Synthetic and Naturally Occurring Hydrazines As Possible Cancer Causative Agents

Total Page:16

File Type:pdf, Size:1020Kb

Synthetic and Naturally Occurring Hydrazines As Possible Cancer Causative Agents [CANCER RESEARCH 35, 3693-3697 December 1975] Synthetic and Naturally Occurring Hydrazines as Possible Cancer Causative Agents Bela Toth' The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68105 SUMMARY SYNTHETIC HYDRAZINES The various synthetic substituted hydrazines, which cause tumors in animals, are briefly enumerated. To date, 19 of Studies on the carcinogenic potentialities of synthetic them have proved to be tumorigenic in animals. A number substituted hydrazines began in 1962, when it was shown of these chemicals are found today in the environment, in that the base compound hydrazine sulfate induced lung industry, in agriculture, and in medicine, and the human neoplasms in mice (1). Subsequently, a series of hydrazine population is exposed to a certain degree to some of them. derivatives were investigated in various laboratories for Hydrazine also occurs in nature in tobacco and tobacco tumor-inducing capabilities. These studies clearly demon smoke. The three other naturally occurring hydrazine strated that these chemicals are indeed powerful tumori compounds are N-methyl-N-formylhydrazine, which oc genic substances in mice, hamsters, and rats, due to their curs in the wild edible mushroom, Gyromitra esculenta, tumor-inducing abilities in the intestines, brain, lungs, and @-N-[―y-L(+)-glutamylJ-4-hydroxymethylphenyl blood vessels, liver, breasts, kidneys, etc. Now, we know of hydrazine and 4-hydroxymethylphenylhydrazine, whkh 19 hydrazine derivatives that have been shown to be tumor are found in the commonly eaten cultivated mushroom, inducers. These include, in addition to hydrazine (1, 32), Agaricus bisporus. Tumorigenesis studies with the natu methyl- (35, 40), 1,2-dimethyl- (6, 27, 36, 46, 52), 1,1- rally occurring hydrazines are in progress. dimethyl- (28, 37), benzoyl- (2, 34), phenyl- (2), 2-hydrox yethyl- (I I), 1,2-diethyl- (5), l-acetyl-2-isonicotinoyl- (39) hydrazines; N-isopropyl-a- (2-methythydrazino)-p-tolua INTRODUCTION mide (13, 14); and l-isonicotinoyl-2-isopropyl- (2), or thometoxybenzoyl- (2), paramethoxybenzoyl- (2), 1-meth Interest in chemical carcinogenesis in the past few yl-2-butyl- (4), l-methyl-2-benzyl- (4), ethyl- (42, 44), decades has focused on the possible roles of synthetic n-butyl- (44), 1-carbamyl-2-phenyl- (4 1), carbamyl- (43), chemicals that may cause cancer in man. This appeared and n-amyl- (33, 38) hydrazines. Their names, chemical justifiable on the. grounds of recent estimates that approxi structures, treatments, and action sites are summarized in mately 200,000 new chemicals enter our environment each Table 1. year. If only 1% of these chemicals enter at reasonably high These studies received particular attention because syn levels, this means that man may be exposed to around 2,000 thetic hydrazines are present in the environment and are new chemicals annually. To date, around 6,000 chemicals used in industry, agriculture, and medicine. They include have been studied for carcinogenic activities; of these, hydrazine, monomethylhydrazine, and 1,l-dimethylhydra approximately 1,000 compounds have thus far been found zinc, which are components of rocket fuels (26); carbamyl to be tumorigenic in animals. According to some experts, hydrazine, an industrial and laboratory reagent (26); 2- the exogenous hazardous agents are to a large extent hydroxyethylhydrazine, a ripener for pineapple and other responsible for the cancer incidence in the human popula plants (10); phenylhydrazine, used in treatment of polycy tion. themia vera (26); 1-isonicotinoyl-2-isopropylhydrazine, an The aim of this report is to draw attention to both the antidepressant and antituberculotic drug (3 1, 53); and synthetic and naturally occurring derivatives of hydrazine. N-isopropyl-a-(2-methylhydrazino)-p-toluamide, an an The synthetic hydrazines in recent years were shown to tineoplastic agent (25). To what extent humans are exposed produce tumors in animals, and therefore they may play a to the industrial hydrazines is presently not known. We do role in the etiology of human cancer. With the exception of not even have data concerning whether or not the pineapple hydrazine itself, the other naturally occurring derivatives of fruit contains the ripening agent. The amounts of these this compound, however, have thus far not been studied for various hydrazines used as therapeutic drugs are known and tumor-inducing abilities. they are not administered, however, on massive scales. The fact should be also emphasized that all hydrazine aRecipient of USPHS Research Career Development Award K04-42,552 from the National Cancer Institute. derivatives studied in laboratory animals were found (19 Received June 5, 1975; accepted August 26, 1975. altogether) to be tumor-producing substances. It is esti DECEMBER 1975 3693 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 1975 American Association for Cancer Research. B. Toth Table I Tumorigenic hydrazinecompounds Compound Species Organ Treatment References c0N14-*4C0c143 MiceLungsp.o.39MiceLungs, 1-k,TyL-2-,,olucoyn.oyu,vz*,z,.i CH,—CH,—CH,---CH,—CH,—NH—NH, vesselsp.o.33P.O.2,34p.o.44P.O.43p.o.41s.c.5p.o.28,37Miceblood N-Amylhydrazine HCI K@N@*2 Mice Lungs, lymphoreticular tissue kIIZOYUIYDIAZIII NH,—NH—CH2—CH,—CH2—CH,. Mice Lungs N Butylhydrazine HC1 NH,—NH---CO—NH2. HCI M ice Lungs, blood vessels Carbamylhydrazine . HCI Mice Lungs CH,—CH,—NH—NH—CH2—CH1 Rats Lymphoreticular and nerve 1,2-Diethylhydrazine• tissues,liver,ethmotur binal (CH1), N—NH, Mice Lungs. blood vessels, kidney, 1.1-Dimethyihydrazine liver CH,—NH—NH—CH, Colon, lungs, blood vessels p.o. 52 1,2-Dimethyihydrazine . 2HC1 27,36Ratss.c.,Hamsterss.c., Liver, stomach, intestine, i.m.,p.o.46, bloodvessels p.o.6Micep.o.42MiceIntestine NH,—NH—CH,—CH,. Lungs, blood vessels Ethylhydrazine . HCI NH,—NH,. H,SO4 liver Hydrazine sulfate 32MiceLiverp.o.11MiceLungsp.o.2MiceRatsLungs, Liver, lungsp.o. p.o.1 NH,—NH—CH,—CH,OH 2-Hydroxyethythydrazine 1I$ONICOTIIOYI.2IIOPIOPYU4YDMZI@( lymphoreticular i.p. QCr*-IC-012 @J co@NI1 tissue, kidney N-Isopio@vi-d-(2-ICTwyi.syDI*zIuo)- 14MiceLungsp.o.2MiceLungsp.o.2MiceRatsLungs, Breast, lungs, blood p.o., i.p.13 P-TO@uMIX CCI vesselsp.o., 2043 O-@ThOXYIINZOYUIYDIAZINI 0I@0 P—@THOXYWIZOYLHYDIAZINt CH,—NH—NH, Methylhydrazine HamstersLungsKupffer cells, cecump.o. p.o.35 40 3694 CANCER RESEARCH VOL. 35 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 1975 American Association for Cancer Research. Hydrazines and Cancer Table I—Continued CompoundSpeciesOrganTreatmentReferencesCH3-NN-mC-CH2 @ p.o.4CH,—NH—NH—CH,—CH,—CH,—CH,.2HCI and peripheral ncr vous systems, bulbus ol 14@T)ffL2UNZYUIYDIAZINtRatsCentral factoriuss.c., p.o.4KI@:I:@@- intestine, bulbus l—Methyl—2—butylhydrazine 2 HCIRatsLarge olfactoriuss.c., @ .‘ic' PHENYLHYI*AZINE CCIMiceLungsp.o.2 mated that well over 100 synthetic substituted hydrazines zinc derivatives of as yet undetermined structures. In are used today in the environment (26). addition, the occurrence of 4-hydroxymethylbenzene diazo nium ion (19), phenol, “y-L-glutamyl-4-hydroxybenzene, and possibly -y-L-glutamyl-3,4-benzoquinone (48-5 1) in the NATURALLY OCCURRING HYDRAZINES mushroom was reported. Also, a substance closely similar in structure to agaritine N-('y-L-glutyamyl)-p-hydroxyani Hydrazine in Tobacco line has been isolated (12) from the European “champig non―Agaricus hortensis (apparently it is the same as A. Hydrazine (Chart 1F) has been found in both tobacco and bisporus). tobacco smoke (23). At first the presence of hydrazine was The estimated United States A . bisporus consumption attributed to maleic hydrazide, a widely used plant growth (production plus imports) totaled approximately 300 million retardant, which is sprayed on tobacco plants. Actually, the pounds from July 1972 to June 1973 (47). technical graded maleic hydrazide contains free hydrazine. The presence of hydrazines in the cultivated mushroom More recently, however, hydrazine has been identified in was discovered in studies directed toward investigation of tobacco grown under well-defined conditions, to which metabolism of nonprotein amino acids. In 1962 and in maleic hydrazide has not been added. The actual amount of subsequent years when the tumor induction capabilities of hydrazine in each cigarette was shown to be 30 ng (24). This hydrazine and its derivatives became known, it was appar means actually that hydrazine occurs naturally in the ently unnoticed by the investigators working with the tobacco plants. mushrooms. Gyromitra esculenta. List and Luft's (21, 22) analytical Hydrazines in Mushrooms investigations showed that the extracts of one of the wild and edible mushrooms, Gyromitra escu!enta, contained Agaricus bisporus. Levenberg (17, 18) reported in 1960 gyromitrin, an acetaldehyde formylmethylhydrazone, N- the isolation of agaritine from A . bisporus, the most methyl-N-formyl hydrazine, and methylhydrazine. Subse commonly eaten commercial mushroom in the United quently, they postulated that the 2 latter chemicals were States. This compound occurs predominantly in the fruiting produced from gyromitrin by hydrolysis during maceration body of young mushrooms and its concentration diminishes and cooking (Chart lC to E). When the mushrooms are with age. Subsequently, Daniels et a!. (3) and Kelly et a!. cooked in an open kettle, methylhydrazine is lost by steam (15) isolated agaritine from mushroom sporophores
Recommended publications
  • Monoamine Oxydases Et Athérosclérose : Signalisation Mitogène Et Études in Vivo
    UNIVERSITE TOULOUSE III - PAUL SABATIER Sciences THESE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE TOULOUSE III Discipline : Innovation Pharmacologique Présentée et soutenue par : Christelle Coatrieux le 08 octobre 2007 Monoamine oxydases et athérosclérose : signalisation mitogène et études in vivo Jury Monsieur Luc Rochette Rapporteur Professeur, Université de Bourgogne, Dijon Monsieur Ramaroson Andriantsitohaina Rapporteur Directeur de Recherche, INSERM, Angers Monsieur Philippe Valet Président Professeur, Université Paul Sabatier, Toulouse III Madame Nathalie Augé Examinateur Chargé de Recherche, INSERM Monsieur Angelo Parini Directeur de Thèse Professeur, Université Paul Sabatier, Toulouse III INSERM, U858, équipes 6/10, Institut Louis Bugnard, CHU Rangueil, Toulouse Résumé Les espèces réactives de l’oxygène (EROs) sont impliquées dans l’activation de nombreuses voies de signalisation cellulaires, conduisant à différentes réponses comme la prolifération. Les EROs, à cause du stress oxydant qu’elles génèrent, sont impliquées dans de nombreuses pathologies, notamment l’athérosclérose. Les monoamine oxydases (MAOs) sont deux flavoenzymes responsables de la dégradation des catécholamines et des amines biogènes comme la sérotonine ; elles sont une source importante d’EROs. Il a été montré qu’elles peuvent être impliquées dans la prolifération cellulaire ou l’apoptose du fait du stress oxydant qu’elles génèrent. Ce travail de thèse a montré que la MAO-A, en dégradant son substrat (sérotonine ou tyramine), active une voie de signalisation mitogène particulière : la voie métalloprotéase- 2/sphingolipides (MMP2/sphingolipides), et contribue à la prolifération de cellules musculaire lisses vasculaires induite par ces monoamines. De plus, une étude complémentaire a confirmé l’importance des EROs comme stimulus mitogène (utilisation de peroxyde d’hydrogène exogène), et a décrit plus spécifiquement les étapes en amont de l’activation de MMP2, ainsi que l’activation par la MMP2 de la sphingomyélinase neutre (première enzyme de la cascade des sphingolipides).
    [Show full text]
  • A Guide to Export Controls
    Foreign Affairs, Trade and Affaires étrangères, Commerce et Development Canada Développment Canada A Guide To CANADA’S EXPORT CONTROLS December 2012 Introduction The issuance of export permits is administered by the Export Controls Division (TIE) of Foreign Affairs, Trade and Development Canada (DFATD). TIE provides assistance to exporters in determining if export permits are required. It also publishes brochures and Notices to Exporters that are freely available on request and on our website www.exportcontrols.gc.ca. How to contact us: Export Controls Division (TIE) Foreign Affairs, Trade and Development Canada 111 Sussex Drive Ottawa, Ontario K1A 0G2 Telephone: (613) 996-2387 Facsimile: (613) 996-9933 Email: [email protected] For information on how to apply for an export permit and additional information on export controls please refer to our website. To enquire on the status of an export permit application: Recognized EXCOL users can check the status of an export permit application on-line. Non-recognized users can call (613) 996-2387 or email [email protected] and quote your export permit application identification (ref ID) number. Export Controls Division website: www.exportcontrols.gc.ca This Guide, at time of publication, encompasses the list of items enumerated on the Export Control List (ECL) that are controlled for export in accordance with Canadian foreign policy, including Canada’s participation in multilateral export control regimes and bilateral agreements. Unless otherwise specified, the export controls contained in this Guide apply to all destinations except the United States. Canada’s Export Control List can be found at the Department of Justice website at http://canada.justice.gc.ca/.
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • June 2009 MONTHLY MEETING : PLEASE PAY YOUR DUES: WHEN? Monday, June 22, 2009 – the Fourth Monday of in Accordance with the By-Laws, Dues, in the the Month
    Spore-Addct The Newsletter of the Pikes PeakTime Mycological Society 1974 – 2009 Vol. XXXV ISSUE 3 June 2009 MONTHLY MEETING : PLEASE PAY YOUR DUES: WHEN? Monday, June 22, 2009 – The fourth Monday of In accordance with the By-laws, dues, in the the month. amount of $15.00, are due and payable on or before the April monthly meeting. If you still WHAT TIME? 6:30 pm; the meeting will come to order at have not paid, please pay at the June meeting or 7:00 pm. mail the payment to PPMS, PO Box 39, Colorado Springs, CO 80901-0039. Thanks! WHERE? Pikes Peak National Bank, 2401 W. Colorado Ave. (across from Bancroft Park). Enter at the door on Colorado Ave., just west of the bank door. There you will find stairs and an elevator. You may use either. The FORAY REPORT: room is on the second floor near the head of the stairs. May 30th 2009: Ten of us (including 2 newcomers to WEBSITE: http://www.pikespeakmushrooms.com/ PPMS) gathered at the Red Rocks Safeway parking lot at 8:30 a.m. All had either been contacted by e-mail or PROGRAM: personal phone call. All club forays will be scheduled like this. Our eager forayers found only 6 small morels, A NAMA Educational Program: 2 L.B.Ms, and some dubious polypors. We did come “Guide to the Major Genera of Gilled Mushrooms: The across 6 Calypso orchids (unaccompanied by morels). Light Spored Mushrooms I: Pluteaceae, Pleurotaceae, It was a beautiful day on Rampart Range Road. Rain Entolomataceae, Marasmiaceae and Others” and warmer temperatures have brought out city This program covers the best edible and most mushrooms galore.
    [Show full text]
  • Of 10 October 2018 Amending Council Regulation (EC) No 428/2009
    14.12.2018 EN Official Journal of the European Union L 319/1 II (Non-legislative acts) REGULATIONS COMMISSION DELEGATED REGULATION (EU) 2018/1922 of 10 October 2018 amending Council Regulation (EC) No 428/2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual-use items THE EUROPEAN COMMISSION, Having regard to the Treaty on the Functioning of the European Union, Having regard to Council Regulation (EC) No 428/2009 of 5 May 2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual-use items ( 1), and in particular Article 15(3) thereof, Whereas: (1) Regulation (EC) No 428/2009 requires dual-use items to be subject to effective control when they are exported from or transit through the Union, or are delivered to a third country as a result of brokering services provided by a broker resident or established in the Union. (2) Annex I to Regulation (EC) No 428/2009 establishes the common list of dual-use items that are subject to controls in the Union. Decisions on the items subject to controls are taken within the framework of the Australia Group ( 2 ), the Missile Technology Control Regime ( 3 ), the Nuclear Suppliers Group ( 4 ), the Wassenaar Arrangement ( 5 ) and the Chemical Weapons Convention. (3) The list of dual-use items set out in Annex I to Regulation (EC) No 428/2009 needs to be updated regularly so as to ensure full compliance with international security obligations, to guarantee transparency, and to maintain the competitiveness of economic operators.
    [Show full text]
  • XXXV International Congress of the European Association of Poisons Centres and Clinical Toxicologists (EAPCCT) 26–29 May 2015, St Julian's, Malta
    Clinical Toxicology ISSN: 1556-3650 (Print) 1556-9519 (Online) Journal homepage: http://www.tandfonline.com/loi/ictx20 XXXV International Congress of the European Association of Poisons Centres and Clinical Toxicologists (EAPCCT) 26–29 May 2015, St Julian's, Malta To cite this article: (2015) XXXV International Congress of the European Association of Poisons Centres and Clinical Toxicologists (EAPCCT) 26–29 May 2015, St Julian's, Malta, Clinical Toxicology, 53:4, 233-403, DOI: 10.3109/15563650.2015.1024953 To link to this article: http://dx.doi.org/10.3109/15563650.2015.1024953 Published online: 26 Mar 2015. Submit your article to this journal Article views: 3422 View related articles View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ictx20 Download by: [UPSTATE Medical University Health Sciences Library] Date: 28 December 2016, At: 10:31 Clinical Toxicology (2015), 53, 233–403 Copyright © 2015 Informa Healthcare USA, Inc. ISSN: 1556-3650 print / 1556-9519 online DOI: 10.3109/15563650.2015.1024953 ABSTRACTS XXXV International Congress of the European Association of Poisons Centres and Clinical Toxicologists (EAPCCT) 26–29 May 2015, St Julian ’ s, Malta 1. Modelling dose-concentration-response Introduction: The American Association of Poison Control Cen- ters (AAPCC) published its fi rst annual report in 1983. Call data Ursula Gundert-Remy from sixteen US poison centers was chronicled in that report. Seven submitted data for the entire year. By July 2000, 63 centers Institute for Clinical Pharmacology and Toxicology, Charit é were part of the national poison center system, but only 59 submit- Medical School, Berlin, Germany ted data for the full year.
    [Show full text]
  • Theoretical Problem Icho 2018
    19th – 29th July 2018 Bratislava, SLOVAKIA Prague, CZECH REPUBLIC www.50icho.eu THEORETICAL PROBLEMS Country: Name as in passport: Student code: Language: 50th IChO 2018 International Chemistry Olympiad SLOVAKIA & CZECH REPUBLIC BACK TO WHERE IT ALL BEGAN XXX-X INTERNATIONAL CHEMISTRY OLYMPIAD / SLOVAKIA & CZECH REPUBLIC, 2018 Table of Contents Instructions ...................................................................................................................................... 2 Physical constants and equations ................................................................................................... 3 Problem 1. DNA .............................................................................................................................. 5 Problem 2. Repatriation of remains in the middle ages .................................................................. 14 Problem 3. Emerging electro-mobility ............................................................................................ 22 Problem 4. Column chromatography of radioactive copper ........................................................... 30 Problem 5. Bohemian garnet ......................................................................................................... 34 Problem 6. Let’s go mushrooming ................................................................................................. 41 Problem 7. Cidofovir ...................................................................................................................... 47
    [Show full text]
  • N2-Alkylation of Semicarbazones. a General and Efficient Protocol for the Synthesis of 2-Alkylsemicarbazides from Semicarbazide
    The Free Internet Journal Paper for Organic Chemistry Archive for Arkivoc 2019, part ii, 176-189 Organic Chemistry N2-Alkylation of semicarbazones. A general and efficient protocol for the synthesis of 2-alkylsemicarbazides from semicarbazide Anastasia A. Fesenko, Ludmila A. Trafimova, Maxim O. Zimin, Alexander S. Kuvakin, and Anatoly D. Shutalev* N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russian Federation Email: [email protected] Dedicated to Professor Lorenzo Testaferri in the occasion of his 75th birthday Received 07-17-2019 Accepted 12-19-2019 Published on line 01-05-2020 Abstract Synthesis of 2-alkylsemicarbazones based on selective N2-alkylation of semicarbazones has been described. The synthesis involves deprotonation of semicarbazones with sodium hydride in MeCN followed by treatment with alkylating reagents. The developed alkylation method was applied to the preparation of hardly available 2-alkylsemicarbazides and their hydrochlorides from semicarbazide hydrochloride. This general and efficient protocol is based on preparation of acetone semicarbazone, its alkylation, and hydrolysis under mild conditions. Keywords: Semicarbazides, semicarbazones, alkylation, hydrolysis DOI: https://doi.org/10.24820/ark.5550190.p011.024 Page 176 ©AUTHOR(S) Arkivoc 2019, ii, 176-189 Fesenko, A. A. et al. Introduction Acyclic semicarbazides are versatile reagents commonly utilized for preparation of various acyclic and heterocyclic nitrogen-containing compounds, e.g. semicarbazones, azapeptides, hydantoines, pyrazoles, 1,2,4- triazoles, 1,2,4-triazines, 1,2,4-triazepines, pyrimidines, 1,3,4-oxadiazoles, azamacrocycles, etc.1 Semicarbazides are also used for synthesis of various semicarbazide-containing substances with remarkable biological properties, particularly, analogs of antimicrobial nitrofurazone and nitrofurantoin,2 selective peroxisome proliferator-activated receptor hPPARα agonist,3 inhibitors of MALT1 protease,4 azapeptide activators of apoptosis mediated by caspase-9 in cancer cells,5 etc.
    [Show full text]
  • Screening of Potentially Genotoxic Impurities in Pharmaceuticals by LC-MS and CE-MS
    Screening of potentially genotoxic impurities in pharmaceuticals by LC-MS and CE-MS Screening van potentieel genotoxische onzuiverheden in farmaceutische producten met LC-MS en CE-MS (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. G.J. van der Zwaan, ingevolge van het besluit van het college voor promoties in het openbaar te verdedigen op maandag 21 november 2016 des middags te 2.30 uur. door Anthonius Maria van Wijk geboren op 3 juli 1968 te Oostflakkee Promotor: Prof. dr. G.J. de Jong Copromotor: Dr. H.A.G. Niederländer Index Chapter 1 Introduction 5 Chapter 2 The potential for screening of potentially genotoxic impurities 19 in pharmaceutical products Chapter 3 A new approach for generic screening and quantitation of 71 potential genotoxic alkylation compounds by pre-column derivatization and LC-MS/MS analysis Chapter 4 A new derivatization reagent for LC–MS/MS screening of 91 potential genotoxic alkylation compounds Chapter 5 Capillary electrophoresis – mass spectrometry for impurity 115 profiling of basic pharmaceuticals using non-volatile background electrolytes Chapter 6 Sensitive CE-MS analysis of potentially genotoxic alkylation 137 compounds using derivatization and electrokinetic injection Chapter 7 Summary and general conclusions 159 Summary in Dutch/Nederlandse samenvatting 174 Curriculum Vitae 182 List of publications 183 Acknowledgements/Dankwoord 184 Chapter 1 Introduction 5 Chapter 1 1.1 Control of genotoxic impurities Trace analysis of potential genotoxic impurities (PGIs) is one of the greatest challenges in pharmaceutical analysis. Traces of toxic impurities, i.e.
    [Show full text]
  • Silybum Marianum (Milk Thistle) Flower in Vitro and on Human Explants
    Molecules 2015, 20, 3549-3564; doi:10.3390/molecules20033549 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Anti-Glycation Activities of Phenolic Constituents from Silybum marianum (Milk Thistle) Flower in Vitro and on Human Explants Seoungwoo Shin, Jung-A Lee, Minkyung Kim, Hyunwoo Kum, Eunsun Jung * and Deokhoon Park * Biospectrum Life Science Institute, Eines Platz 11th FL, 442-13 Sangdaewon Dong, Seoungnam City, Gyunggi Do 462-807, Korea; E-Mails: [email protected] (S.S.); [email protected] (J.-A.L.); [email protected] (M.K.); [email protected] (H.K.) * Authors to whom correspondence should be addressed; E-Mails: [email protected] (E.J.); [email protected] (D.P.); Tel.: +82-31-750-9400 (E.J. & D.P.); Fax: +82-31-750-9494 (E.J. & D.P.). Academic Editor: Derek J. McPhee Received: 25 November 2014 / Accepted: 15 February 2015 / Published: 19 February 2015 Abstract: Glycation is an ageing reaction of naturally occurring sugars with dermal proteins, with clinical signs appearing in vivo around age 30, and increasing steadily/regularly with age. The suppleness of the dermis is affected by the formation of bridges between proteins and sugars (Maillard’s reaction). The accumulation of advanced glycation end products (AGEs) in skin plays a very important role in skin ageing. Therefore, natural compounds or extracts that possess antiglycation activities may have great anti-ageing potential. In the present study, Silybum marianum flower extract (SMFE) was demonstrated to possess antiglycation activity. We found that SMFE inhibits glycation reaction between BSA and glucose. In addition, antiglycation activity of SMFE was confirmed in a human skin explants model.
    [Show full text]
  • Pyridoxine in Clinical Toxicology: a Review Philippe Lheureux, Andrea Penaloza and Mireille Gris
    78 Review Pyridoxine in clinical toxicology: a review Philippe Lheureux, Andrea Penaloza and Mireille Gris Pyridoxine (vitamin B6) is a co-factor in many enzymatic controversial. This paper reviews the various indications pathways involved in amino acid metabolism: the main of pyridoxine in clinical toxicology and the supporting biologically active form is pyridoxal 5-phosphate. literature. The potential adverse effects of excessive Pyridoxine has been used as an antidote in acute pyridoxine dosage will also be summarized. intoxications, including isoniazid overdose, Gyromitra European Journal of Emergency Medicine 12:78–85 mushroom or false morrel (monomethylhydrazine) c 2005 Lippincott Williams & Wilkins. poisoning and hydrazine exposure. It is also recommended as a co-factor to improve the conversion of glyoxylic acid European Journal of Emergency Medicine 2005, 12:78–85 into glycine in ethylene glycol poisoning. Other indications Keywords: Antidotes, crimidin, drug-induced neuropathy, ethylene glycol, are recommended by some sources (for example crimidine hydrazine, isoniazid, metadoxine, pyridoxine poisoning, zipeprol and theophylline-induced seizures, adjunct to d-penicillamine chelation), without significant Department of Emergency Medicine, Erasme University Hospital, Brussels, Belgium. supporting data. The value of pyridoxine or its congener Correspondence to Philippe Lheureux, Department of Emergency Medicine, metadoxine as an agent for hastening ethanol metabolism Erasme University Hospital, 808 route de Lennik, 1070 Brussels, Belgium. or improving vigilance in acute alcohol intoxication is E-mail: [email protected] Introduction ing. More controversial issues include alcohol intoxication Pyridoxine or vitamin B6 is a highly water-soluble and zipeprol or theophylline-induced seizures. vitamin. Its main biologically active form is a phosphate ester of its aldehyde form, pyridoxal 5-phosphate (P5P).
    [Show full text]
  • Gyromitrin Poisoning: More Questions Than Answers
    Gyromitrin poisoning: more questions than answers Denis R. Benjamin, MD some dedicated mycophagist, who had Many of these clues to the toxin never eaten the mushroom for many years made any coherent sense, even though it “It is perhaps ironic for a mushroom, without any ill effects, would suddenly was known for some years that the toxins Gyromitra esculenta, whose very name and unaccountably take ill. This too could be destroyed by cooking.” (From means edible, to be so poisonous under was passed off as the development of an Benjamin, 1995.) certain circumstances. Surprisingly, allergy in the unfortunate individual, the toxins were only characterized as that the mushrooms had been mistaken ll the enigmas related to this recently as 1968. A number of factors for a poisonous variety, or a rotten toxin remain unresolved. The conspired against the investigators of this batch had been eaten. To compound the current literature merely repeats mushroom poison (Lincoff and Mitchel, difficulties, Gyromitra esculenta caused Awhat was published before 1990. A 1977). The first was the observation that many poisonings in Europe, while in the deluge of “cut and paste.” No meaningful only a few of the participants eating the western USA, the seemingly identical research has been done in the past same quantity of the same mushroom species appeared largely harmless. All three decades. This is due to a number would become ill. Because of this, the sorts of explanations were proposed of factors. The first was the demise of poisoning was immediately ascribed to to explain this discrepancy, including academic pharmacognosy departments, ‘allergy’ or ‘individual idiosyncrasy.’ The such fanciful ones as suggesting that responsible for investigating the biology next problematic observation was that Americans cook their vegetables better.
    [Show full text]