q17EN3_AEDAE 105,793.70

AAEL009559-PA OS=Aedes aegypti OX=7159 GN=AAEL009559 PE=3 SV=1 Q16VH1_AEDAE 24,605.70

AAEL007647-PA OS=Aedes aegypti OX=7159 GN=5569458 PE=4 SV=1 Q171H7_AEDAE 28,541.30

AAEL009863-PA OS=Aedes aegypti OX=7159 GN=AAEL009863 PE=4 SV=1 Q16UM3_AEDAE 64,148.20

AAEL001549-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL001549 PE=4 SV=1 Q17KS0_AEDAE 98,009.70

AAEL003770-PA OS=Aedes aegypti OX=7159 GN=5578935 PE=3 SV=1 Q0IFZ2_AEDAE 56,866.50

AAEL014717-PA OS=Aedes aegypti OX=7159 GN=5565083 PE=4 SV=1 Q16FL3_AEDAE 47,663.40

AAEL008105-PA OS=Aedes aegypti OX=7159 GN=AAEL008105 PE=4 SV=1 Q0IER7_AEDAE 73,997.70

AAEL008152-PA OS=Aedes aegypti OX=7159 GN=5570230 PE=4 SV=1 Q16ZI8_AEDAE 27,120.80

AAEL010449-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL010449 PE=4 SV=1 Q16SX9_AEDAE 126,411.40

AAEL012094-PA OS=Aedes aegypti OX=7159 GN=5575837 PE=3 SV=1 Q16N28_AEDAE 40,562.70 Sodium/potassium-transporting ATPase subunit alpha OS=Aedes aegypti OX=7159 GN=AAEL012062 Q16N74_AEDAE,Q16N75_AEDAE,Q16N PE=3 SV=1 76_AEDAE 110,966.10

AAEL011355-PA OS=Aedes aegypti OX=7159 GN=AAEL011355 PE=3 SV=1 Q16Q99_AEDAE 68,540.00

AAEL012093-PA OS=Aedes aegypti OX=7159 GN=5575820 PE=4 SV=1 Q16N44_AEDAE 105,167.90

AAEL000032-PA OS=Aedes aegypti OX=7159 GN=RS6_AEDAE PE=4 SV=1 Q0C740_AEDAE 37,239.10

AAEL008250-PA OS=Aedes aegypti OX=7159 GN=AAEL008250 PE=4 SV=1 Q16ZB4_AEDAE 20,425.80

5'-nucleotidase OS=Aedes aegypti OX=7159 GN=5573774 PE=3 SV=1 Q17PQ5_AEDAE 34,501.30

AAEL008598-PA OS=Aedes aegypti OX=7159 GN=AAEL008598 PE=4 SV=1 Q16YC0_AEDAE 174,132.50

AAEL014678-PA OS=Aedes aegypti OX=7159 GN=CYP6F2 PE=3 SV=1 Q16FQ0_AEDAE 58,155.80

Lysine--tRNA ligase OS=Aedes aegypti OX=7159 GN=AAEL014702 PE=3 SV=1 Q16FM7_AEDAE 66,157.50

AAEL000159-PA OS=Aedes aegypti OX=7159 GN=AAEL000159 PE=4 SV=1 Q17Q08_AEDAE 32,093.80

AAEL011916-PA OS=Aedes aegypti OX=7159 GN=AAEL011916 PE=3 SV=1 Q16NM5_AEDAE 26,712.70

AAEL010065-PA OS=Aedes aegypti OX=7159 GN=5572836 PE=2 SV=1 Q1HQU9_AEDAE 47,666.30

Malate dehydrogenase OS=Aedes aegypti OX=7159 GN=AAEL007707 PE=3 SV=1 Q171B2_AEDAE 36,263.30

AAEL007023-PA OS=Aedes aegypti OX=7159 GN=5568633 PE=4 SV=1 Q173X5_AEDAE 77,799.40

AAEL012698-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL012698 PE=4 SV=1 Q16LB4_AEDAE 185,602.70

AAEL011006-PA OS=Aedes aegypti OX=7159 GN=5574237 PE=4 SV=1 Q16RC6_AEDAE 26,001.30

AAEL000719-PA OS=Aedes aegypti OX=7159 GN=AAEL000719 PE=4 SV=1 Q17NI1_AEDAE 69,227.00

AAEL002433-PA OS=Aedes aegypti OX=7159 GN=AAEL002433 PE=4 SV=1 Q17I93_AEDAE 27,154.60

AAEL008128-PA OS=Aedes aegypti OX=7159 GN=5570147 PE=2 SV=1 Q1HRD0_AEDAE 10,249.00

AAEL004102-PA OS=Aedes aegypti OX=7159 GN=5564130 PE=4 SV=1 Q17DM8_AEDAE 35,790.10

AAEL007660-PA OS=Aedes aegypti OX=7159 GN=5569471 PE=4 SV=1 Q171G2_AEDAE 68,121.60

AAEL001623-PA OS=Aedes aegypti OX=7159 GN=AAEL001623 PE=2 SV=1 Q1HQZ9_AEDAE 28,356.40

AAEL012138-PB OS=Aedes aegypti OX=7159 GN=AAEL012138 PE=4 SV=1 Q16MZ3_AEDAE 58,712.30

AAEL003409-PA OS=Aedes aegypti OX=7159 GN=AAEL003409 PE=4 SV=1 Q17FD8_AEDAE 33,051.90

172 AAEL006026-PA OS=Aedes aegypti OX=7159 GN=5567369 PE=4 SV=1 Q177S8_AEDAE 116,473.30

AAEL001705-PA OS=Aedes aegypti OX=7159 GN=5571810 PE=4 SV=1 Q17KI4_AEDAE 49,324.60

AAEL014548-PA (Fragment) OS=Aedes aegypti OX=7159 GN=TPX3 PE=4 SV=2 Q16G24_AEDAE 26,811.20

AAEL004103-PA OS=Aedes aegypti OX=7159 GN=5564111 PE=4 SV=1 Q17DM0_AEDAE 47,543.60

60S ribosomal protein L6 OS=Aedes aegypti OX=7159 GN=AAEL008188 PE=4 SV=1 Q16ZH3_AEDAE 30,230.40

AAEL009326-PA OS=Aedes aegypti OX=7159 GN=AAEL009326 PE=4 SV=1 Q16W64_AEDAE 78,479.00

AAEL006625-PA OS=Aedes aegypti OX=7159 GN=5568190 PE=4 SV=1 Q175L0_AEDAE 28,618.80

AAEL009420-PA OS=Aedes aegypti OX=7159 GN=SCRBQ1 PE=3 SV=1 Q16VV2_AEDAE 55,561.10

AAEL013005-PA OS=Aedes aegypti OX=7159 GN=AAEL013005 PE=4 SV=1 Q16KG3_AEDAE 23,271.90

AAEL010809-PA OS=Aedes aegypti OX=7159 GN=5573965 PE=3 SV=1 Q0IEE3_AEDAE 29,345.40

AAEL008817-PA OS=Aedes aegypti OX=7159 GN=5571091 PE=4 SV=1 Q16XN3_AEDAE 83,945.80

40S ribosomal protein S17 OS=Aedes aegypti OX=7159 GN=5564226 PE=2 SV=2 Q52UT2_AEDAE 15,249.80

AAEL003136-PA OS=Aedes aegypti OX=7159 GN=AAEL003136 PE=4 SV=1 Q17G95_AEDAE 8,065.40

AAEL013567-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL013567 PE=4 SV=1 Q16IR9_AEDAE 146,059.70

Peroxiredoxin OS=Aedes aegypti OX=7159 GN=5568784 PE=3 SV=1 Q173J1_AEDAE 20,703.30

AAEL007410-PA OS=Aedes aegypti OX=7159 GN=5569147 PE=4 SV=1 Q172E4_AEDAE 23,736.90

AAEL002349-PA OS=Aedes aegypti OX=7159 GN=AAEL002349 PE=4 SV=1 Q17II8_AEDAE 59,751.90

AAEL005930-PA OS=Aedes aegypti OX=7159 GN=AAEL005930 PE=4 SV=1 Q178F7_AEDAE 309,389.80

AAEL004859-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL004859 PE=4 SV=1 Q0IFJ1_AEDAE 125,419.50

AAEL001622-PA OS=Aedes aegypti OX=7159 GN=AAEL001622 PE=3 SV=1 Q17KN4_AEDAE 37,760.20

AAEL004059-PB OS=Aedes aegypti OX=7159 GN=AAEL004059 PE=3 SV=1 Q17DR0_AEDAE 44,209.50

AAEL001300-PA OS=Aedes aegypti OX=7159 GN=5569797 PE=4 SV=1 Q17LN5_AEDAE 51,421.80

AAEL010051-PA OS=Aedes aegypti OX=7159 GN=AAEL010051 PE=4 SV=1 Q16U20_AEDAE 63,004.90

AAEL004868-PA OS=Aedes aegypti OX=7159 GN=5565617 PE=4 SV=1 Q17BR1_AEDAE 48,221.80

AAEL001950-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL001950 PE=4 SV=1 Q17JR8_AEDAE 69,282.00

AAEL001960-PA OS=Aedes aegypti OX=7159 GN=5573117 PE=3 SV=1 Q17JN6_AEDAE 60,568.80

AAEL010059-PA OS=Aedes aegypti OX=7159 GN=5572843 PE=4 SV=1 Q16U05_AEDAE 68,947.10

AAEL008459-PA OS=Aedes aegypti OX=7159 GN=AAEL008459 PE=4 SV=1 Q16YQ4_AEDAE 156,185.90

AAEL003469-PA OS=Aedes aegypti OX=7159 GN=5578184 PE=4 SV=1 Q17FC3_AEDAE 17,409.70

AAEL014710-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL014710 PE=4 SV=1 Q16FL9_AEDAE 70,860.50

AAEL011079-PA OS=Aedes aegypti OX=7159 GN=CTLMA10 PE=4 SV=1 Q16R57_AEDAE 18,839.50

AAEL007226-PA OS=Aedes aegypti OX=7159 GN=AAEL007226 PE=4 SV=1 Q172X3_AEDAE 143,347.30

AAEL001356-PA OS=Aedes aegypti OX=7159 GN=5570090 PE=4 SV=1 Q17LH0_AEDAE 15,519.70

AAEL003750-PA OS=Aedes aegypti OX=7159 GN=5578927 PE=4 SV=1 Q0IG01_AEDAE 19,356.70

AAEL000084-PA OS=Aedes aegypti OX=7159 GN=5563664 PE=4 SV=1 Q0C7C3_AEDAE 13,350.80

AAEL003755-PA OS=Aedes aegypti OX=7159 GN=5578931 PE=3 SV=1 Q0IFZ6_AEDAE 15,460.00

AAEL009169-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL009169 PE=4 SV=1 Q16WM9_AEDAE 91,752.50

AAEL009351-PA OS=Aedes aegypti OX=7159 GN=5571869 PE=4 SV=1 Q16W35_AEDAE 16,667.20

AAEL001979-PB OS=Aedes aegypti OX=7159 GN=AAEL001979 PE=4 SV=1 Q17JH1_AEDAE 69,977.30

AAEL005594-PA OS=Aedes aegypti OX=7159 GN=5566735 PE=3 SV=1 Q179I8_AEDAE 29,646.40

AAEL002170-PA OS=Aedes aegypti OX=7159 GN=5580057 PE=4 SV=1 Q17J45_AEDAE 25,321.20

173 AAEL006472-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL006472 PE=4 SV=1 Q176B5_AEDAE 369,239.20

AAEL001807-PA OS=Aedes aegypti OX=7159 GN=CYP9M9 PE=3 SV=2 Q17K46_AEDAE 60,471.40

AAEL001478-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL001478 PE=4 SV=1 Q17L47_AEDAE 103,472.00

Dynein light intermediate chain OS=Aedes aegypti OX=7159 GN=5574245 PE=3 SV=1 Q16RB5_AEDAE 55,045.60

AAEL009216-PB (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL009216 PE=4 SV=1 Q16WG1_AEDAE 34,865.40

AAEL009510-PA OS=Aedes aegypti OX=7159 GN=5572082 PE=2 SV=1 Q95NQ3_AEDAE 75,484.70

AAEL002345-PA OS=Aedes aegypti OX=7159 GN=AAEL002345 PE=4 SV=1 Q17IH3_AEDAE 135,875.90

Rab GDP dissociation inhibitor OS=Aedes aegypti OX=7159 GN=5576950 PE=3 SV=1 Q16KQ6_AEDAE 49,886.90

60S ribosomal protein L26 OS=Aedes aegypti OX=7159 GN=5567070 PE=3 SV=1 Q178R6_AEDAE 17,414.60

AAEL014050-PA OS=Aedes aegypti OX=7159 GN=AAEL014050 PE=4 SV=1 Q16HF1_AEDAE 41,582.90

AAEL006362-PA OS=Aedes aegypti OX=7159 GN=5567930 PE=3 SV=1 Q176G2_AEDAE 75,225.60

AAEL011331-PA OS=Aedes aegypti OX=7159 GN=AAEL011331 PE=4 SV=1 Q16QB7_AEDAE 95,568.90 Ubiquinone biosynthesis O-methyltransferase, mitochondrial OS=Aedes aegypti OX=7159 GN=coq3 PE=3 SV=1 Q16Z38_AEDAE 34,286.50

AAEL007979-PA OS=Aedes aegypti OX=7159 GN=AAEL007979 PE=4 SV=1 Q170B8_AEDAE 92,223.80

AAEL005340-PA OS=Aedes aegypti OX=7159 GN=AAEL005340 PE=4 SV=1 Q17AE3_AEDAE 22,660.90

AAEL009100-PA OS=Aedes aegypti OX=7159 GN=AAEL009100 PE=3 SV=1 Q16WT9_AEDAE 33,605.70

AAEL007704-PA OS=Aedes aegypti OX=7159 GN=AAEL007704 PE=4 SV=1 Q171B9_AEDAE 64,927.50

AAEL009232-PA OS=Aedes aegypti OX=7159 GN=AAEL009232 PE=4 SV=1 Q16WF9_AEDAE 76,354.80

Sphingomyelin phosphodiesterase OS=Aedes aegypti OX=7159 GN=AAEL006375 PE=3 SV=1 Q176G5_AEDAE 72,576.40

60S ribosomal protein L22 OS=Aedes aegypti OX=7159 GN=AAEL007771 PE=4 SV=1 Q0IEV9_AEDAE 17,510.70

Aldehyde dehydrogenase OS=Aedes aegypti OX=7159 GN=AAEL012162 PE=3 SV=1 Q16MV5_AEDAE 54,745.50

AAEL012702-PA OS=Aedes aegypti OX=7159 GN=AAEL012702 PE=4 SV=1 Q16LB7_AEDAE 186,854.80

Aminopeptidase OS=Aedes aegypti OX=7159 GN=AAEL012776 PE=3 SV=1 Q16L35_AEDAE 102,950.80

AAEL014931-PB OS=Aedes aegypti OX=7159 GN=AAEL014931 PE=4 SV=1 Q16F20_AEDAE 153,994.30

AAEL012978-PA OS=Aedes aegypti OX=7159 GN=AAEL012978 PE=4 SV=1 Q0IE93_AEDAE,Q17PI7_AEDAE 36,104.00

AAEL017368-PA OS=Aedes aegypti OX=7159 GN=23687788 PE=4 SV=1 J9HT92_AEDAE 64,101.00

Acyl-coenzyme A oxidase OS=Aedes aegypti OX=7159 GN=AAEL008841 PE=3 SV=1 Q16XL2_AEDAE 86,554.20 Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL008950 PE=3 SV=1 Q16X86_AEDAE 142,909.00

AAEL008500-PA OS=Aedes aegypti OX=7159 GN=5570686 PE=3 SV=1 Q16YL3_AEDAE 50,402.60

AAEL007662-PA OS=Aedes aegypti OX=7159 GN=AAEL007662 PE=3 SV=1 Q171G6_AEDAE 38,158.50

AAEL017137-PA OS=Aedes aegypti OX=7159 GN=AAEL801253 PE=4 SV=1 J9HS94_AEDAE 74,824.60 28 kDa heat- and acid-stable phosphoprotein (PDGF-associated protein), putative OS=Aedes aegypti OX=7159 GN=5572992 PE=2 SV=1 Q1HQX2_AEDAE 18,212.00

Tubulin beta chain OS=Aedes aegypti OX=7159 GN=5576244 PE=3 SV=1 Q17GX9_AEDAE 50,119.30

AAEL005937-PA OS=Aedes aegypti OX=7159 GN=AAEL005937 PE=4 SV=1 Q178E9_AEDAE 144,865.10

AAEL006367-PA OS=Aedes aegypti OX=7159 GN=AAEL006367 PE=4 SV=1 Q176G1_AEDAE 26,293.90

Serine/threonine-protein phosphatase OS=Aedes aegypti OX=7159 GN=5571745 PE=2 SV=1 Q1HR05_AEDAE 37,311.70

AAEL012243-PA OS=Aedes aegypti OX=7159 GN=AAEL012243 PE=4 SV=1 Q16MP0_AEDAE 83,374.10 Small nuclear ribonucleoprotein-associated protein OS=Aedes aegypti OX=7159 GN=5574494 PE=2 SV=1 Q1HQD9_AEDAE 21,547.80

40S ribosomal protein S3 OS=Aedes aegypti OX=7159 GN=AaeL_AAEL008192 PE=3 SV=1 J9HFW1_AEDAE,Q4F6X0_AEDAE 26,909.50

174 AAEL004743-PA OS=Aedes aegypti OX=7159 GN=AAEL004743 PE=4 SV=1 Q17BX9_AEDAE 122,783.20 Isocitrate dehydrogenase [NAD] subunit, mitochondrial OS=Aedes aegypti OX=7159 GN=AAEL000454 PE=3 SV=1 Q17P79_AEDAE,Q17P80_AEDAE 43,613.30

AAEL012860-PA OS=Aedes aegypti OX=7159 GN=AAEL012860 PE=4 SV=1 Q16KV2_AEDAE 27,404.30

AAEL002885-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL002885 PE=3 SV=1 Q17GR4_AEDAE 55,113.20

AAEL000410-PA OS=Aedes aegypti OX=7159 GN=5577327 PE=3 SV=1 Q17PC5_AEDAE 25,112.70

AAEL000044-PB OS=Aedes aegypti OX=7159 GN=AAEL000044 PE=3 SV=1 Q0C732_AEDAE 49,769.40

AAEL006050-PA OS=Aedes aegypti OX=7159 GN=5567391 PE=4 SV=1 Q177Q3_AEDAE 107,154.10

AAEL011935-PA OS=Aedes aegypti OX=7159 GN=5575599 PE=4 SV=1 Q16NL7_AEDAE 28,166.60 Angiotensin-converting enzyme (Fragment) OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017460 PE=3 SV=1 J9E9A1_AEDAE 74,479.80

AAEL003952-PA OS=Aedes aegypti OX=7159 GN=AAEL003952 PE=3 SV=1 Q17E34_AEDAE 91,759.30

AAEL007478-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL007478 PE=4 SV=1 Q171X1_AEDAE 104,274.50

AAEL003588-PA OS=Aedes aegypti OX=7159 GN=AAEL003588 PE=4 SV=1 Q17F35_AEDAE 40,824.70

AAEL011604-PA OS=Aedes aegypti OX=7159 GN=AAEL011604 PE=4 SV=1 Q16PL9_AEDAE 404,939.30

AAEL005997-PA OS=Aedes aegypti OX=7159 GN=5567329 PE=3 SV=1 Q177Y4_AEDAE 14,803.30

AAEL000214-PA OS=Aedes aegypti OX=7159 GN=5570059 PE=3 SV=1 Q17Q10_AEDAE 68,073.70

AAEL014609-PA (Fragment) OS=Aedes aegypti OX=7159 GN=CYP9J26 PE=3 SV=1 Q16FX0_AEDAE 61,622.40

AAEL000575-PA OS=Aedes aegypti OX=7159 GN=5564321 PE=3 SV=1 Q17NS8_AEDAE 61,448.40

AAEL010963-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL010963 PE=4 SV=1 Q16RF3_AEDAE 42,607.70

AAEL013742-PA OS=Aedes aegypti OX=7159 GN=AAEL013742 PE=4 SV=1 Q16IA6_AEDAE 52,431.20

AAEL010504-PA OS=Aedes aegypti OX=7159 GN=5573465 PE=4 SV=1 Q16SS0_AEDAE 21,930.60

AAEL007441-PA OS=Aedes aegypti OX=7159 GN=5569181 PE=2 SV=1 Q1HRN7_AEDAE 20,957.70

F-actin-capping protein subunit alpha OS=Aedes aegypti OX=7159 GN=5578596 PE=3 SV=1 Q16I64_AEDAE 32,978.40

AAEL009125-PA OS=Aedes aegypti OX=7159 GN=CYP6M10 PE=3 SV=1 Q16WQ8_AEDAE 56,976.70 Mitochondrial import inner membrane translocase subunit TIM50 OS=Aedes aegypti OX=7159 GN=5567537 PE=3 SV=1 Q177F9_AEDAE 48,594.00

AAEL010653-PA OS=Aedes aegypti OX=7159 GN=AAEL010653 PE=3 SV=1 Q16S75_AEDAE 55,175.70

AAEL012825-PA OS=Aedes aegypti OX=7159 GN=AAEL012825 PE=3 SV=1 Q16KZ1_AEDAE 64,168.10

AAEL007113-PA OS=Aedes aegypti OX=7159 GN=AAEL007113 PE=4 SV=1 Q173K3_AEDAE 29,818.00

AAEL004010-PD (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL004010 PE=4 SV=1 Q17DX0_AEDAE,Q17DX1_AEDAE 36,495.70 tr|Q17P77|Q17P77_AEDAE-DECOY AAEL000462-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL000462... Q17P77_AEDAE-DECOY 0

AAEL002986-PA OS=Aedes aegypti OX=7159 GN=AAEL002986 PE=4 SV=1 Q17GH8_AEDAE 148,253.70

AAEL000424-PA OS=Aedes aegypti OX=7159 GN=5577354 PE=3 SV=1 Q17P99_AEDAE 54,883.90

Dynein light chain roadblock OS=Aedes aegypti OX=7159 GN=5566370 PE=3 SV=1 Q17AA0_AEDAE 10,821.30

AAEL002671-PA OS=Aedes aegypti OX=7159 GN=5575579 PE=4 SV=1 Q17HH9_AEDAE 55,863.60

AAEL000951-PB OS=Aedes aegypti OX=7159 GN=AAEL000951 PE=3 SV=1 Q17MM4_AEDAE,Q17MM5_AEDAE 24,610.10

AAEL004853-PA OS=Aedes aegypti OX=7159 GN=5565537 PE=3 SV=1 Q0IFH7_AEDAE 56,803.00

AAEL010975-PA OS=Aedes aegypti OX=7159 GN=5574161 PE=4 SV=1 Q16RF4_AEDAE 103,227.90

AAEL006307-PA OS=Aedes aegypti OX=7159 GN=AAEL006307 PE=4 SV=1 Q176P0_AEDAE 284,892.80

AAEL011510-PA OS=Aedes aegypti OX=7159 GN=AAEL011510 PE=3 SV=1 Q16PV9_AEDAE 53,143.00

AAEL004750-PA OS=Aedes aegypti OX=7159 GN=AAEL004750 PE=4 SV=1 Q17C21_AEDAE 30,829.30

AAEL014526-PA OS=Aedes aegypti OX=7159 GN=AAEL014526 PE=4 SV=1 Q16G45_AEDAE 14,878.40

175 AAEL008613-PA OS=Aedes aegypti OX=7159 GN=AAEL008613 PE=4 SV=1 Q16YA2_AEDAE 55,676.30

AAEL002913-PA OS=Aedes aegypti OX=7159 GN=AAEL002913 PE=4 SV=1 Q17GS0_AEDAE 74,627.10

AAEL008278-PA OS=Aedes aegypti OX=7159 GN=AAEL008278 PE=4 SV=1 Q16ZA3_AEDAE 34,741.10

AAEL013290-PA OS=Aedes aegypti OX=7159 GN=AAEL013290 PE=4 SV=1 Q16JK7_AEDAE 20,786.00

AAEL007845-PA OS=Aedes aegypti OX=7159 GN=5569700 PE=4 SV=1 Q170P3_AEDAE 23,598.70

AAEL017133-PA OS=Aedes aegypti OX=7159 GN=23687553 PE=4 SV=1 J9HY30_AEDAE 26,998.10

AAEL001548-PA OS=Aedes aegypti OX=7159 GN=5571298 PE=4 SV=1 Q17KR8_AEDAE 57,942.10

Peptidylprolyl isomerase OS=Aedes aegypti OX=7159 GN=AAEL003303 PE=4 SV=1 Q17FV1_AEDAE 31,662.60

Signal recognition particle subunit SRP72 OS=Aedes aegypti OX=7159 GN=AAEL003377 PE=3 SV=1 Q17FK4_AEDAE 74,494.60

26S proteasome regulatory subunit S3 OS=Aedes aegypti OX=7159 GN=5575843 PE=4 SV=1 Q16N14_AEDAE 56,339.30

Peptidylprolyl isomerase OS=Aedes aegypti OX=7159 GN=5564542 PE=4 SV=1 Q17D71_AEDAE 23,247.40

AAEL001385-PA OS=Aedes aegypti OX=7159 GN=AAEL001385 PE=4 SV=1 Q17LG2_AEDAE 42,682.80

AAEL000049-PA OS=Aedes aegypti OX=7159 GN=AAEL000049 PE=4 SV=1 Q0C7B5_AEDAE 35,910.20

60S acidic ribosomal protein P0 OS=Aedes aegypti OX=7159 GN=5573974 PE=2 SV=1 Q1HR99_AEDAE 33,834.10

AAEL000944-PA OS=Aedes aegypti OX=7159 GN=AAEL000944 PE=4 SV=1 Q17MR8_AEDAE 73,395.70

Obg-like ATPase 1 OS=Aedes aegypti OX=7159 GN=5580070 PE=3 SV=1 Q17J37_AEDAE 44,792.10

AAEL008218-PA OS=Aedes aegypti OX=7159 GN=5570263 PE=3 SV=1 Q16ZF3_AEDAE 33,200.00

Cystathionine beta-synthase OS=Aedes aegypti OX=7159 GN=AAEL008467 PE=3 SV=1 Q16YQ7_AEDAE 56,270.00

AAEL004507-PA OS=Aedes aegypti OX=7159 GN=AAEL004507 PE=4 SV=1 Q0IFN6_AEDAE 37,802.60

UDP-glucuronosyltransferase OS=Aedes aegypti OX=7159 GN=AAEL001586 PE=3 SV=1 Q17KR9_AEDAE 58,562.00

AAEL007201-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL007201 PE=4 SV=1 Q173A7_AEDAE 113,758.40

AAEL000444-PA OS=Aedes aegypti OX=7159 GN=5577322 PE=4 SV=1 Q17PC9_AEDAE 172,135.70

AAEL005269-PA OS=Aedes aegypti OX=7159 GN=AAEL005269 PE=4 SV=1 Q17AK0_AEDAE 45,569.30

Actin-related protein 2 OS=Aedes aegypti OX=7159 GN=5575287 PE=3 SV=1 Q16P63_AEDAE 44,725.10

UDP-glucuronosyltransferase OS=Aedes aegypti OX=7159 GN=AAEL008560 PE=3 SV=1 Q16YF5_AEDAE 59,315.30

GTP-binding nuclear protein OS=Aedes aegypti OX=7159 GN=5571763 PE=3 SV=1 Q16WA1_AEDAE 24,469.30

AAEL009932-PA OS=Aedes aegypti OX=7159 GN=AAEL009932 PE=4 SV=1 Q16UF4_AEDAE 129,179.50

AAEL009824-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL009824 PE=4 SV=1 Q16UQ9_AEDAE 223,152.10 Secretory carrier-associated membrane protein OS=Aedes aegypti OX=7159 GN=5563589 PE=3 SV=1 Q0C739_AEDAE 39,259.40

AAEL001061-PC OS=Aedes aegypti OX=7159 GN=GSTD1 PE=3 SV=1 J9HXZ8_AEDAE 23,861.20

AAEL012282-PC OS=Aedes aegypti OX=7159 GN=AAEL012282 PE=4 SV=1 Q16MJ2_AEDAE 38,801.40

Sorting nexin OS=Aedes aegypti OX=7159 GN=AAEL003758 PE=3 SV=1 Q0IG11_AEDAE 49,817.60

AAEL013314-PA OS=Aedes aegypti OX=7159 GN=5577678 PE=4 SV=1 Q16JJ2_AEDAE 27,710.20

AAEL002411-PA OS=Aedes aegypti OX=7159 GN=AAEL002411 PE=4 SV=1 Q17IA0_AEDAE 34,607.10

AAEL017263-PA OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017263 PE=4 SV=1 J9HG73_AEDAE 103,684.60

AAEL006091-PA OS=Aedes aegypti OX=7159 GN=AAEL006091 PE=4 SV=1 Q177M1_AEDAE 23,548.00

AAEL005238-PA OS=Aedes aegypti OX=7159 GN=5566167 PE=4 SV=1 Q17AP0_AEDAE 83,292.50

AAEL012859-PA OS=Aedes aegypti OX=7159 GN=5576921 PE=4 SV=1 Q16KU8_AEDAE 27,823.40

Elongation factor Tu OS=Aedes aegypti OX=7159 GN=AaeL_AAEL017378 PE=4 SV=1 J9HFE1_AEDAE,Q16YK5_AEDAE 51,096.10

176 AAEL007653-PA OS=Aedes aegypti OX=7159 GN=5569474 PE=2 SV=1 Q171F8_AEDAE 52,365.10 28S ribosomal protein S15, mitochondrial precursor OS=Aedes aegypti OX=7159 GN=5565346 PE=3 SV=1 Q16FB6_AEDAE,Q17LQ2_AEDAE 33,219.30

AAEL003071-PA OS=Aedes aegypti OX=7159 GN=AAEL003071 PE=4 SV=1 Q0IG93_AEDAE 81,299.00

AAEL007293-PA OS=Aedes aegypti OX=7159 GN=AAEL007293 PE=2 SV=1 Q1HQW4_AEDAE 40,669.30

AAEL006542-PA OS=Aedes aegypti OX=7159 GN=5568116 PE=3 SV=1 Q175U3_AEDAE 55,340.10

Dipeptidase OS=Aedes aegypti OX=7159 GN=5566869 PE=3 SV=1 Q17N23_AEDAE 48,441.90

AAEL010248-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL010248 PE=3 SV=1 Q16TF1_AEDAE 32,774.70

Integrin beta OS=Aedes aegypti OX=7159 GN=AAEL012466 PE=3 SV=1 Q16M01_AEDAE 91,655.90

AAEL001798-PB OS=Aedes aegypti OX=7159 GN=5572463 PE=4 SV=1 Q17K22_AEDAE,Q17K23_AEDAE 20,197.80

AAEL004930-PA OS=Aedes aegypti OX=7159 GN=5565700 PE=3 SV=1 Q17BL7_AEDAE 31,307.20

AAEL010827-PA OS=Aedes aegypti OX=7159 GN=5573966 PE=4 SV=1 Q0IED9_AEDAE 174,143.40

AAEL008521-PA OS=Aedes aegypti OX=7159 GN=5570771 PE=4 SV=1 Q16YH0_AEDAE 87,112.70

AAEL002488-PA OS=Aedes aegypti OX=7159 GN=AAEL002488 PE=4 SV=1 Q17I24_AEDAE 81,151.00

Ubiquitin carboxyl-terminal hydrolase OS=Aedes aegypti OX=7159 GN=AAEL001112 PE=3 SV=1 Q17M51_AEDAE 90,120.40

40S ribosomal protein S13 OS=Aedes aegypti OX=7159 GN=40sRpS13 PE=2 SV=1 Q5QC94_AEDAE 17,186.50

Coronin OS=Aedes aegypti OX=7159 GN=AAEL009249 PE=3 SV=1 Q16WE1_AEDAE 120,911.70

AAEL011755-PA OS=Aedes aegypti OX=7159 GN=AAEL011755 PE=3 SV=1 Q16P51_AEDAE 25,068.10

AAEL000791-PA OS=Aedes aegypti OX=7159 GN=AAEL000791 PE=4 SV=1 Q17N73_AEDAE 9,160.00

AAEL003430-PA OS=Aedes aegypti OX=7159 GN=AAEL003430 PE=4 SV=1 Q17FF3_AEDAE 39,128.20

AAEL004242-PA OS=Aedes aegypti OX=7159 GN=AAEL004242 PE=4 SV=1 Q17DF4_AEDAE 49,506.60

AAEL013783-PA OS=Aedes aegypti OX=7159 GN=AAEL013783 PE=4 SV=1 Q16I59_AEDAE 39,529.10

40S ribosomal protein S24 OS=Aedes aegypti OX=7159 GN=AAEL014292 PE=2 SV=1 Q8WQK7_AEDAE 15,064.70

AAEL008431-PA OS=Aedes aegypti OX=7159 GN=AAEL008431 PE=4 SV=1 Q16YU5_AEDAE 64,674.40

Vacuolar proton pump subunit B OS=Aedes aegypti OX=7159 GN=VATB PE=2 SV=1 Q9XYC8_AEDAE 55,217.40

AAEL011447-PA OS=Aedes aegypti OX=7159 GN=AAEL011447 PE=4 SV=1 Q16Q18_AEDAE 26,158.70

AAEL002879-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL002879 PE=4 SV=1 Q17GV6_AEDAE 57,468.20

AAEL011271-PA OS=Aedes aegypti OX=7159 GN=5574637 PE=4 SV=1 Q16QI6_AEDAE 92,778.50 NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial OS=Aedes aegypti OX=7159 GN=5569074 PE=2 SV=1 Q1HRB4_AEDAE 13,739.70

60S acidic ribosomal protein P2 OS=Aedes aegypti OX=7159 GN=AAEL014583 PE=2 SV=1 Q1HRM9_AEDAE 11,343.90

AAEL003384-PA OS=Aedes aegypti OX=7159 GN=AAEL003384 PE=4 SV=1 Q17FK3_AEDAE 17,628.70

AAEL008319-PA OS=Aedes aegypti OX=7159 GN=5570429 PE=4 SV=1 Q16Z37_AEDAE 71,480.50

Alpha-1,4 glucan phosphorylase OS=Aedes aegypti OX=7159 GN=5565921 PE=3 SV=1 Q17NG8_AEDAE 96,960.80

AAEL005520-PA OS=Aedes aegypti OX=7159 GN=AAEL005520 PE=3 SV=1 Q179S3_AEDAE 28,935.70

AAEL010618-PA OS=Aedes aegypti OX=7159 GN=AAEL010618 PE=4 SV=1 Q16SE9_AEDAE,Q171K0_AEDAE 36,277.10

AAEL004141-PA OS=Aedes aegypti OX=7159 GN=5564179 PE=4 SV=1 Q17DK4_AEDAE 31,552.30

AAEL013501-PA OS=Aedes aegypti OX=7159 GN=PPO4 PE=4 SV=1 Q16IZ4_AEDAE,Q174J3_AEDAE 79,420.10

AAEL009051-PA (Fragment) OS=Aedes aegypti OX=7159 GN=TPX5 PE=4 SV=2 Q16WZ9_AEDAE 24,126.60

AAEL005080-PA OS=Aedes aegypti OX=7159 GN=AAEL005080 PE=4 SV=1 Q17B79_AEDAE 57,539.90

AAEL001103-PA OS=Aedes aegypti OX=7159 GN=5568602 PE=2 SV=1 Q1HRG4_AEDAE 15,100.80 Q17AK5_AEDAE,Q17AK6_AEDAE,Q17 AAEL005259-PA OS=Aedes aegypti OX=7159 GN=AAEL005259 PE=4 SV=1 AK7_AEDAE 22,467.10

AAEL010170-PA OS=Aedes aegypti OX=7159 GN=5572947 PE=4 SV=1 Q16TQ1_AEDAE 23,895.00

177 AAEL014220-PA (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL014220 PE=4 SV=1 Q16GY5_AEDAE 40,480.30

AAEL010014-PA OS=Aedes aegypti OX=7159 GN=AAEL010014 PE=4 SV=1 Q16U55_AEDAE 234,204.60

AAEL009377-PA OS=Aedes aegypti OX=7159 GN=AAEL009377 PE=4 SV=1 Q16W03_AEDAE 20,789.10

AAEL001649-PA OS=Aedes aegypti OX=7159 GN=AAEL001649 PE=4 SV=1 Q17KL8_AEDAE 55,782.90

AAEL002416-PA OS=Aedes aegypti OX=7159 GN=AAEL002416 PE=4 SV=1 Q17IA4_AEDAE 44,664.70

AAEL008749-PA OS=Aedes aegypti OX=7159 GN=AAEL008749 PE=4 SV=1 Q16XW0_AEDAE 58,283.50

Calponin OS=Aedes aegypti OX=7159 GN=5570416 PE=3 SV=1 Q16Z50_AEDAE 19,048.90

AAEL007080-PA OS=Aedes aegypti OX=7159 GN=AAEL007080 PE=3 SV=1 Q173M5_AEDAE 99,352.50

Aminopeptidase OS=Aedes aegypti OX=7159 GN=AAEL009108 PE=3 SV=1 Q16WS8_AEDAE 109,566.40

AAEL013643-PA OS=Aedes aegypti OX=7159 GN=AAEL013643 PE=4 SV=1 Q16IJ8_AEDAE 29,291.30

AAEL007209-PA OS=Aedes aegypti OX=7159 GN=5568914 PE=3 SV=1 Q172Z9_AEDAE 21,234.40

AAEL013561-PA OS=Aedes aegypti OX=7159 GN=AAEL013561 PE=4 SV=1 Q16IU0_AEDAE 258,519.10

AAEL001052-PA OS=Aedes aegypti OX=7159 GN=5579901 PE=3 SV=1 Q17MF2_AEDAE 10,743.60 NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial OS=Aedes aegypti OX=7159 GN=AAEL007681 PE=3 SV=1 Q171D1_AEDAE 53,391.40

AAEL000847-PA OS=Aedes aegypti OX=7159 GN=5566864 PE=4 SV=1 Q17N27_AEDAE 18,581.10

Pyruvate carboxylase OS=Aedes aegypti OX=7159 GN=5572254 PE=4 SV=1 Q16V52_AEDAE 130,636.00

AAEL005910-PA OS=Aedes aegypti OX=7159 GN=5567160 PE=4 SV=1 Q0IFB0_AEDAE 20,228.60

Coronin OS=Aedes aegypti OX=7159 GN=5570333 PE=3 SV=1 Q17LF3_AEDAE,Q17LF4_AEDAE 61,440.20

AAEL004685-PA OS=Aedes aegypti OX=7159 GN=AAEL004685 PE=3 SV=1 Q0IFJ8_AEDAE 56,114.50

AAEL003903-PA OS=Aedes aegypti OX=7159 GN=AAEL003903 PE=3 SV=1 Q17E64_AEDAE 49,831.30

AAEL001166-PA OS=Aedes aegypti OX=7159 GN=AAEL001166 PE=4 SV=1 Q17M29_AEDAE 38,364.20

AAEL006384-PA OS=Aedes aegypti OX=7159 GN=5567926 PE=4 SV=1 Q176H4_AEDAE 32,384.30

Queuosine salvage protein OS=Aedes aegypti OX=7159 GN=AAEL005203 PE=3 SV=1 Q17AU4_AEDAE 42,000.10

AAEL008393-PA OS=Aedes aegypti OX=7159 GN=AAEL008393 PE=4 SV=1 Q16YY0_AEDAE 54,902.60

AAEL009501-PA OS=Aedes aegypti OX=7159 GN=5572081 PE=3 SV=1 Q0IEM7_AEDAE 33,014.60

AAEL007306-PA OS=Aedes aegypti OX=7159 GN=AAEL007306 PE=4 SV=1 Q172T4_AEDAE 103,648.60

AAEL014507-PA OS=Aedes aegypti OX=7159 GN=AAEL014507 PE=4 SV=1 Q16G66_AEDAE 73,514.80

Signal peptidase complex subunit 3 OS=Aedes aegypti OX=7159 GN=5567470 PE=2 SV=1 Q1HRQ4_AEDAE 20,534.30

AAEL007633-PB OS=Aedes aegypti OX=7159 GN=AaeL_AAEL007633 PE=4 SV=1 J9EA44_AEDAE,Q171I1_AEDAE 66,120.60

AAEL008898-PA OS=Aedes aegypti OX=7159 GN=5571203 PE=4 SV=1 Q16XE6_AEDAE 40,021.90

AAEL005676-PA OS=Aedes aegypti OX=7159 GN=AAEL005676 PE=4 SV=1 Q179D5_AEDAE 55,888.10

AAEL005174-PA OS=Aedes aegypti OX=7159 GN=AAEL005174 PE=4 SV=1 Q17AU7_AEDAE 117,239.80

Carboxylic ester hydrolase (Fragment) OS=Aedes aegypti OX=7159 GN=AAEL000918 PE=3 SV=2 Q17MV7_AEDAE 59,421.40

Alpha-amylase OS=Aedes aegypti OX=7159 GN=AAEL008456 PE=3 SV=1 Q16YQ9_AEDAE 55,539.90

AAEL001312-PA OS=Aedes aegypti OX=7159 GN=CYP9M6 PE=2 SV=1 Q17LK4_AEDAE 61,017.80

AAEL008600-PA OS=Aedes aegypti OX=7159 GN=AAEL008600 PE=4 SV=1 Q16YB7_AEDAE 48,125.80

AAEL014617-PA OS=Aedes aegypti OX=7159 GN=CYP9J28 PE=3 SV=1 Q16FX2_AEDAE 61,298.60

AAEL004847-PA OS=Aedes aegypti OX=7159 GN=AAEL004847 PE=4 SV=1 Q0IFG3_AEDAE 25,600.00

AAEL000294-PA OS=Aedes aegypti OX=7159 GN=AAEL000294 PE=4 SV=1 Q17PP2_AEDAE 44,751.90

AAEL010977-PA OS=Aedes aegypti OX=7159 GN=5574167 PE=4 SV=1 Q16RE9_AEDAE 68,635.40

AAEL009539-PA OS=Aedes aegypti OX=7159 GN=5572119 PE=4 SV=1 Q16VJ7_AEDAE 23,811.30

178 AAEL002680-PA OS=Aedes aegypti OX=7159 GN=5575580 PE=4 SV=1 Q17HI0_AEDAE 59,702.40

3-hydroxyacyl-coa dehyrogenase OS=Aedes aegypti OX=7159 GN=AAEL010146 PE=3 SV=1 Q16TS7_AEDAE 82,525.60

60S ribosomal protein L37 OS=Aedes aegypti OX=7159 GN=5577566 PE=2 SV=1 Q1HR76_AEDAE 9,983.80

AAEL005861-PA OS=Aedes aegypti OX=7159 GN=AAEL005861 PE=4 SV=1 Q178J8_AEDAE 232,921.50

AAEL012478-PA OS=Aedes aegypti OX=7159 GN=AAEL012478 PE=4 SV=1 Q16LZ6_AEDAE 37,876.80

Aspartate aminotransferase OS=Aedes aegypti OX=7159 GN=5576532 PE=4 SV=1 Q16LN3_AEDAE 45,363.90

AAEL012234-PA OS=Aedes aegypti OX=7159 GN=AAEL012234 PE=4 SV=1 Q16MN4_AEDAE 72,100.70 Pyruvate dehydrogenase E1 component subunit beta OS=Aedes aegypti OX=7159 GN=AAEL004338 PE=4 SV=1 Q17D51_AEDAE 38,508.00 Glutamine-dependent NAD(+) synthetase OS=Aedes aegypti OX=7159 GN=AAEL015411 PE=3 SV=1 Q16E59_AEDAE,Q16Z66_AEDAE 84,782.50

AAEL012494-PA OS=Aedes aegypti OX=7159 GN=CYP6BZ1 PE=3 SV=1 Q16LY8_AEDAE 57,252.00

AAEL005504-PA OS=Aedes aegypti OX=7159 GN=AAEL005504 PE=4 SV=1 Q179V2_AEDAE 38,708.70

AAEL013269-PA OS=Aedes aegypti OX=7159 GN=AAEL013269 PE=4 SV=1 Q16JN4_AEDAE 40,015.70

AAEL010939-PB OS=Aedes aegypti OX=7159 GN=AAEL010939 PE=4 SV=1 Q16RJ9_AEDAE 89,409.80

AAEL005197-PA OS=Aedes aegypti OX=7159 GN=5566141 PE=4 SV=1 Q17AT2_AEDAE 44,263.80

AAEL008708-PA OS=Aedes aegypti OX=7159 GN=AAEL008708 PE=4 SV=1 Q16Y06_AEDAE 52,785.60

Coatomer subunit delta OS=Aedes aegypti OX=7159 GN=5577486 PE=3 SV=1 Q16JS6_AEDAE 57,521.60

AAEL000569-PA OS=Aedes aegypti OX=7159 GN=AAEL000569 PE=4 SV=1 Q17NU3_AEDAE 72,392.00

AAEL000752-PA OS=Aedes aegypti OX=7159 GN=AAEL000752 PE=4 SV=1 Q17NA7_AEDAE 45,371.50

UDP-glucuronosyltransferase OS=Aedes aegypti OX=7159 GN=AAEL003102 PE=3 SV=1 Q17GE3_AEDAE 58,916.40

AAEL017452-PA OS=Aedes aegypti OX=7159 GN=FOHSDR-4 PE=2 SV=1 D2WKE1_AEDAE 26,576.90

E3 ubiquitin-protein ligase OS=Aedes aegypti OX=7159 GN=AAEL005826 PE=3 SV=1 Q178N6_AEDAE 65,212.50 NADH dehydrogenase [ubiquinone] 1 subunit C2 OS=Aedes aegypti OX=7159 GN=5567286 PE=3 SV=1 Q178D3_AEDAE 12,684.70 Polypeptide N-acetylgalactosaminyltransferase OS=Aedes aegypti OX=7159 GN=AAEL001121 PE=3 SV=1 Q17M64_AEDAE 73,304.50

179 References

(1) Pauly, H.; Binz, A. Ueber Seide and Wolle Als Farstoffbildner. Zs. Farbenchem. 1904, 3,

373.

(2) Pauly, H. Uber Die Einwirkung von Diazoniumverbindungen Auf Imidazole. Hoppe-Seyler’s

Z. Physiol. Chem. 1905, 44, 159–160.

(3) Pauly, H.; Gundermann, K. Über Jodbindende Systeme in Den Eiweiß-Spaltkörpern.

Berichte der Dtsch. Chem. Gesellschaft 1909, 41 (3), 3999–4012.

https://doi.org/10.1002/cber.190804103104.

(4) Pauly, H. Zur Kenntnis Der Diazoreaktion Des Eiwebes. Hoppe-Seyler’s Z. Physiol.

Chem.Pauly, H. (1915). Zur Kenntnis der Diazoreaktion des Eiwebes. Hoppe-Seyler’s Z.

Physiol. Chem., 94, 284–290. 1915, 94, 284–290.

(5) Inouye, K. Über Den Nachweis Des Histidins. Hoppe-Seyler’s Z. Physiol. Chem. 1913, 83,

79.

(6) Diethelm, S.; Schafroth, M. A.; Carreira, E. M. Amine-Selective Bioconjugation Using Arene

Diazonium Salts. Org. Lett. 2014, 16 (15), 3908–3911. https://doi.org/10.1021/ol5016509.

(7) Levenberg, B. An Aromatic in the Mushroom Agaricus Bisporus.

Biochim. Biophys. Acta 1962, 63, 212–214.

(8) Chang, W. H.; Hossfeld, R. L.; Sandstrom, W. M. Identification of Phenols by Paper

Partition Chromatography. J. Am. Chem. Soc. 1952, 74 (22), 5766–5767.

https://doi.org/10.1021/ja01142a506.

(9) Toth, B.; Patil, K.; Jae, H. S. Carcinogenesis of 4-(Hydroxymethyl)Benzenediazonium Ion

(Tetrafluoroborate) of Agaricus Bisporus. Cancer Res. 1981, 41 (6), 2444–2449.

(10) Toth, B.; Sornson, H. Lack of Carcinogenicity of Agaritine by Subcutaneous Administration

in Mice. Mycopathologia 1984, 85 (1–2), 75–79. https://doi.org/10.1007/BF00436706.

(11) Toth, B.; Erickson, J. Cancer Induction in Mice by Feeding of the Uncooked Cultivated

181 Mushroom of Commerce Agaricus Bisporus. Cancer Res. 1986, 46 (8), 4007–4011.

(12) Hiramoto, K.; Kaku, M.; Sueyoshi, A.; Fujise, M.; Kikugawa, K. DNA Base and Deoxyribose

Modification by the Carbon-Centered Radical Generated from 4-

(Hydroxymethyl)Benzenediazonium Salt, a Carcinogen in Mushroom. Chem. Res. Toxicol.

1995, 8 (3), 356–362. https://doi.org/10.1021/tx00045a006.

(13) Yates, E.; Yates, A. Johann Peter Griess FRS (1829-88): Victorian Brewer and Synthetic

Dye Chemist. Notes Rec. 2016, 70 (1), 65–81. https://doi.org/10.1098/rsnr.2015.0020.

(14) Patai. The Chemistry of Diazonium and Diazo Groups. Part 2; Patai, S., Ed.; John Wiley &

Sons, Ltd.: Chichester, UK, 1978. https://doi.org/10.1002/9780470771556.

(15) Kuokkanen, T. The Stability of Arenediazonium Ions in Solution: A Kinetic Study on the

Effect of PH on the Stability of Substituted Benzenediazonium Tetrafluoroborates in

Aqueous Solution. Finn. Chem. Lett. 1987, 14, 184–192.

(16) Swain, C. G.; Sheats, J. E.; Harbison, K. G. Evidence for Phenyl Cation as an

Intermediated in Reactions of Benzenediazonium Salts in Solution. J. Am. Chem. Soc.

1975, 97 (4), 783–790. https://doi.org/10.1021/ja00837a016.

(17) Hodgson, H. H. The Sandmeyer Reaction. Chem. Rev. 1947, 40 (2), 251–277.

https://doi.org/10.1021/cr60126a003.

(18) Fargher, R. G.; Pyman, F. L. LXXXVII.—The Abnormal Behaviour of Glyoxaline-Carboxylic

Esters and Anilides towards Diazonium Salts. J. Chem. Soc., Trans. 1919, 115 (0), 1015–

1020. https://doi.org/10.1039/CT9191501015.

(19) Brown, R. D.; Coller, B. A. W.; Heffernan, M. L. The Mechanism of the Coupling of

Diazonium Salts with Heterocyclic Compounds. Part III. Indazole. J. Chem. Soc. 1958,

1776. https://doi.org/10.1039/jr9580001776.

(20) Koessler, K.; Hanke, M. Studies on Proteinogenous Amines: II. A Microchemical

Colorimetric Method for Estimating Imidazole Derivatives. J. Biol. Chem 1919, 39, 497–

519.

182 (21) Hanke, M. The Quantitative Estimation of Tyrosine and Histidine in Protein. J. Biol. Chem

1925, 66, 475–488.

(22) Jorpes, E. The Colorimetric Determination of Histidine. Biochem. J. 1932, 26 (5), 1507–

1511.

(23) Albanese, A.; Frankston, J.; Irby, V.; American Society for Biochemistry and Molecular

Biology. The Utilization of D-Amino Acids by Man: V. Histidine. J. Biol. Chem 1945, 160,

441.

(24) Kapeller-Adler, R. Concluding Comment on Franz Fo’Ides Paper on the Occurrence of

Histidine in Human Urine. Biochem. Z. 1936, 285, 296.

(25) Hewitt, L. F. The Diazo Reaction in Uraemic Sera. Biochem. J. 1925, 19 (2), 171–174.

(26) Hanke, M.; Koessler, K. Studies on Proteinogenous Amines. XII. The Production of

Histamine and Other Imidazoles from Histidine by the Action of Microorganisms. J. Biol.

Chem. 1922, 50, 131–191.

(27) Busch, V.; Patrascanu, N.; Weber, W. Uber Die Kupplung von D-Aminosauren Mit

Diazoniumsalzen. J. Prakt. Chem. 1934, 140, 117–128.

(28) Herriott, R. M. Reactions of Native Proteins with Chemical Reagents. Adv. Protein Chem.

1947, 3, 169–225. https://doi.org/10.1016/S0065-3233(08)60080-7.

(29) Higgins, H.; Fraser, D. The Reaction of Amino Acids and Proteins and Diazonium Ions.

Aust. J. Chem. 1952, No. 4, 736–753.

(30) Gelewitz, E. W.; Riedeman, W. L.; Klotz, I. M. Some Quantitative Aspects of the Reaction

of Diazonium Compounds with Serum Albumin. Arch. Biochem. Biophys. 1954, 53 (2),

411–424. https://doi.org/10.1016/0003-9861(54)90422-1.

(31) Lucas, F.; Shaw, B.; Smith, G. The Silk Fibroins. In Advances in Protein Chemistry; 1958;

pp 107–242.

(32) Schlick, T. L.; Ding, Z.; Kovacs, E. W.; Francis, M. B. Dual-Surface Modification of the

Tobacco Mosaic Virus. J. Am. Chem. Soc. 2005, 127 (11), 3718–3723.

183 https://doi.org/10.1021/ja046239n.

(33) Dimroth, O. Ueber Die Einwirkung von Diazoverbindungen Auf Primäre Aliphatische

Amine. Berichte der Dtsch. Chem. Gesellschaft 1905, 38 (2), 2328–2330.

https://doi.org/10.1002/cber.190503802203.

(34) Eagle, H.; Vickers, P. On the Nature of the Reaction Between Diazotized Sulfanilic Acid

and Proteins. J. Biol. Chem. 1936, 114 (1), 193–197.

(35) Fraser, D.; Higgins, H. Spectrophotometric Determination of Amino-Groups. Nature 1953,

172, 459–460.

(36) Howard, a N.; Wild, F. The Reactions of Diazonium Compounds with Amino Acids and

Proteins. Biochem. J. 1957, 65 (4), 651–659. https://doi.org/10.1042/bj0650651.

(37) Pielak, G. J.; Gurusiddaiah, S.; Legg, J. I. Quantification of Azo-Coupled Lysine in Azo

Proteins by Amino Acid Analysis. Anal. Biochem. 1986, 156 (2), 403–405.

https://doi.org/10.1016/0003-2697(86)90272-1.

(38) Schwaller, B.; Sigrist, H. Protein Modification by Diazotized Arsanilic Acid: Synthesis and

Characterization of the Phenylthiohydantoin Derivatives of Azobenzene Arsonate-Coupled

Tyrosine, Histidine, and Lysine Residues and Their Sequential Allotment in Labeled

Peptides. Anal. Biochem. 1989, 177 (1), 183–187.

(39) Zahn, H.; Wollemann, B.; Waschka, O. Reaktionen von Diazoniumsalzen Mit Prolin,

Cystein, Glycin Und Anderen Aminosäuren. Hoppe-Seyler´s Zeitschrift für Physiol. Chemie

1953, 294 (Jahresband), 100–107. https://doi.org/10.1515/bchm2.1953.294.1.100.

(40) Yamashita, B. T.; Kabasawa, I.; Sekine, T. Effect of Diazonium Derivatives on Myosin A

Adenosine Triphosphatase. J. Biochem. 1968, 63 (5), 608.

(41) Tracey, B. M.; Shuker, D. E. Characterization of Azo Coupling Adducts of

Benzenediazonium Ions with Aromatic Amino Acids in Peptides and Proteins. Chem. Res.

Toxicol. 1997, 10 (12), 1378–1386. https://doi.org/10.1021/tx970117+.

(42) Zahn, H.; Waschka, O. Reaktionen Yon Bisdiazohexan Mit Aminosauren, Mereapta- Nen,

184 Wollkeratin Und Seidenfibroin. 1956, 28 (I), 201–216.

(43) Addy, P. S.; Erickson, S. B.; Italia, J. S.; Chatterjee, A. A Chemoselective Rapid Azo-

Coupling Reaction (CRACR) for Unclickable Bioconjugation. J. Am. Chem. Soc. 2017, 139

(34), 11670–11673. https://doi.org/10.1021/jacs.7b05125.

(44) Stiborova, M.; Asfaw, B.; Frei, E.; Schmeiser, H. H.; Wiessler, M. Benzenediazonium Ion

Derived from Sudan I Forms an 8-(Phenylazo)Guanine Adduct in DNA. Chem. Res.

Toxicol. 1995, 8 (4), 489–498. https://doi.org/10.1021/tx00046a002.

(45) Gannett, P. M.; Powell, J. H.; Rao, R.; Shi, X.; Lawson, T.; Carol Kolar, A.; Toth, B. C8-

Arylguanine and C8-Aryladenine Formation in Calf Thymus DNA from Arenediazonium

Ions. 1999. https://doi.org/10.1021/TX980179F.

(46) Nedeljkovic, R.; Barac, G. Diazoique de l’acide Sulfanilique et Oxydation de

l’ergothioneine. Arch. Int. Physiol. 1954, 573.

(47) von Walther, R.; Grieshammer, W. Beitrage Zur Kenntnis Der Aromatisch-Aliphatischen

Diazoaminoverbindungen. J. Prakt. Chem. 1915, 92, 209–255.

(48) Losada-Barreiro, S.; Bravo-Díaz, C. Reactivity of 3-Methylbenzenediazonium Ions with

Gallic Acid. Kinetics and Mechanism of the Reaction. Helv. Chim. Acta 2009, 92 (10),

2009–2023. https://doi.org/10.1002/hlca.200900080.

(49) Haworth, J. W.; Heilbron, I. M.; Hey, D. H. Arylpyridines. Part I. Phenylpyridines and

Nitrophenylpyridines. J. Chem. Soc. 1940, 349. https://doi.org/10.1039/jr9400000349.

(50) Buss, D. H.; Goldstein, I. J. Protein–Carbohydrate Interaction. Part XIV. Carbohydrates

Containing Groups for the Alkylation of Proteins. J. Chem. Soc. C 1968, 0 (0), 1457–1461.

https://doi.org/10.1039/J39680001457.

(51) Higgins, H. G.; Harrington, K. J. Reaction of Amino Acids and Proteins with Diazonium

Compounds. II. Spectra of Protein Derivatives. Arch. Biochem. Biophys. 1959, 85 (2), 409–

425. https://doi.org/10.1016/0003-9861(59)90506-5.

(52) Gavrilyuk, J.; Ban, H.; Nagano, M.; Hakamata, W.; Barbas, C. F. Formylbenzene

185 Diazonium Hexafluorophosphate Reagent for Tyrosine-Selective Modification of Proteins

and the Introduction of a Bioorthogonal Aldehyde. Bioconjug. Chem. 2012, 23 (12), 2321–

2328. https://doi.org/10.1021/bc300410p.

(53) Riordan, J. F.; Vallee, B. L. Diazonium Salts as Specific Reagents and Probes of Protein

Conformation. Methods Enzymol. 1972, 25, 521–531. https://doi.org/10.1016/S0076-

6879(72)25049-2.

(54) Landsteiner, V.; Lampl, H. Uber Die Antigeneigenschaften von Azoproteinen. Z. Immun.

exp. ther. 1917, 6, 294–304.

(55) Landsteiner, K. Antingens. XII. The Relationship between Seriological Specificity and

Chemical Structure. (Preparation of Antigens with Specific Groups of Known Chemical

Structure). Biochem. Z. 1918, 86, 343–394.

(56) Landsteiner, K.; van der Scheer, J. On the Specificity of Serological Reactions with Simple

Chemical Compounds. J. Exp. Med. 1931, 54 (3), 295–305.

(57) Landsteiner, K.; Levine, P. Experiments on Anaphylaxis To Azoproteins: Third Paper. J.

Exp. Med. 1930, 52 (3), 347–359. https://doi.org/10.1084/jem.52.3.347.

(58) Reiner, L. On the Chemical Alteration of Purified Antibody-Proteins. Science (80-. ). 1930,

72 (1871), 483–484. https://doi.org/10.1126/science.72.1871.483.

(59) Heidelberger, M.; Kendall, F. Data on a Protein-Antibody System. Science (80-. ). 1930,

72 (1862), 252–253.

(60) Heidelberger, M.; Kendall, F. E.; Soo Hoo, C. M. Quantitative Studies on the Precipitin

Reaction: Antibody Produciton in Rabbits Injected with an Azo Protein. J. Exp. Med. 1933,

58 (2), 137–152. https://doi.org/10.1084/jem.58.2.137.

(61) Avery, O. T.; Goebel, W. F. Chemo-Immunological Studies on Conjugated Carbohydrate-

Proteins. J. Exp. Med. 1929, 50 (4), 533–550.

(62) Vallee, B. L.; Riordan, J. F.; Johansen, J. T.; Livingston, D. M. Spectro-Chemical Probes

for Protein Conformation and Function. Cold Spring Harb. Symp. Quant. Biol. 1972, 36,

186 517–531. https://doi.org/10.1101/SQB.1972.036.01.066.

(63) Vallee, B. L.; Fairclough, G. F. Characteristic Extrinsic Cotton Effects of Azo Proteins.

Biochemistry 1970, 9 (21), 4087–4094. https://doi.org/10.1021/bi00823a009.

(64) Kimani, F. W.; Jewett, J. C. Water-Soluble Triazabutadienes That Release Diazonium

Species upon Protonation under Physiologically Relevant Conditions. Angew. Chemie Int.

Ed. 2015, 54 (13), 4051–4054. https://doi.org/10.1002/anie.201411277.

(65) Cornali, B. M.; Kimani, F. W.; Jewett, J. C. Cu-Click Compatible Triazabutadienes To

Expand the Scope of Aryl Diazonium Ion Chemistry. Org. Lett. 2016, 18 (19), 4948–4950.

https://doi.org/10.1021/acs.orglett.6b02420.

(66) Shadmehr, M.; Davis, G. J.; Mehari, B. T.; Jensen, S. M.; Jewett, J. C. Coumarin

Triazabutadienes for Fluorescent Labeling of Proteins. ChemBioChem 2018, 19 (24),

2550–2552. https://doi.org/10.1002/cbic.201800599.

(67) Jensen, S. M.; Kimani, F. W.; Jewett, J. C. Light-Activated Triazabutadienes for the

Modification of a Viral Surface. ChemBioChem 2016, 17 (23), 2216–2219.

https://doi.org/10.1002/cbic.201600508.

(68) He, J.; Kimani, F. W.; Jewett, J. C. Rapid in Situ Generation of Benzene Diazonium Ions

under Basic Aqueous Conditions from Bench-Stable Triazabutadienes. Synlett 2017, 28

(14), 1767–1770. https://doi.org/10.1055/s-0036-1588797.

(69) He, J.; Kimani, F. W.; Jewett, J. C. A Photobasic Functional Group. J. Am. Chem. Soc.

2015, 137 (31), 9764–9767. https://doi.org/10.1021/jacs.5b04367.

(70) Fanghänel, E.; Hänsel, R.; Ortmann, W.; Hohlfeld, J. 1. I. 1,2,3-Triazabutadiene. I.

Untersuchungen Zur Cis-Trans-Isomerie von 1-Aryl-3-[3-Methyl-Benzthiazolinyliden-(2)]-

Triazenen. J. für Prakt. Chemie 1975, 317 (4), 631–640.

https://doi.org/10.1002/prac.19753170415.

(71) Fanghänel, E.; Poleschner, H.; Radeglia, R.; Hänsel, R. 6. VI. 1,2,3-Triazabutadiene. VI.

Untersuchungen Zur Cis-Trans-Isomerie von 1-Aryl-1-Äthyl-3-[3-Methyl-

187 Benzthiazolinyliden-(2)]-Triazeniumtetrafluoroboraten. J. für Prakt. Chemie 1977, 319 (5),

813–826. https://doi.org/10.1002/prac.19773190518.

(72) Fanghänel, E.; Hänsel, R.; Hohlfeld, J. 5. V. 1,2,3-Triazabutadiene. V. Untersuchungen

Zum Mechanismus Der Thermischen Cis-Trans-Isomerisierung von Substituierten 1-Aryl-

3-[Methylbenzthiazolinyliden-(2)]-Triazenen. J. für Prakt. Chemie 1977, 319 (3), 485–493.

https://doi.org/10.1002/prac.19773190318.

(73) Fanghänel, E.; Radeglia, R.; Hauptmann, D.; Tyszkiewicz, B.; Tyszkiewicz, M. 9. IX. 1,2,3-

Triazabutadiene. IX. 15 N-NMR-Spektroskopische Untersuchungen an Cis-Trans-

Isomeren 1-Aryl-3-[3-Methylbenzthiazolinyliden-(2)]-Triazenen Und -Triazeniumsalzen. J.

für Prakt. Chemie 1978, 320 (4), 618–624. https://doi.org/10.1002/prac.19783200415.

(74) Simova, S.; Radeglia, R.; Fanghänel, E. 15. XV. 1,2,3-Triazabutadiene. XV. Einfluß Der

Substituenten Auf Die 15 N- Und 13 C-Chemischen Verschiebungen in Triazabutadienen

Und Azobenzenen. J. für Prakt. Chemie 1982, 324 (5), 777–786.

https://doi.org/10.1002/prac.19823240511.

(75) Wuts, P. G. M.; Greene, T. W. Greene’s Protective Groups In Organic Synthesis - 4th

Edition; John Wiley & Sons, Inc., 2007.

(76) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry; University Science

Books, 2006. https://doi.org/10.1002/poc.1909.

(77) Guzman, L. E.; Kimani, F. W.; Jewett, J. C. Protecting Triazabutadienes To Afford Acid

Resistance. ChemBioChem 2016, 17 (23). https://doi.org/10.1002/cbic.201600517.

(78) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click Chemistry for Drug Development and

Diverse Chemical-Biology Applications. Chem. Rev. 2013, 113 (7), 4905–4979.

https://doi.org/10.1021/cr200409f.

(79) Jewett, J. C.; Bertozzi, C. R. Cu-Free Click Cycloaddition Reactions in Chemical Biology.

Chem. Soc. Rev. 2010, 39 (4), 1272–1279.

(80) WHO. Vector-borne diseases https://www.who.int/news-room/fact-sheets/detail/vector-

188 borne-diseases (accessed Nov 25, 2020).

(81) WHO | Dengue and Severe Dengue. WHO. August 7, 2017.

(82) Powell, J. R. Perspective Piece Mosquito-Borne Human Viral Diseases: Why Aedes

Aegypti? American Journal of Tropical Medicine and Hygiene. American Society of Tropical

Medicine and Hygiene 2018, pp 1563–1565. https://doi.org/10.4269/ajtmh.17-0866.

(83) Frierson, J. G. The Yellow Fever Vaccine: A History. Yale J. Biol. Med. 2010, 83 (2), 77–

85.

(84) Erlanger, T. E.; Weiss, S.; Keiser, J.; Utzinger, J.; Wiedenmayer, K. Past, Present, and

Future of Japanese Encephalitis. Emerg. Infect. Dis. 2009, 15 (1), 1–7.

https://doi.org/10.3201/eid1501.080311.

(85) Why We Need Mosquito Control - American Mosquito Control Association

https://www.mosquito.org/page/mosquitocontrol (accessed Nov 29, 2020).

(86) Achee, N. L.; Gould, F.; Perkins, T. A.; Reiner, R. C.; Morrison, A. C.; Ritchie, S. A.; Gubler,

D. J.; Teyssou, R.; Scott, T. W. A Critical Assessment of Vector Control for Dengue

Prevention. PLoS Negl. Trop. Dis. 2015, 9 (5), 1–19.

https://doi.org/10.1371/journal.pntd.0003655.

(87) Lahondère, C.; Vinauger, C.; Okubo, R. P.; Wolff, G. H.; Chan, J. K.; Akbari, O. S.; Riffell,

J. A. The Olfactory Basis of Orchid Pollination by Mosquitoes. Proc. Natl. Acad. Sci. U. S.

A. 2020, 117 (1), 708–716. https://doi.org/10.1073/pnas.1910589117.

(88) Bonds, J. A. S. Ultra-Low-Volume Space Sprays in Mosquito Control: A Critical Review.

Med. Vet. Entomol. 2012, 26 (2), 121–130. https://doi.org/10.1111/j.1365-

2915.2011.00992.x.

(89) Mount, G. A. A Critical Review of Ultralow-Volume Aerosols of Insecticide Applied with

Vehicle-Mounted Generators for Adult Mosquito Control. J. Am. Mosq. Control Assoc.

1998, 14 (3), 305–334.

(90) Adulticides | Mosquitoes | CDC https://www.cdc.gov/mosquitoes/mosquito-

189 control/community/adulticides.html (accessed Feb 10, 2021).

(91) Delfino, R. T.; Ribeiro, T. S.; Figueroa-Villar, J. D. Organophosphorus Compounds as

Chemical Warfare Agents: A Review. J. Braz. Chem. Soc. 2009, 20 (3), 407–428.

https://doi.org/10.1590/S0103-50532009000300003.

(92) Costa, L. G. Organophosphorus Compounds at 80: Some Old and New Issues. Toxicol.

Sci. 2018, 162 (1), 24–35. https://doi.org/10.1093/toxsci/kfx266.

(93) Casida, J. E. Esterase Inhibitors as Pesticides. Science (80-. ). 1964, 146 (3647), 1011–

1017. https://doi.org/10.1126/science.146.3647.1011.

(94) Casida, J. E.; Quistad, G. B. Organophosphate Toxicology: Safety Aspects of

Nonacetylcholinesterase Secondary Targets. Chem. Res. Toxicol. 2004, 17 (8), 983–998.

https://doi.org/10.1021/tx0499259.

(95) Casida, J. E.; Durkin, K. A. Anticholinesterase Insecticide Retrospective. Chem. Biol.

Interact. 2013, 203 (1), 221–225.

https://doi.org/10.1016/j.cbi.2012.08.002.ANTICHOLINESTERASE.

(96) Coats, J. R. Mechanisms of Toxic Action and Structure-Activity Relationships for

Organochlorine and Synthetic Pyrethroid Insecticides. Environ. Health Perspect. 1990, 87,

255–262. https://doi.org/10.1289/ehp.9087255.

(97) Van Den Berg, H. Global Status of DDT and Its Alternatives for Use in Vector Control to

Prevent Disease. Environ. Health Perspect. 2009, 117 (11), 1656–1663.

https://doi.org/10.1289/ehp.0900785.

(98) Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine Pesticides, Their Toxic Effects on

Living Organisms and Their Fate in the Environment. Interdiscip. Toxicol. 2016, 9 (3–4),

90–100. https://doi.org/10.1515/intox-2016-0012.

(99) Tsipi, D.; Triantafyllou, M.; Hiskia, A. Determination of Organochlorine Pesticide Residues

in Honey, Applying Solid Phase Extraction with RP-C18 Material. Analyst 1999, 124 (4),

473–475. https://doi.org/10.1039/a809724k.

190 (100) Casida, J. E. Pyrethrum Flowers and Pyrethroid Insecticides. Environ. Health Perspect.

1980, VOL.34 (February), 189–202. https://doi.org/10.1289/ehp.8034189.

(101) US Environmental Protection Agency Office of Pesticide Programs. A Review of the

Relationship between Pyrethrins, Pyrethroid Exposure and Asthma and Allergies; 2009.

(102) Nishimura, K. The Mode of Action of Pyrethroids. J. Pestic. Sci. 1984, 9 (2), 365–374.

https://doi.org/10.1584/jpestics.9.365.

(103) Liu, N. Insecticide Resistance in Mosquitoes: Impact, Mechanisms, and Research

Directions. Annu. Rev. Entomol. 2015, 60, 537–559. https://doi.org/10.1146/annurev-ento-

010814-020828.

(104) Gajendiran, A.; Abraham, J. An Overview of Pyrethroid Insecticides. Front. Biol. (Beijing).

2018, 13 (2), 79–90. https://doi.org/10.1007/s11515-018-1489-z.

(105) Turley, A. P.; Moreira, L. A.; O’Neill, S. L.; McGraw, E. A. Wolbachia Infection Reduces

Blood-Feeding Success in the Dengue Fever Mosquito, Aedes Aegypti. PLoS Negl. Trop.

Dis. 2009, 3 (9), 1–6. https://doi.org/10.1371/journal.pntd.0000516.

(106) Stouthamer, R.; Breeuwer, J. A. J.; Hurst, G. D. D. Wolbachia Pipientis: Microbial

Manipulator of Arthropod Reproduction. Annu. Rev. Microbiol. 1999, 53, 71–102.

(107) Bourtzis, K.; Nirgianaki, A.; Onyango, P.; Savakis, C. A Prokaryotic DnaA Sequence in

Drosophila Melanogasten Wolbachia Infection and Cytoplasmic Incompatibility among

Laboratory Strains. Insect Mol. Biol. 1994, 3 (3), 131–142. https://doi.org/10.1111/j.1365-

2583.1994.tb00160.x.

(108) Bourtzis, K.; Nirgianaki, A.; Markakis, G.; Savakis, C. Wolbachia Infection and Cytoplasmic

Incompatibility in Drosophila Species. Genetics 1996, 144 (3), 1063–1073.

(109) Laven, H. Eradication of Culex Pipiens Fatigans through Cytoplasmic Incompatibility.

Nature 1967, 216, 383–384.

(110) Radke, E. G.; Gregory, C. J.; Kintziger, K. W.; Sauber-Schatz, E. K.; Hunsperger, E. A.;

Gallagher, G. R.; Barber, J. M.; Biggerstaff, B. J.; Stanek, D. R.; Tomashek, K. M.; et al.

191 Dengue Outbreak in Key West, Florida, USA, 2009. Emerg. Infect. Dis. 2012, 18 (1), 135–

137. https://doi.org/10.3201/eid1801.110130.

(111) Carvalho, E.; Iley, J.; Perry, M. de J.; Rosa, E. Triazene Drug Metabolites: Part 15.

Synthesis and Plasma Hydrolysis of Anticancer Triazenes Containing Amino Acid Carriers.

Pharm. Res. 1998, 15 (6), 931–935. https://doi.org/10.1023/A:1011988918476.

(112) Ernst, K. C.; Haenchen, S.; Dickinson, K.; Doyle, M. S.; Walker, K.; Monaghan, A. J.;

Hayden, M. H. Awareness and Support of Release of Genetically Modified “Sterile”

Mosquitoes, Key West, Florida, USA. Emerg. Infect. Dis. 2015, 21 (2), 320–324.

https://doi.org/10.3201/eid2102.141035.

(113) US FDA. FINDING OF NO SIGNIFICANT IMPACT In Support of a Proposed Field Trial of

Genetically Engineered (GE) Male Aedes Aegypti Mosquitoes of the Line OX513A in Key

Haven, Monroe County, Florida under an Investigational New Animal Drug Exemption

Finding of No Sig; 2016.

(114) Benedict, M. Q.; Robinson, A. S. The First Releases of Transgenic Mosquitoes: An

Argument for the Sterile Insect Technique. Trends Parasitol. 2003, 19 (8), 349–355.

https://doi.org/10.1016/S1471-4922(03)00144-2.

(115) Knipling, E. F. Sterile-Male Method of Population Control. Science (80-. ). 1959, 130

(3380), 902–904. https://doi.org/10.1126/science.130.3380.902.

(116) Wyss, J. H. Screwworm Eradication in the Americas. Ann. N. Y. Acad. Sci. 2000, 916, 186–

193. https://doi.org/10.1111/j.1749-6632.2000.tb05289.x.

(117) World Health Organization (WHO). Progress and Prospects for the Use of Genetically

Modified Mosquitoes to Inhibit Disease Transmission. Who 2009, 68pp.

(118) WHO | Environmental Management. WHO 2017.

(119) Ditzen, M.; Pellegrino, M.; Vosshall, L. B. Insect Odorant Receptors Are Molecular Targets

of the Insect Repellent DEET. Science (80-. ). 2008, 319 (5871), 1838–1841.

https://doi.org/10.1126/science.1153121.

192 (120) Browne, S. M.; Bennett, G. F. Response of Mosquitoes to Visual Stimuli. J.Med.Entomol.

1981, 18 (6), 505–521.

(121) Strode, C.; Donegan, S.; Garner, P.; Enayati, A. A.; Hemingway, J. The Impact of

Pyrethroid Resistance on the Efficacy of Insecticide-Treated Bed Nets against African

Anopheline Mosquitoes: Systematic Review and Meta-Analysis. PLoS Med. 2014, 11 (3).

https://doi.org/10.1371/journal.pmed.1001619.

(122) Miller, N. J.; Rainone, E. E.; Dyer, M. C.; González, M. L.; Mather, T. N. Tick Bite Protection

with Permethrin-Treated Summer-Weight Clothing. J. Med. Entomol. 2011, 48 (2), 327–

333. https://doi.org/10.1603/ME10158.

(123) Ben-Dov, E. Bacillus Thuringiensis Subsp. Israelensis and Its Dipteran-Specific Toxins.

Toxins. MDPI AG March 28, 2014, pp 1222–1243. https://doi.org/10.3390/toxins6041222.

(124) Aly, C.; Mulla, M. S.; Federici, B. A. Sporulation and Toxin Production by Bacillus

Thuringiensis Var. Israelensis in Cadavers of Mosquito Larvae (Diptera: Culicidae). J.

Invertebr. Pathol. 1985, 46 (3), 251–258. https://doi.org/10.1016/0022-2011(85)90066-7.

(125) Devine, G. J.; Perea, E. Z.; Killeen, G. F.; Stancil, J. D.; Clark, S. J.; Morrison, A. C. Using

Adult Mosquitoes to Transfer Insecticides to Aedes Aegypti Larval Habitats. Proc. Natl.

Acad. Sci. U. S. A. 2009, 106 (28), 11530–11534.

https://doi.org/10.1073/pnas.0901369106.

(126) Larvicides | Mosquitoes | CDC https://www.cdc.gov/mosquitoes/mosquito-

control/community/larvicides.html (accessed Nov 25, 2020).

(127) Killeen, G. F.; Fillinger, U.; Kiche, I.; Gouagna, L. C.; Knols, B. G. J. Eradication of

Anopheles Gambiae from Brazil: Lessons for Malaria Control in Africa? Lancet Infectious

Diseases. Lancet Publishing Group October 1, 2002, pp 618–627.

https://doi.org/10.1016/S1473-3099(02)00397-3.

(128) Sanchez, L.; Vanlerberghe, V.; Alfonso, L.; Marquetti, M. D. C.; Guzman, M. G.; Bisset, J.;

Van Der Stuyft, P. Aedes Aegypti Larval Indices and Risk for Dengue Epidemics. Emerg.

193 Infect. Dis. 2006, 12 (5), 800–806. https://doi.org/10.3201/eid1205.050866.

(129) Dadd, R. H. Alkalinity within the Midgut of Mosquito Larvae with Alkaline-Active Digestive

Enzymes. J. Insect Physiol. 1975, 21 (11), 1847–1853. https://doi.org/10.1016/0022-

1910(75)90252-8.

(130) Dow, J. A. PH GRADIENTS IN LEPIDOPTERAN MIDGUT. J. Exp. Biol. 1992, 172 (Pt 1),

355–375. https://doi.org/10.1271/bbb1961.35.1154.

(131) Berenbaum, M. Adaptive Significance of Midgut PH in Larval Lepidoptera. Am. Nat. 1980,

115 (1), 138–146.

(132) Goldstein, J. L.; Swain, T. The Inhibition of Enzymes by Tannins. Phytochemistry 1965, 4

(1), 185–192. https://doi.org/10.1016/S0031-9422(00)86162-2.

(133) Mesquita-Rodrigues, C.; Saboia-Vahia, L.; Cuervo, P.; Masini d’Avila Levy, C.; Alves

Honorio, N.; Domont, G. B.; Batista de Jesus, J. Expression of Trypsin-like Serine

Peptidases in Pre-Imaginal Stages of Aedes Aegypti (Diptera: Culicidae). Arch. Insect

Biochem. Physiol. 2011, 76 (4), 223–235. https://doi.org/10.1002/arch.20412.

(134) Saboia-Vahia, L.; Borges-Veloso, A.; Mesquita-Rodrigues, C.; Cuervo, P.; Dias-Lopes, G.;

Britto, C.; De Barros Silva, A. P.; De Jesus, J. B. Trypsin-like Serine Peptidase Profiles in

the Egg, Larval, and Pupal Stages of Aedes Albopictus. Parasites and Vectors 2013, 6 (1),

50. https://doi.org/10.1186/1756-3305-6-50.

(135) Armengaud, J.; Trapp, J.; Pible, O.; Geffard, O.; Chaumot, A.; Hartmann, E. M. Non-Model

Organisms, a Species Endangered by Proteogenomics. J. Proteomics 2014, 105, 5–18.

https://doi.org/10.1016/j.jprot.2014.01.007.

(136) Cancino-Rodezno, A.; Lozano, L.; Oppert, C.; Castro, J. I.; Lanz-Mendoza, H.;

Encarnación, S.; Evans, A. E.; Gill, S. S.; Soberón, M.; Jurat-Fuentes, J. L.; et al.

Comparative Proteomic Analysis of Aedes Aegypti Larval Midgut after Intoxication with

Cry11Aa Toxin from Bacillus Thuringiensis. PLoS One 2012, 7 (5), e37034.

https://doi.org/10.1371/journal.pone.0037034.

194 (137) Fernandes, K. M.; de Magalhães-Júnior, M. J.; Baracat-Pereira, M. C.; Martins, G. F.

Proteomic Analysis of Aedes Aegypti Midgut during Post-Embryonic Development and of

the Female Mosquitoes Fed Different Diets. Parasitol. Int. 2016, 65 (6), 668–676.

https://doi.org/10.1016/j.parint.2016.08.008.

(138) Wang, P.; Conrad, J. T.; Shahabuddin, M. Localization of Midgut-Specific Protein Antigens

from Aedes Aegypti (Diptera: Culicidae) Using Monoclonal Antibodies. J. Med. Entomol.

2001, 38 (2), 223–230. https://doi.org/10.1603/0022-2585-38.2.223.

(139) Shrinet, J.; Srivastava, P.; Kumar, A.; Dubey, S. K.; Sirisena, P. D. N. N.; Srivastava, P.;

Sunil, S. Differential Proteome Analysis of Chikungunya Virus and Dengue Virus

Coinfection in Aedes Mosquitoes. J. Proteome Res. 2018, 17 (10), 3348–3359.

https://doi.org/10.1021/acs.jproteome.8b00211.

(140) Popova-Butler, A.; Dean, D. H. Proteomic Analysis of the Mosquito Aedes Aegypti Midgut

Brush Border Membrane Vesicles. J. Insect Physiol. 2009, 55 (3), 264–272.

https://doi.org/10.1016/j.jinsphys.2008.12.008.

(141) Whiten, S. R.; Keith Ray, W.; Helm, R. F.; Adelman, Z. N. Characterization of the Adult

Aedes Aegypti Early Midgut Peritrophic Matrix Proteome Using LC-MS. PLoS One 2018,

13 (3), 1–17. https://doi.org/10.1371/journal.pone.0194734.

(142) Maringer, K.; Yousuf, A.; Heesom, K. J.; Fan, J.; Lee, D.; Fernandez-Sesma, A.; Bessant,

C.; Matthews, D. A.; Davidson, A. D. Proteomics Informed by Transcriptomics for

Characterising Active Transposable Elements and Genome Annotation in Aedes Aegypti.

BMC Genomics 2017, 18 (1), 1–18. https://doi.org/10.1186/s12864-016-3432-5.

195