On Eating Raw Mushrooms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
June 2009 MONTHLY MEETING : PLEASE PAY YOUR DUES: WHEN? Monday, June 22, 2009 – the Fourth Monday of in Accordance with the By-Laws, Dues, in the the Month
Spore-Addct The Newsletter of the Pikes PeakTime Mycological Society 1974 – 2009 Vol. XXXV ISSUE 3 June 2009 MONTHLY MEETING : PLEASE PAY YOUR DUES: WHEN? Monday, June 22, 2009 – The fourth Monday of In accordance with the By-laws, dues, in the the month. amount of $15.00, are due and payable on or before the April monthly meeting. If you still WHAT TIME? 6:30 pm; the meeting will come to order at have not paid, please pay at the June meeting or 7:00 pm. mail the payment to PPMS, PO Box 39, Colorado Springs, CO 80901-0039. Thanks! WHERE? Pikes Peak National Bank, 2401 W. Colorado Ave. (across from Bancroft Park). Enter at the door on Colorado Ave., just west of the bank door. There you will find stairs and an elevator. You may use either. The FORAY REPORT: room is on the second floor near the head of the stairs. May 30th 2009: Ten of us (including 2 newcomers to WEBSITE: http://www.pikespeakmushrooms.com/ PPMS) gathered at the Red Rocks Safeway parking lot at 8:30 a.m. All had either been contacted by e-mail or PROGRAM: personal phone call. All club forays will be scheduled like this. Our eager forayers found only 6 small morels, A NAMA Educational Program: 2 L.B.Ms, and some dubious polypors. We did come “Guide to the Major Genera of Gilled Mushrooms: The across 6 Calypso orchids (unaccompanied by morels). Light Spored Mushrooms I: Pluteaceae, Pleurotaceae, It was a beautiful day on Rampart Range Road. Rain Entolomataceae, Marasmiaceae and Others” and warmer temperatures have brought out city This program covers the best edible and most mushrooms galore. -
SOMA News March 2011
VOLUME 23 ISSUE 7 March 2011 SOMA IS AN EDUCATIONAL ORGANIZATION DEDICATED TO MYCOLOGY. WE ENCOURAGE ENVIRONMENTAL AWARENESS BY SHARING OUR ENTHUSIASM THROUGH PUBLIC PARTICIPATION AND GUIDED FORAYS. WINTER/SPRING 2011 SPEAKER OF THE MONTH SEASON CALENDAR March Connie and Patrick March 17th » Meeting—7pm —“A Show and Tell”— Sonoma County Farm Bureau Speaker: Connie Green & Patrick March 17th—7pm Hamilton Foray March. 19th » Salt Point April April 21st » Meeting—7pm Sonoma County Farm Bureau Speaker: Langdon Cook Foray April 23rd » Salt Point May May 19th » Meeting—7pm Sonoma County Farm Bureau Speaker: Bob Cummings Foray May: Possible Morel Camping! eparated at birth but from the same litter Connie Green and Patrick Hamilton have S traveled (endured?) mushroom journeys together for almost two decades. They’ve been to the humid and hot jaguar jungles of Chiapas chasing tropical mushrooms and to EMERGENCY the cloud forests of the Sierra Madre for boletes and Indigo milky caps. In the cold and wet wilds of Alaska they hiked a spruce and hemlock forest trail to watch grizzly bears MUSHROOM tearing salmon bellies just a few yards away. POISONING IDENTIFICATION In the remote Queen Charlotte Islands their bush plane flew over “fields of golden chanterelles,” landed on the ocean, and then off into a zany Zodiac for a ride over a cold After seeking medical attention, contact and roiling sea alongside some low flying puffins to the World Heritage Site of Ninstints. Darvin DeShazer for identification at The two of them have gazed at glaciers and berry picked on muskeg bogs. More than a (707) 829-0596. -
Cadmium, Lead, Arsenic and Nickel in Wild Edible Mushrooms
THE FINNISH ENVIRONMENT 17 | 2006 ENVIRONMENTALYMPÄRISTÖN- Cadmium, lead, arsenic PROTECTIONSUOJELU and nickel in wild edible mushrooms Riina Pelkonen, Georg Alfthan and Olli Järvinen THE FINNISH ENVIRONMENT 17/2006 Cadmium, lead, arsenic and nickel in wild edible mushrooms Riina Pelkonen, Georg Alfthan and Olli Järvinen Helsinki 2006 Finnish Environment Institute THE FINNISH ENVIRONMENT 17 | 2006 Suomen ympäristökeskus Laboratorio Taitto: Callide/Terttu Halme Kansikuva(t): Riina Pelkonen Sisäsivujen kuvat: Figures 1 - 4: Copyright: Geologian tutkimuskeskus 1996 Figure 5: Suomen ympäristökeskus Julkaisu on saatavana myös internetistä: www.ymparisto.fi /julkaisut Edita Print Oy, Helsinki 2006 ISBN 952-11-2274-9 (nid.) ISBN 952-11-2275-7 (PDF) ISSN 1238-7312 (pain.) ISSN 1796-1637 (verkkoj.) PREFACE In Finland wild-growing products such as mushrooms and berries grow in abundance in forests and are traditionally used as a source of food by the Finns. Although the majority of edible mushrooms growing in Finnish forests are not consumed, picking mushrooms is a common activity for a large part of the population. Fungi are widely recognised to have a good nutritional value and in the recent years younger gener- ations in particular seem to have taken a culinary interest in mushrooms. As mushrooms may be freely picked and consumed there is no monitoring sys- tem to control the amounts of trace elements that enter the human body from the consumption of fungi. In Finland the levels of trace elements in fungi have not been extensively researched apart from the studies carried out in the turn of the 1970s and 1980s (Hinneri 1975, Laaksovirta & Alakuijala 1978, Laaksovirta & Lodenius 1979, Kuusi et al. -
Screening of Potentially Genotoxic Impurities in Pharmaceuticals by LC-MS and CE-MS
Screening of potentially genotoxic impurities in pharmaceuticals by LC-MS and CE-MS Screening van potentieel genotoxische onzuiverheden in farmaceutische producten met LC-MS en CE-MS (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. G.J. van der Zwaan, ingevolge van het besluit van het college voor promoties in het openbaar te verdedigen op maandag 21 november 2016 des middags te 2.30 uur. door Anthonius Maria van Wijk geboren op 3 juli 1968 te Oostflakkee Promotor: Prof. dr. G.J. de Jong Copromotor: Dr. H.A.G. Niederländer Index Chapter 1 Introduction 5 Chapter 2 The potential for screening of potentially genotoxic impurities 19 in pharmaceutical products Chapter 3 A new approach for generic screening and quantitation of 71 potential genotoxic alkylation compounds by pre-column derivatization and LC-MS/MS analysis Chapter 4 A new derivatization reagent for LC–MS/MS screening of 91 potential genotoxic alkylation compounds Chapter 5 Capillary electrophoresis – mass spectrometry for impurity 115 profiling of basic pharmaceuticals using non-volatile background electrolytes Chapter 6 Sensitive CE-MS analysis of potentially genotoxic alkylation 137 compounds using derivatization and electrokinetic injection Chapter 7 Summary and general conclusions 159 Summary in Dutch/Nederlandse samenvatting 174 Curriculum Vitae 182 List of publications 183 Acknowledgements/Dankwoord 184 Chapter 1 Introduction 5 Chapter 1 1.1 Control of genotoxic impurities Trace analysis of potential genotoxic impurities (PGIs) is one of the greatest challenges in pharmaceutical analysis. Traces of toxic impurities, i.e. -
„Behandlung Von Textilfarbstoffen Durch Aquatische Pilze“ D
„Behandlung von Textilfarbstoffen durch aquatische Pilze“ D i s s e r t a t i o n zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg in Zusammenarbeit mit dem Lehrstuhl für Umweltbiotechnologie des Internationalen Hochschulinstitutes Zittau von Herrn Diplom-Biologen Charles Junghanns geb. am 09. April 1979 in Leipzig Gutachter 1. Prof. Dr. Gerd-Joachim Krauß 2. Prof. Dr. Martin Hofrichter 3. Prof. Dr. Georg Gübitz Halle (Saale), 05. Juni 2008 urn:nbn:de:gbv:3-000013693 [http://nbn-resolving.de/urn/resolver.pl?urn=nbn%3Ade%3Agbv%3A3-000013693] Inhaltsverzeichnis Inhaltsverzeichnis ABKÜRZUNGSVERZEICHNIS.........................................................................................1 1. EINLEITUNG.......................................................................................................................4 1.1. Aquatische Pilze..........................................................................................................4 1.2. Laccasen (E.C. 1.10.3.2) .............................................................................................8 1.3. Textilfarbstoffe..........................................................................................................10 1.4. Anliegen der Arbeit ..................................................................................................19 2. MATERIAL UND METHODEN......................................................................................20 -
Mushroom Toxins & Poisonings in New Jersey
Mushroom Toxins & Poisonings in New Jersey & Nearby Eastern North America What this document doesn’t do: (1) This document is not intended to be used as a guide for treatment and should not be so used. (2) Mushrooms should not be selected for eating based on the content of this document. [In identifying mushrooms in poisoning cases, this document does not replace expertise that should be obtained by calling NJPIES and obtaining contact with an experienced mycologist.] (3) This document is not a replacement for a detailed toxicological review of the subject of mushroom poisoning. (4) This document is intended for use with a broad set of audiences; for this reasons, it should not be used uncritically in setting protocols [for example, carrying out a Meixner test would be inappropriate for a first responder who would appropriately focus on collecting a poi- soning victim, the relevant objects from the scene of the poisoning, and the critical timing characteristics of the event such as the delay between ingestion and onset of symptoms.] POISON CONTROL: New Jersey “Poison Control” is called NJPIES (New Jersey Poison Information & Education System). Telephone: 1-800-222-1222 [works in all states—(WARN- ING) WILL CONNECT TO A MOBILE PHONE’S HOME STATE—IF YOU’RE UNCERTAIN, USE A LAND- LINE] If the victim is unconscious, call “911.” Background of these notes: This document was originally compiled by Rod Tulloss and Dorothy Smullen for an NJ Mycol. Assoc. workshop, 25 March 2006. Version 2.0 was compiled by Tulloss. When viewed with Acrobat Reader, underlined red or gray words and phrases are “hot linked cross-references.” We have included a few notes on fungal poisons that are not from “mushrooms.” The notes were prepared by mycologists with experience in diagnosis of fungi involved in cases in which ingestion of toxic fungi was suspected. -
Species List for Arizona Mushroom Society White Mountains Foray August 11-13, 2016
Species List for Arizona Mushroom Society White Mountains Foray August 11-13, 2016 **Agaricus sylvicola grp (woodland Agaricus, possibly A. chionodermus, slight yellowing, no bulb, almond odor) Agaricus semotus Albatrellus ovinus (orange brown frequently cracked cap, white pores) **Albatrellus sp. (smooth gray cap, tiny white pores) **Amanita muscaria supsp. flavivolvata (red cap with yellow warts) **Amanita muscaria var. guessowii aka Amanita chrysoblema (yellow cap with white warts) **Amanita “stannea” (tin cap grisette) **Amanita fulva grp.(tawny grisette, possibly A. “nishidae”) **Amanita gemmata grp. Amanita pantherina multisquamosa **Amanita rubescens grp. (all parts reddening) **Amanita section Amanita (ring and bulb, orange staining volval sac) Amanita section Caesare (prov. name Amanita cochiseana) Amanita section Lepidella (limbatulae) **Amanita section Vaginatae (golden grisette) Amanita umbrinolenta grp. (slender, ringed cap grisette) **Armillaria solidipes (honey mushroom) Artomyces pyxidatus (whitish coral on wood with crown tips) *Ascomycota (tiny, grayish/white granular cups on wood) **Auricularia Americana (wood ear) Auriscalpium vulgare Bisporella citrina (bright yellow cups on wood) Boletus barrowsii (white king bolete) Boletus edulis group Boletus rubriceps (red king bolete) Calyptella capula (white fairy lanterns on wood) **Cantharellus sp. (pink tinge to cap, possibly C. roseocanus) **Catathelesma imperiale Chalciporus piperatus Clavariadelphus ligula Clitocybe flavida aka Lepista flavida **Coltrichia sp. Coprinellus -
Synthetic and Naturally Occurring Hydrazines As Possible Cancer Causative Agents
[CANCER RESEARCH 35, 3693-3697 December 1975] Synthetic and Naturally Occurring Hydrazines as Possible Cancer Causative Agents Bela Toth' The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68105 SUMMARY SYNTHETIC HYDRAZINES The various synthetic substituted hydrazines, which cause tumors in animals, are briefly enumerated. To date, 19 of Studies on the carcinogenic potentialities of synthetic them have proved to be tumorigenic in animals. A number substituted hydrazines began in 1962, when it was shown of these chemicals are found today in the environment, in that the base compound hydrazine sulfate induced lung industry, in agriculture, and in medicine, and the human neoplasms in mice (1). Subsequently, a series of hydrazine population is exposed to a certain degree to some of them. derivatives were investigated in various laboratories for Hydrazine also occurs in nature in tobacco and tobacco tumor-inducing capabilities. These studies clearly demon smoke. The three other naturally occurring hydrazine strated that these chemicals are indeed powerful tumori compounds are N-methyl-N-formylhydrazine, which oc genic substances in mice, hamsters, and rats, due to their curs in the wild edible mushroom, Gyromitra esculenta, tumor-inducing abilities in the intestines, brain, lungs, and @-N-[―y-L(+)-glutamylJ-4-hydroxymethylphenyl blood vessels, liver, breasts, kidneys, etc. Now, we know of hydrazine and 4-hydroxymethylphenylhydrazine, whkh 19 hydrazine derivatives that have been shown to be tumor are found in the commonly eaten cultivated mushroom, inducers. These include, in addition to hydrazine (1, 32), Agaricus bisporus. Tumorigenesis studies with the natu methyl- (35, 40), 1,2-dimethyl- (6, 27, 36, 46, 52), 1,1- rally occurring hydrazines are in progress. -
<I>Russula Atroaeruginea</I> and <I>R. Sichuanensis</I> Spp. Nov. from Southwest China
ISSN (print) 0093-4666 © 2013. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/124.173 Volume 124, pp. 173–188 April–June 2013 Russula atroaeruginea and R. sichuanensis spp. nov. from southwest China Guo-Jie Li1,2, Qi Zhao3, Dong Zhao1, Shuang-Fen Yue1,4, Sai-Fei Li1, Hua-An Wen1a* & Xing-Zhong Liu1b* 1State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, China 4College of Life Science, Capital Normal University, Xisihuanbeilu 105, Haidian District, Beijing 100048, China * Correspondence to: a [email protected] b [email protected] Abstract — Two new species of Russula are described from southwestern China based on morphology and ITS1-5.8S-ITS2 rDNA sequence analysis. Russula atroaeruginea (sect. Griseinae) is characterized by a glabrous dark-green and radially yellowish tinged pileus, slightly yellowish context, spores ornamented by low warts linked by fine lines, and numerous pileocystidia with crystalline contents blackening in sulfovanillin. Russula sichuanensis, a semi-sequestrate taxon closely related to sect. Laricinae, forms russuloid to secotioid basidiocarps with yellowish to orange sublamellate gleba and large basidiospores with warts linked as ridges. The rDNA ITS-based phylogenetic trees fully support these new species. Key words — taxonomy, Macowanites, Russulales, Russulaceae, Basidiomycota Introduction Russula Pers. is a globally distributed genus of macrofungi with colorful fruit bodies (Bills et al. 1986, Singer 1986, Miller & Buyck 2002, Kirk et al. -
Re-Thinking the Classification of Corticioid Fungi
mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma. -
Phd. Thesis Sana Jabeen.Pdf
ECTOMYCORRHIZAL FUNGAL COMMUNITIES ASSOCIATED WITH HIMALAYAN CEDAR FROM PAKISTAN A dissertation submitted to the University of the Punjab in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BOTANY by SANA JABEEN DEPARTMENT OF BOTANY UNIVERSITY OF THE PUNJAB LAHORE, PAKISTAN JUNE 2016 TABLE OF CONTENTS CONTENTS PAGE NO. Summary i Dedication iii Acknowledgements iv CHAPTER 1 Introduction 1 CHAPTER 2 Literature review 5 Aims and objectives 11 CHAPTER 3 Materials and methods 12 3.1. Sampling site description 12 3.2. Sampling strategy 14 3.3. Sampling of sporocarps 14 3.4. Sampling and preservation of fruit bodies 14 3.5. Morphological studies of fruit bodies 14 3.6. Sampling of morphotypes 15 3.7. Soil sampling and analysis 15 3.8. Cleaning, morphotyping and storage of ectomycorrhizae 15 3.9. Morphological studies of ectomycorrhizae 16 3.10. Molecular studies 16 3.10.1. DNA extraction 16 3.10.2. Polymerase chain reaction (PCR) 17 3.10.3. Sequence assembly and data mining 18 3.10.4. Multiple alignments and phylogenetic analysis 18 3.11. Climatic data collection 19 3.12. Statistical analysis 19 CHAPTER 4 Results 22 4.1. Characterization of above ground ectomycorrhizal fungi 22 4.2. Identification of ectomycorrhizal host 184 4.3. Characterization of non ectomycorrhizal fruit bodies 186 4.4. Characterization of saprobic fungi found from fruit bodies 188 4.5. Characterization of below ground ectomycorrhizal fungi 189 4.6. Characterization of below ground non ectomycorrhizal fungi 193 4.7. Identification of host taxa from ectomycorrhizal morphotypes 195 4.8. -
In Vitro Interactions Between Armillari a Specie S And
ГЛАСНИК ШУМАРСКОГ ФАКУЛТЕТА, БЕОГРАД, 2009, бр. 100, стр. 129142 BIBLID: 0353 4537, (2009), 100, p 129142 Keča N. 2009. In vitro interactions between Armillari a specie s and potential biocontrol fungi. Bul letin of the Faculty of Forestry 100: 129142. Nenad Keča UDK: 630*401.16:582.28 Оригинални научни рад DOI: 10.2298/GSF0900129K IN VITRO INTERACTIONS BETWEEN ARMILLARI A SPECIE S AND POTENTIAL BIOCONTROL FUNGI Abstract: Interaction between Armillaria species and seven other fungi were test ed in vitro. Tree antagonistic (Trichoderma viride, Trichotecium roseum and Pen icillium sp.) and four decaying (Hypholoma fasciculare¸ Hypholoma capnoides, Phlebiopsis gigantea, and Pleurotus ostreatus) fungi were chosen for this study. The best results were noted for Trichoderma viride, because fungus was able to kill both mycelia and rhizomorphs of Armillaria species, while Hypholoma spp. inhib ited both growth of Armillaria colonies and rhizomorph production. Key words: Armillaria, interaction, biocontrol, antagonism, competition IN VITRO ИНТЕРАКЦИЈЕ ARMILLARIA ВРСТА И ПОТЕНЦИЈАЛНИХ БИОКОНТРОЛНИХ ГЉИВА Извод: Тестиране су интеракције између Armillaria врста и седам других гљи ва in vitro. За оглед су одабране три антагонистичке врсте (Trichoderma viride, Trichotecium roseum и Penicillium sp.) и четири трулежнице (Hypho loma fasciculare¸ Hypholoma capnoides, Phlebiopsis gigantea и Pleurotus ostrea tus). Најбољи резултати добијени су за Trichoderma viride, пошто је она била способна да убије како мицелију тако и ризоморфе Armillaria врста, док су Hypholoma врсте инхибирале како пораст колонија тако и производњу ри зоморфи код Armillaria врста. Кључне речи: Armillaria, интеракција, биокотрола, антагонизам, компетиција 1. INTRODUCTION Armillaria root disease еxists in most natural forests and plantations around the world (Shaw & K i le, 1991).