La-Ur-94-3106 Endf-349
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ESTIMATION of FISSION-PRODUCT GAS PRESSURE in URANIUM DIOXIDE CERAMIC FUEL ELEMENTS by Wuzter A
NASA TECHNICAL NOTE NASA TN D-4823 - - .- j (2. -1 "-0 -5 M 0-- N t+=$j oo w- P LOAN COPY: RET rm 3 d z c 4 c/) 4 z ESTIMATION OF FISSION-PRODUCT GAS PRESSURE IN URANIUM DIOXIDE CERAMIC FUEL ELEMENTS by WuZter A. PuuZson una Roy H. Springborn Lewis Reseurcb Center Clevelund, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. NOVEMBER 1968 i 1 TECH LIBRARY KAFB, NM I 111111 lllll IllH llll lilll1111111111111 Ill1 01317Lb NASA TN D-4823 ESTIMATION OF FISSION-PRODUCT GAS PRESSURE IN URANIUM DIOXIDE CERAMIC FUEL ELEMENTS By Walter A. Paulson and Roy H. Springborn Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTl price $3.00 ABSTRACl Fission-product gas pressure in macroscopic voids was calculated over the tempera- ture range of 1000 to 2500 K for clad uranium dioxide fuel elements operating in a fast neutron spectrum. The calculated fission-product yields for uranium-233 and uranium- 235 used in the pressure calculations were based on experimental data compiled from various sources. The contributions of cesium, rubidium, and other condensible fission products are included with those of the gases xenon and krypton. At low temperatures, xenon and krypton are the major contributors to the total pressure. At high tempera- tures, however, cesium and rubidium can make a considerable contribution to the total pressure. ii ESTIMATION OF FISSION-PRODUCT GAS PRESSURE IN URANIUM DIOXIDE CERAMIC FUEL ELEMENTS by Walter A. Paulson and Roy H. -
Compilation and Evaluation of Fission Yield Nuclear Data Iaea, Vienna, 2000 Iaea-Tecdoc-1168 Issn 1011–4289
IAEA-TECDOC-1168 Compilation and evaluation of fission yield nuclear data Final report of a co-ordinated research project 1991–1996 December 2000 The originating Section of this publication in the IAEA was: Nuclear Data Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria COMPILATION AND EVALUATION OF FISSION YIELD NUCLEAR DATA IAEA, VIENNA, 2000 IAEA-TECDOC-1168 ISSN 1011–4289 © IAEA, 2000 Printed by the IAEA in Austria December 2000 FOREWORD Fission product yields are required at several stages of the nuclear fuel cycle and are therefore included in all large international data files for reactor calculations and related applications. Such files are maintained and disseminated by the Nuclear Data Section of the IAEA as a member of an international data centres network. Users of these data are from the fields of reactor design and operation, waste management and nuclear materials safeguards, all of which are essential parts of the IAEA programme. In the 1980s, the number of measured fission yields increased so drastically that the manpower available for evaluating them to meet specific user needs was insufficient. To cope with this task, it was concluded in several meetings on fission product nuclear data, some of them convened by the IAEA, that international co-operation was required, and an IAEA co-ordinated research project (CRP) was recommended. This recommendation was endorsed by the International Nuclear Data Committee, an advisory body for the nuclear data programme of the IAEA. As a consequence, the CRP on the Compilation and Evaluation of Fission Yield Nuclear Data was initiated in 1991, after its scope, objectives and tasks had been defined by a preparatory meeting. -
Relative Fission Product Yield Determination in the Usgs
RELATIVE FISSION PRODUCT YIELD DETERMINATION IN THE USGS TRIGA MARK I REACTOR by Michael A. Koehl © Copyright by Michael A. Koehl, 2016 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Nuclear Engineering). Golden, Colorado Date: ____________________ Signed: ________________________ Michael A. Koehl Signed: ________________________ Dr. Jenifer C. Braley Thesis Advisor Golden, Colorado Date: ____________________ Signed: ________________________ Dr. Mark P. Jensen Professor and Director Nuclear Science and Engineering Program ii ABSTRACT Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, ; modified spectral index, ; neutron temperature, ; and gold-based cadmium ratiosφ were determined for various sampling√⁄ positions in the USGS TRIGA Mark I reactor. -
Ornl-Tm-1853
OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION ORNL- TM-1853 COPY NO. - 0-C kc+- DATE -6-6-67 CFSTI RpICZiS CHEMICAL RESEARCHAND DEVELOPMENTFOR MOLTEN- SALT BREEDERREACTORS W. R. Grimes ABSTRACT kq Results of the 15-year program of chemical research and develop- .; ment for molten salt reactors are summarized in this document. These c results indicate that 7LiF-BeFz-LJFb mixtures are feasible fuels for thermal breeder reactors. Such mixtures show satisfactory phase be- havior, they are compatible with Hastelloy N and moderator graphite, and they appear to resist radiation and tolerate fission product ac- cumulation. Mixtures of 7LiF-BeF2-ThF4 similarly appear suitable as blankets for such machines. Several possible secondary coolant mix- tures are available; NaF-NaBF3 systems seem, at present, to be the most likely possibility. Gaps in the technology are presented along with the accomplish- ments, and an attempt is made to define the information (and the research and development program) needed before a Molten Salt Thermal Breeder can be operated with confidence. NOTICE This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Loboratory. It is subject to revision or correction and therefore does not represent a final report. The information is not to be abstracted, reprinted or otherwise given public dis- 4 .”: semination without the approval of the ORNL potent branch, Legal and Infor- mation Control Department. ’ y a I LEGAL NOTICE This report was prepored as an occount of Government sponsored work. Neither the United States, nw the Commission, nor ony person octing un beholf of the Commission: A. -
Specification for Low Alpha Lead in Wafer Bump Applications
Application Notes 47 Molter Street Cranston, Rhode Island 02910-1032 401-781-6100 • [email protected] • www.technic.com Specification for Low Alpha Lead in Wafer Bump Applications Background Alpha particles are positively charged nuclear particles consisting of two protons bound to two neutrons. Alpha particles are emitted spontaneously in some types of radioactive decay. Although alpha particle emissions are capable of penetrating only short distances, they are pernicious in creating computer memory or logic faults known as “soft faults”. Soft faults are individual events that are difficult to detect and isolate. Intel engineers working with IBM Fishkill, NY first identified the problem in 1979. The C-DIP’s (ceramic package DRAM) of that era were plated with gold and the alpha emissions were traced to the gold plated kovar package lids. Uranium or thorium decay and generate alpha particles with energies as high as 8.78 MeV. A flux of 5 MeV is capable of penetrating 25 um of silicon, resulting in 1.4 M electron hole pairs. If the electron accumulation exceeds a specific charge depending on the operating voltage and well design of the device, the cell may switch from “1” to “0”. There is no permanent damage and therefore the defect is referred to as a “soft” error. Design projections indicate that as device voltages decrease their sensitivity to alpha emissions increases. Alpha emissions are also common from tin lead deposited in the form of bumps for flip chip applications. The potential is significant for tin lead bumps due to the number of bumps and their close proximity to the sensitive IC well structure. -
(RAPID) Method to Nuclear Materials
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2020 Development and Applications of the Rapid Analysis of Post- Irradiation Debris (RAPID) Method to Nuclear Materials Emilie Fenske University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Fenske, Emilie, "Development and Applications of the Rapid Analysis of Post-Irradiation Debris (RAPID) Method to Nuclear Materials. " PhD diss., University of Tennessee, 2020. https://trace.tennessee.edu/utk_graddiss/5883 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Emilie Fenske entitled "Development and Applications of the Rapid Analysis of Post-Irradiation Debris (RAPID) Method to Nuclear Materials." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Nuclear Engineering. Howard Hall, Major Professor We have read this dissertation and recommend its acceptance: Steven Skutnik, Alan Icenhour, Robert Counce, Benjamin Roach, Cole Hexel Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Development and Applications of the Rapid Analysis of Post-Irradiation Debris (RAPID) Method to Nuclear Materials A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Emilie Fenske May 2020 Copyright © 2020 by Emilie Kiersten Fenske All rights reserved. -
Thesis Front Matter
Research Report on Development of analytical strategies to measure radioisotopes of tin in the environment Prepared by Mohammad Majibur Rahman Graduate Program (PhD) Supervisor: Dr. Ian Clark Co-supervisor: Dr. Liam Kieser Earth and Environmental Sciences: Specialization in Chemical and Environmental Toxicology Submitted to The Office of Graduate and Postdoctoral Studies Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Earth and Environmental Sciences: Specialization in Chemical and Environmental Toxicology DECEMBER 13, 2018 © Mohammad Majibur Rahman, Ottawa, Canada, 2018 This page has intentionally been left blank. Abstract Quantification of tin isotopes in environmental samples, particularly the radioactive 126Sn, is important for processes such as the biomonitoring of organotin species, long-term nuclear waste storage and treatment planning. The detection of 126Sn by mass spectrometric methods is, however, hampered by the presence of the stable 126Te isotope. Therefore, separation of tin from tellurium is crucial to minimize isobaric interferences that limit the quantification of 126Sn by Accelerator Mass Spectrometry (AMS) and other instrumental techniques. In the present study, three major accomplishments are discussed: i) development of an analytical strategy to separate tin from tellurium, ii) monitoring of anionic interferences in the separation of tin from tellurium, and iii) suppression of 126Te background to allow the detection of 126Sn by AMS. Section I (Chapter 2): In the first phase of the project, an analytical survey was carried out using four Eichrom resins (TRU, TEVA, UTEVA, and DGA) to identify a suitable solid phase chromatographic material to separate tin from tellurium. Standard metal solutions were spiked on batch tests in two acids (HCl and HNO3) at concentrations ranging from 0.20 to 6.0 mol L–1, and the spiked analytes in solution were measured by ICP-MS. -
12.2% 130,000 155M Top 1% 154 5,300
We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 5,300 130,000 155M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Chapter Fast-Spectrum Fluoride Molten Salt Reactor (FFMSR) with Ultimately Reduced Radiotoxicity of Nuclear Wastes Yasuo Hirose Abstract A mixture of NaF-KF-UF4 eutectic and NaF-KF-TRUF3 eutectic containing heavy elements as much as 2.8 g/cc makes a fast-spectrum molten salt reactor based upon the U-Pu cycle available without a blanket. It does not object breeding but a stable operation without fissile makeup under practical contingencies. It is highly integrated with online dry chemical processes based on “selective oxide precipita- tion” to create a U-Pu cycle to provide as low as 0.01% leakage of TRU and nominated as the FFMSR. This certifies that the radiotoxicity of HLW for 1500 effective full power days (EFPD) operation can be equivalent to 405 tons of depleted uranium after 500 years cooling without Partition and Transmutation (P&T). A certain amount of U-TRU mixture recovered from LWR spent fuel is loaded after the initial criticality until U-Pu equilibrium but the fixed amount of 238U only thereafter. -
Paper Template
Proceedings of 2ndInternational Symposium on BNCT The Application of Nuclear Technology to Support National Sustainable Development: Health, Agriculture, Energy, Industry and Environment August 10-11, 2016 - Pendopo of Surakarta City Government, Surakarta - Central Java, Indonesia Original paper available at http://... pp. …–… Study on The Ability of PCMSR to Produce Valuable Isotopes as By Produce of Energy Generation Andang Widi Harto a aDepartment of Nuclear Engineering and Engineering Physics, Faculty of Engineering UGM, Jln Grafika No.2, Yogyakarta, DIY, 55281, Indonesia Abstract PCMSR (Passive Compact Molten Salt Reactor) is a variant of MSR (Molten Salt Reactor) type reactors. The MSR is one type of the Advanced Nuclear Reactor types. PCMSR uses mixture of fluoride salt if liquid form in high temperature operation. The use of liquid salt fuel allows the application of on line fuel processing system. The on line fuel processing system allow extraction of several valuable fission product isotopes such as Mo- 99, Cs-137, Sr-89 etc. The capability to MSR to produce several valuable isotopes has been studied. This study based on a denaturated breeder MSR design with 920 MWth of thermal power and 500 MWe of electrical output power with the thermal efficiency of 55 %. The 232 initial composition of fuel salt is 70 % mole of LiF, 24 % mole of ThF4, 6 % mole of UF4. The enrichment level of U is 20 % mole of U-235. The study is performed by numerical calculation to solve a set of differential equations of fission product ballance. This calculation calculates fission product generation due to fission reaction and precursor decay and fission product annihilation due to decay, neutron absorption and extraction. -
Fission Product Yield Measurements from Neutron-Induced Fission of 235,238U and 239Pu
EPJ Web of Conferences 232, 03006 (2020) https://doi.org/10.1051/epjconf/202023203006 HIAS 2019 Fission Product Yield Measurements from Neutron-Induced Fission of 235,238U and 239Pu M. A. Stoyer1;∗, A. P. Tonchev1, J. A. Silano1, M. E. Gooden2, J. B. Wilhelmy2, W. Tornow3, C. R. Howell3, F. Krishichayan3, and S. Finch3 1Lawrence Livermore National Laboratory, Livermore, CA 94550 USA 2Los Alamos National Laboratory, Los Alamos, NM 87545 USA 3Triangle Universities Nuclear Laboratory, Durham, NC 27708 USA Abstract. Fission product yields (FPY) are one of the most fundamental quantities that can be measured for a fissioning nucleus and are important for basic and applied nuclear physics. Recent measurements using mono-energetic and pulsed neutron beams generated using Triangle Universities Nuclear Laboratory’s tandem accelerator and employing a dual fission chamber setup have produced self-consistent, high-precision data critical for testing fission models for the neutron-induced fission of 235;238U and 239Pu between neutron energies of 0.5 to 15.0 MeV. These data have elucidated a low-energy dependence of FPY for several fission products using irradiations of varying lengths and neutron energies. This paper will discuss new measurements just beginning utilizing a RApid Belt-driven Irradiated Target Transfer System (RABITTS) to measure shorter- lived fission products and the time dependence of fission yields, expanding the measurements from cumulative towards independent fission yields. The uniqueness of these FPY data and the impact on the development of fission theory will be discussed. 1 Introduction Nuclear fission is a collective phenomenon in which a heavy parent nucleus splits into two daughter nuclei ei- ther spontaneously or as a result of some inducement (neu- trons, charged particles, photons, etc.). -
Francis W. Aston
FRANCIS W. A STON Mass spectra and isotopes Nobel Lecture, December 12, 1922 Dalton’s statement of the Atomic Theory, which has been of such incalcu- lable value in the development of chemistry, contained the postulate that "atoms of the same element are similar to one another, and equal in weight". The second part of this postulate cannot, in general, be tested by chemical methods, for numerical ratios are only to be obtained in such methods by the use of quantities of the element containing countless myriads of atoms. At the same time it is somewhat surprising, when we consider the complete absence of positive evidence in its support, that no theoretical doubts were publicly expressed until late in the nineteenth century. There are two methods by which the postulate can be tested experi- mentally, either by comparing the weights of the individual atoms, or al- ternatively by demonstrating that samples of an element can exist which though chemically identical yet have different atomic weights. The latter method, by which the existence of isotopes was first proved, has been fully dealt with in the previous lecture by Professor Soddy. The more direct method, with which this lecture is concerned, can be applied by means of the analysis of positive rays. The condition for the development of these rays is briefly ionization at low pressure in a strong electric field. Ionization, which may be due to col- lisions or radiation, means in its simplest case the detachment of one electron from a neutral atom. The two resulting fragments carry charges of electricity of equal quantity but of opposite sign. -
Fission Yield Measurements from Deuterium-Tritium Fusion Produced Neutrons Using Cyclic Neutron Activation Analysis and Γ-Γ Coincidence Counting
Fission yield measurements from deuterium-tritium fusion produced neutrons using cyclic neutron activation analysis and γ-γ coincidence counting by Bruce D. Pierson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Nuclear Engineering & Radiological Sciences) in The University of Michigan 2016 Doctoral Committee: Professor Sara A. Pozzi, co-chair Assistant Professor Marek Flaska, Penn. State University, co-chair Professor, John E. Foster Larry R. Greenwood, Pacific Northwest National Laboratory Assistant Professor Physics Thomas Schwarz c Bruce D. Pierson 2016 All Rights Reserved This dissertation is dedicated to my family for their unyielding patience and support throughout my graduate career. ii ACKNOWLEDGEMENTS I would like to thank Drs. Marek Flaska, Larry Greenwood, Amanda Prinke, Sara Pozzi, and Sean Stave for their assistance, guidance, mentorship, and revisions to written works; their support and input drastically improved the quality of the final analysis and results (between the five them, I was getting at least one form of support from each of them). I'd also like to thank Drs. Ovidiu Toader and Joe Miklos for their assistance and support in maintaining and managing the Neutron Science Laboratory. Dr. Miklos was instrumental in amending the Nuclear Science Laboratory Nuclear Regulatory Commission license that allowed me to even do the work outlined in this document. He is a good friend and cheered me on to the finish at every opportunity. Dr. Toader was an invaluable resource for tools and ideas, and even emotional support when confronted with complex problems and the, what seemed to be, near endless graduate career.