Thesis Front Matter

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Front Matter Research Report on Development of analytical strategies to measure radioisotopes of tin in the environment Prepared by Mohammad Majibur Rahman Graduate Program (PhD) Supervisor: Dr. Ian Clark Co-supervisor: Dr. Liam Kieser Earth and Environmental Sciences: Specialization in Chemical and Environmental Toxicology Submitted to The Office of Graduate and Postdoctoral Studies Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Earth and Environmental Sciences: Specialization in Chemical and Environmental Toxicology DECEMBER 13, 2018 © Mohammad Majibur Rahman, Ottawa, Canada, 2018 This page has intentionally been left blank. Abstract Quantification of tin isotopes in environmental samples, particularly the radioactive 126Sn, is important for processes such as the biomonitoring of organotin species, long-term nuclear waste storage and treatment planning. The detection of 126Sn by mass spectrometric methods is, however, hampered by the presence of the stable 126Te isotope. Therefore, separation of tin from tellurium is crucial to minimize isobaric interferences that limit the quantification of 126Sn by Accelerator Mass Spectrometry (AMS) and other instrumental techniques. In the present study, three major accomplishments are discussed: i) development of an analytical strategy to separate tin from tellurium, ii) monitoring of anionic interferences in the separation of tin from tellurium, and iii) suppression of 126Te background to allow the detection of 126Sn by AMS. Section I (Chapter 2): In the first phase of the project, an analytical survey was carried out using four Eichrom resins (TRU, TEVA, UTEVA, and DGA) to identify a suitable solid phase chromatographic material to separate tin from tellurium. Standard metal solutions were spiked on batch tests in two acids (HCl and HNO3) at concentrations ranging from 0.20 to 6.0 mol L–1, and the spiked analytes in solution were measured by ICP-MS. The distribution coefficient, KD (solid phase/aqueous phase) of tin and tellurium was then calculated for each resin. Results, HCl treatment from 0.20 to 6.0 mol L–1, reveal that the -1 TEVA resin exhibited the highest KD (27198 mL g ) for the tin in HCl solution, followed by TRU (24239 mL g-1), DGA (10165 mL g-1), and UTEVA (3232 mL g-1) -1 resins. However, the TRU resin demonstrated the lowest KD (431 mL g ) for tellurium in similar acid conditions compared to other substrates (UTEVA 708 mL g-1, DGA 2230 mL -1 -1 g , and TEVA 3124 mL g ). All four resins produced relatively small KD values (≤ 100 -1 mL g ) for both tin and tellurium in aqueous HNO3 medium. A follow up of batch test, in ii which the TRU resin was charged on Bio-Rad columns, showed retention of 99.78 ± 0.39% tin and 59.31 ± 1.30% tellurium in the presence of dilute hydrochloric acid (~1.0 mol L–1). Through a study of tin and tellurium desorption from TRU resin with different eluents, it was observed that aqueous hydrofluoric acid (~ 0.50 mol L–1) could wash down up to 92% of loaded tin, while tellurium desorption can be kept as low as 5%. The first phase of our work suggests that the TRU resin offers itself a promising solid phase chromatographic material for the separation of tin from tellurium, while aqueous hydrofluoric acid is shown to be an excellent eluent to selectively wash out of tin from the solid phase. Section II (Chapter 3): In the second phase of the project, experimental work was carried out to evaluate the – 2– effect of Cl and SO4 interferences, the two major anions found in natural waters, in the separation of tin from tellurium. Following previous findings, powdered TRU (50–100 μm) resin was used as an adsorbent. Laboratory prepared solutions containing Cl– and 2– – 2– – 2– SO4 ions were spiked (single Cl , single SO4 , and Cl -SO4 -mixed spike) with standard solutions of tin and tellurium. Distribution coefficients for adsorbed tin and tellurium were then determined for each solution. An optimization of the reaction time producing the maximum metal-resin interaction was also evaluated. –1 Results reveal that the average KD values for tin and tellurium in 3.0 mol L hydrochloric acid are 5517 ± 406 and 1310 ± 50 mL g–1, respectively. In the case of tin, the Cl–-spike produced an increase in KD of 11% from that of the unspiked sample, whereas the mixed- spiked sample faced a reduction of KD by 7% compared to that of the unspiked sample. The distribution coefficients of tellurium in the presence of tested anion spikes remained unchanged. This observation demonstrates that the distribution coefficients of tin and – 2– tellurium onto the solid phase is barely affected by the presence of Cl and SO4 iii contaminants (each present at concentrations of 70.0 mg L–1). Moreover, the adsorption – 2– of metal at very low acidic conditions onto the resin in presence of Cl and SO4 spikes is favored at pH values from 4.0 to 5.0. In alkaline conditions, the resin was found to lose its stability. The TRU resin undergoes denaturation at 2.0 mol L–1 of NaOH, while a complete annihilation of resin structure occurred at 3.5 mol L–1 of base. The optimization of the reaction time producing the highest distribution coefficient of metals on the solid phase was carried out by observing batch tests up to 180 minutes of contact time. Results show that the optimum time for the best metal-resin interaction is around 90 minutes. More prolonged interaction time reduce the KD values for both tin and tellurium. A thorough adsorption-desorption study for tin and tellurium using TRU chromatographic resin with spiked field samples (surface and groundwaters) show that at least 99% tin is adsorbed in the presence of hydrochloric acid, while the adsorption of tellurium can be maintained at a level as low as 60%. Aqueous hydrofluoric acid can then selectively elute 85% of tin (with a single wash of 100 mg of TRU resin) with tellurium release of less than 10%. Our proposed methodology can be applied successfully for the selective separation of tin from tellurium from surface and groundwater samples containing Cl– 2– and SO4 ions. iv Section III (Chapter 4): In the third phase of our project, a rigorous study was carried out to suppress the 126Te background for the detection of 126Sn by AMS. Laboratory prepared and commercially available SnF2 along with SnI2 were used in the preparation of AMS targets (SnF2 + PbF2 – – and SnF2 + NaI + Ag). Beam-currents for SnF5 and SnF2I molecular ions were measured from these targets in the A. E. Lalonde AMS laboratory. Results reveal that: - tin does not form a stable molecular-beam with iodine, iodine makes the ion- source very unstable, no beam-current was detected with iodide species, even after mixing with silver powder, – - the formation of large SnI2F molecular ion was not confirmed, no detectable signal was observed for this compound, – – - no stable beam-current was observed for TeF3 and TeF5 species, – - the molecule SnF2 is a good ionic conductor, which produces stable SnF3 current, - the sputtering capacity of SnF2 is very good and immediate, and SnF2 + PbF2 – target composition yields a long-lasting SnF3 current, 126 120 - the Sn/ Sn ratio with laboratory prepared SnF2 was measured as ~4.0 × 10–9, a suppression of tellurium background to ppb-level, 126 118 –11 - the Sn/ Sn ratio with the SnF2 compound was found to be ~7.0 × 10 , a drop of background by 2-orders of magnitude, 126 118 - the Sn/ Sn ratio for the commercial SnF2 sample was measured as ~3.0 × 10–12, a drop of background to parts per trillion-level. The observed ~10–12 background is the lowest value ever measured for the AMS quantification of 126Sn, even large AMS techniques have not reported lower 126Sn/118Sn ratios. Therefore, the SnF2 + PbF2 target composition is an excellent choice to produce v stable molecular ion beams of tin and reducing interferences caused by the presence of 126Te isotope during the detection of 126Sn by AMS. Keywords Tin isotopes, distribution coefficient, solid phase extraction, extraction chromatographic materials, TRU resin, metal adsorption-desorption, ICP-MS, anionic interferences on distribution coefficient, groundwater contamination, AMS detection of 126Sn, 126Te interference, suppression of 126Te background, AMS beam-current. vi Statement of originality This is to certify that the content of this thesis is done by me and has not been submitted elsewhere for any academic degree or diploma. I also testify that this booklet is independently prepared by me and the assistances received from other sources have been acknowledged or cited as references. The chapter 4 (AMS detection of 126Sn) has been developed with the generous cooperation of Dr. Xiaolei Zhao, A. E. Lalonde AMS Laboratory, Advanced Research Complex, University of Ottawa. I am indebted to him for his time- consuming help in the analysis of AMS data. © Mohammad Majibur Rahman vii Acknowledgements I would like to express my deepest sense of gratitude to Prof. Ian Clark and Prof. Liam Kieser, for their kind consent to accept me as a graduate student after the sudden demise of Prof. Robert Jack Cornett. I can recall those critical days when a vibrant research group was facing a serious mentoring problem, fortunately, Ian and Liam came forward and took the burden on their shoulders. The strong moral support, caring guidance, and constant encouragement I have received from them, were amazing. In fact, without their escalating push, I could hardly have finished the time-sensitive project work well before the anticipated deadline. My thankful acknowledgement goes to them. I am grateful to Dr. Nimal De Silva, Smitarani Mohanty, and Cole MacDonald for their extended cooperation in instrumental troubleshooting during the ICP-MS sample run.
Recommended publications
  • Specification for Low Alpha Lead in Wafer Bump Applications
    Application Notes 47 Molter Street Cranston, Rhode Island 02910-1032 401-781-6100 • [email protected] • www.technic.com Specification for Low Alpha Lead in Wafer Bump Applications Background Alpha particles are positively charged nuclear particles consisting of two protons bound to two neutrons. Alpha particles are emitted spontaneously in some types of radioactive decay. Although alpha particle emissions are capable of penetrating only short distances, they are pernicious in creating computer memory or logic faults known as “soft faults”. Soft faults are individual events that are difficult to detect and isolate. Intel engineers working with IBM Fishkill, NY first identified the problem in 1979. The C-DIP’s (ceramic package DRAM) of that era were plated with gold and the alpha emissions were traced to the gold plated kovar package lids. Uranium or thorium decay and generate alpha particles with energies as high as 8.78 MeV. A flux of 5 MeV is capable of penetrating 25 um of silicon, resulting in 1.4 M electron hole pairs. If the electron accumulation exceeds a specific charge depending on the operating voltage and well design of the device, the cell may switch from “1” to “0”. There is no permanent damage and therefore the defect is referred to as a “soft” error. Design projections indicate that as device voltages decrease their sensitivity to alpha emissions increases. Alpha emissions are also common from tin lead deposited in the form of bumps for flip chip applications. The potential is significant for tin lead bumps due to the number of bumps and their close proximity to the sensitive IC well structure.
    [Show full text]
  • (RAPID) Method to Nuclear Materials
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2020 Development and Applications of the Rapid Analysis of Post- Irradiation Debris (RAPID) Method to Nuclear Materials Emilie Fenske University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Fenske, Emilie, "Development and Applications of the Rapid Analysis of Post-Irradiation Debris (RAPID) Method to Nuclear Materials. " PhD diss., University of Tennessee, 2020. https://trace.tennessee.edu/utk_graddiss/5883 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Emilie Fenske entitled "Development and Applications of the Rapid Analysis of Post-Irradiation Debris (RAPID) Method to Nuclear Materials." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Nuclear Engineering. Howard Hall, Major Professor We have read this dissertation and recommend its acceptance: Steven Skutnik, Alan Icenhour, Robert Counce, Benjamin Roach, Cole Hexel Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Development and Applications of the Rapid Analysis of Post-Irradiation Debris (RAPID) Method to Nuclear Materials A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Emilie Fenske May 2020 Copyright © 2020 by Emilie Kiersten Fenske All rights reserved.
    [Show full text]
  • Francis W. Aston
    FRANCIS W. A STON Mass spectra and isotopes Nobel Lecture, December 12, 1922 Dalton’s statement of the Atomic Theory, which has been of such incalcu- lable value in the development of chemistry, contained the postulate that "atoms of the same element are similar to one another, and equal in weight". The second part of this postulate cannot, in general, be tested by chemical methods, for numerical ratios are only to be obtained in such methods by the use of quantities of the element containing countless myriads of atoms. At the same time it is somewhat surprising, when we consider the complete absence of positive evidence in its support, that no theoretical doubts were publicly expressed until late in the nineteenth century. There are two methods by which the postulate can be tested experi- mentally, either by comparing the weights of the individual atoms, or al- ternatively by demonstrating that samples of an element can exist which though chemically identical yet have different atomic weights. The latter method, by which the existence of isotopes was first proved, has been fully dealt with in the previous lecture by Professor Soddy. The more direct method, with which this lecture is concerned, can be applied by means of the analysis of positive rays. The condition for the development of these rays is briefly ionization at low pressure in a strong electric field. Ionization, which may be due to col- lisions or radiation, means in its simplest case the detachment of one electron from a neutral atom. The two resulting fragments carry charges of electricity of equal quantity but of opposite sign.
    [Show full text]
  • Can Artificially Created Isotopes of Chemical Elements Be Patented
    California Law Review NE2BER NATIONAL AND WESTERN CONFERENCES OF LAW REVIEWS Published Five Times Yearly by Students of the School of Law of the University of California, Berkeley, California. Indexed in Index to Legal Periodicals and Public Affairs Information Service. Subscription Price, $5.00 Current Single Copies, $1.50 BOARD OF EJ)ITORS DEAN C. DUNTvLEY Editor GRAmA B. MOODY, JR. Assistant Editor ROBERT S. DAGGETT FRANK F. MANKIEWICz Managing Editor Article Editor Revising Editors MERR.L K. ALBERT WILInm D. MOORE GORDON E. DAvIs NORMAN G. RuDmAN JOIN K. MANGUM Associate Editors HERBERT A. BLUER EDWARD M. FORD JR. DONALD L. EDGAR J. CL oRD WALLACE MARLYN MITc General Secretary CmArL.s W. FROEMCH, JR. H. RANDALL STox H. HEL UT LORING Comment CAN ARTIFICIALLY CREATED ISOTOPES OF CHEMICAL ELEMENTS BE PATENTED? The continuing achievements of scientists in creating new chemical elements and isotopes' portend a unique problem in the field of patent law. ' 91 chemical elements and over 325 isotopes thereof have been discovered 'The definition of an "isotope" should be precisely comprehended by the reader. An atom is a physical unit of matter; formerly believed to be indivisible, it is now known to be com- prised of particles such as protons, neutrons, electrons and mesons. By varying the number of these ingredient particles, different atoms obviously are produced. The number of protons and neutrons in an atom primarily determines its chemical and physical properties; all atoms having the same number of protons comprise one chemical element. Thus, tin is a chemical element comprised of all those different atoms (18 in number) having 50 protons.
    [Show full text]
  • Neutron Deficient Isotopes of Rhodium and Palladium
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Neutron Deficient Isotopes of Rhodium and Palladium Permalink https://escholarship.org/uc/item/9d08g7qb Author Perlman, I. Publication Date 2010-02-04 Peer reviewed eScholarship.org Powered by the California Digital Library University of California " '/ ~ ... UCRL a ?,I/C- C-, { UNIVERSITY OF CALIFORNIA J FOR REFERENCE . NOT TO BE TAKEN FROM THIS ROOM BERKELEY, CALIFORNIA ~... :~" }-I .'; '-1 ....- :> ~. S "P' ~ I--( .-... -~1 >-'-<... S ~ --~ ~o" '-J ..... Special Review of r .. Declassified Reports Authorized by USDOE JK Bratton ':) , 0 -"'\0 • ifier Date '. UNrJEPSITY OF CALIFORNIA RJ1.DIATION LABOR~TORY Cover Sheet Do not remove Each person who space below. Route to Noted by Date Route to Noted by Date =====":::;"TF'~=:::::;:"""'====::=';:;:. =.'=:;;:':"=:"::::_,?";;;-=='rr'=:::::==:'::;;:.=:;:;,::;;:.==t=':::;::1=====":= -- . ,.,= "..-1--I ',.",.r----+tII -..----.~.___.._-,_. _.__-......-..\--__-.- -----1---------".....-+1.....· ............-' ,------1--'--- .1 ---..-+---.---.....--f---- I .--+i.__....._~._-----.--f-,--------......-l- .........- .......- f ~.L:i=:Tr;PSl TY OF CALIFORNIA Radiation Laboratory Contract No. W-7405-eng-48 NEUTRON DEFICIEI\lT I SOTOPii;S OF RHODI U!\~ AFD PALLADIUM by Manfred Lindner and I. Perlman February 2, 1948 Berkeley, California ..2- neutron Defid.ent Isotopes of B."odinm. and Palladium Hanfred Lindner and 1. Perlman '1 r' Radiation Laboratory and Department of Chemistr;)r Universitjr of Cal:i.fornia, Berkeley, Ca1iforn:i.a ABSTRACT A <i-hour palladium activit;)r assigned to mass 101 and 4.0 daJr activitJr assicued to mass 100 have been identified. Contract l~o. W-7405-eng-48 To be published as a letter to the Editor of Physical ~~ .'f'........... UCR.j M- Februa_ ~3.
    [Show full text]
  • ORNL's Neutron Sources and Nuclear Astrophysics
    2 Vol. 34, No. 2, 2001 1 Editorial: Basic Research 16 Modeling a Fusion Plasma at ORNL Heating Process and Stellarator 2 ORNL’s Search for Rare 22 Isotopes 17 Neutron Sources and Nanoscale Science 2 ORNL Theorists and the Nuclear Shell Model 18 Quantum-Dot Arrays for Computation 5 Beam Technologies Enable HRIBF Experiments 20 Carbon Nanotubes and Nanofibers: The 7 Neutrons, “Stripes,” and Self-Assembly Challenge Superconductivity 22 Incredible Shrinking Labs: 12 Weighing a Move to the ORNL’s Neutron Sources 8 Nanoscale and Nuclear Astrophysics 24 Basic Geochemical 10 Modeling Magnetic Mate- Research Supports Energy rials for Electronic Devices Industries 12 In Quest of a Quark: 26 Fermi Award Winner ORNL’s Role in the Opened New Fields in PHENIX Particle Detector 20 Atomic Physics 14 New Hope for the Blind 28 Improving the Internet’s from a Spinach Protein Quality of Service 15 Human Susceptibility and 29 QOS for Wireless Mouse Biology Communication This issue provides highlights of basic research at ORNL, including research on producing, characterizing, and finding applications for carbon nanotubes produced at ORNL by several techniques. The cover shows single-wall carbon nanotubes created by laser vaporization (note pink laser plume), which were then chemically purified and spray-deposited onto a substrate. The image above the cover image shows a carbon nanotube on electrodes, a possible nanoscale replacement for today’s microscale silicon transistors. See pp. 20-21 for a description of this and other nanoscale research. Images by Jason Fowlkes, Derek Austin, and Henrik Schittenhelm. Basic Research at ORNL Basic Research at ORNL: A Distinguished Past, An Exciting Future RNL has a time-honored tradition of basic research accomplish- ments in physics, chemistry, biology, and the materials sciences.
    [Show full text]
  • The Life and Contributions to the Periodic Table of Glenn T. Seaborg
    Pure Appl. Chem. 2019; 91(12): 1929–1939 Conference paper David Seaborg* The life and contributions to the periodic table of Glenn T. Seaborg, the first person to have an element named after him while he was still alive https://doi.org/10.1515/pac-2019-0816 Abstract: Glenn Seaborg was born on Michigan’s Upper Peninsula in 1912. At age 10, he moved to southern California, where his high school chemistry and physics teacher, Dwight Logan Read, sparked his interest in these fields. Seaborg was the first person to have an element named after him while he was still living. The only other person to have an element named after him while he was still alive was Yuri Oganessian. Keywords: actinide series; Mendeleev 150; periodic system; periodic table; Seaborg. Early life Glenn Theodore Seaborg was born in Ishpeming, on Michigan’s Upper Peninsula, in the United States, on April 19, 1912. His parents were Swedish Americans, and he spoke Swedish before he spoke English. He was proud of his Swedish heritage for his entire life. Ishpeming was rural. It has a cold climate similar to that of Sweden, which is why Seaborg’ paternal grandfather and mother each moved there from Sweden. The snow was so high in winter that he skied out of the second story window of his modest house. In his 10 years in Ishpeming, he never talked on the phone or heard the word “radio”. He never forgot his roots in Ishpeming, and visited it throughout his life. The Seaborg’s friends Bob and Ruth Engstroms had moved to Southern California and wrote a letter urging Glenn’s parents to join them.
    [Show full text]
  • Radiological and Chemical Fact Sheets to Support Health Risk Analyses for Contaminated Areas
    Radiological and Chemical Fact Sheets to Support Health Risk Analyses for Contaminated Areas Prepared by Argonne National Laboratory Environmental Science Division John Peterson, Margaret MacDonell, Lynne Haroun, and Fred Monette In collaboration with U.S. Department of Energy Richland Operations Office R. Douglas Hildebrand and Chicago Operations Office Anibal Taboas March 2007 Radiological and Chemical Fact Sheets to Support Health Risk Analyses for Contaminated Areas These fact sheets summarize health-related information for contaminants present in the environment as a result of past industrial activities and other releases. The objective is to provide scientific context for risk analyses to guide health protection measures. Geared toward an audience familiar with basic risk concepts, they were originally developed for the U.S. Department of Energy (DOE) Richland and Chicago Operations Offices to serve as an information resource for people involved in environmental programs. The initial set was expanded to address evolving homeland security concerns, and these 51 radiological and chemical fact sheets also serve as a scientific information resource for the public. Twenty-nine radionuclide-specific fact sheets have been prepared: ¾ Americium ¾ Iridium ¾ Selenium ¾ Cadmium ¾ Krypton ¾ Strontium ¾ Californium ¾ Neptunium ¾ Technetium ¾ Carbon-14 ¾ Nickel ¾ Thorium ¾ Cesium ¾ Plutonium ¾ Tin ¾ Chlorine ¾ Polonium ¾ Tritium ¾ Cobalt ¾ Potassium-40 ¾ Uranium ¾ Curium ¾ Protactinium ¾ Depleted uranium (DU) ¾ Europium ¾ Radium complements uranium
    [Show full text]
  • Research Reactor Utilization
    ATOMIC EEttEY AGEECY STUDY GROUP oar KSSSARCII RSACTOR UTILIZATION -."Casa'ccia, Italy, 2-6 February 19?0 PRODUCTION 01? RAJDIOISOTOSCS IK RESEARCH REACTORS V.V. Bochkarev, V.i. Levin Radioactive isotope producee sar researcn di h reactorr sfo nearly a quarter of a centurjr* Is addition to the increase in number of these reactors their geographic location has been rapid- ly expanded* At present in the whole world we count already several hundreds of research reactors, many of them having neutron from'1012 to 5-10*15 c/cm2.scc. The proble researcf mo h reacto productioe th r usr efo f no radioisotopes and labelled compounds is therefore of much signi- ficance especially as related to short-lived isotopes and to medi- cal preparations of these isotopes primarily for countries and areas remoted from the main v/orld centers of isotope production* Recently many countries have commenced isotope production, organi- sing isotope radio chemi-cal laboratorie theit sa r research reactors Production of isotopes in research reactors (as a rule being mul- tipurpose) however is not -she only task of these facilities and even usually not the forst one. Taking account of all said above IAEA already in November 1962 held a seminar on short-lived isotopes production in small research reactors and their use. In 1966 IAEA, published a special manua isotopn lo e production (Manua Radioisotopf lo e Production, Technical Reports, Serie s6J)N whicn , i basi e hth c aspectf so this problem arc discussed* Radioisotope productio researcn ni h reactor mans sha y diffe- rent aspects whicf o l h ,al canno discussee tb singla n di e paper* 243 However, some "basic aspects might be difined and illustrated by examples* In the p^eofcnt paper we do not consider purely engineering problems connected with desig maintenancd nan variouf eo s auxi- liary loadin unloading- g (and other) devices.
    [Show full text]
  • Total Я-Decay Energies and Atomic Masses Regions Far
    Z -> => 3 Q i I 2- TOTAL ß-DECAY ENERGIES AND ATOMIC MASSES REGIONS FAR FROM ß-STABILITY On-line isotope separator investigations in the mass regions A = 75 87, 120-135 and 222-229 KJELL ALEKLETT DEPARTMENT OF PHYSICS 1977 •i=M ERRATA Paper Page Line Stands Read Sum. 19 1 1335 keV 1336 keV 32 85Br 2.870 2.871 32 76Rb _+ 0.12 + 0.57 33 131Sn -77.43 -77.42 33 130Sb + 0.08 ... + 0.08 _+ 0.10 ... + 0.10 33 131Sb 3.18+0.09 -82.02+0.09 3.19_+0.07 -82.01+0.07 33 134Sb +u.21 ±0.24 33 121Cs +0.37 ±0.49 35 In ... 0.16 ... 0.17 35 Sn.Sb.Te ... 0.41 ... 0.36 43 Sn.Sb.Te ... 0.44 ... 0.40 ... 0,49 ... 0.36 I 1 13 reliabily reliability 12 ref. 10 £7(1973)6 £7(1973)296 11 4 Fig 2 1836 (a level) 1832 6 14 f.botton level scheme decay scheme 13 14 18.5 isomer 18.5 s isomer 79,80,81 15 6 Ge 79>80Ge 82,83 16 7 Ge 81"83Ge III 13 10 ±0.08 ±0.10 V 139 Table 13 +0.31 ±0.49 121Cs On-line isotope separator investigations in the mass regions Ä = 75-87,120-135, and 222-229 by KJELL ALEKLETT AKADEMISK AVHANDLING för filosofie doktorsexamen i fysik (examinátor bitr prof Göran Andersson) som enligt beslut av fysiska avdelningen vid matematisk/teknisk fysiska sektionsgruppen vid Chalmers tekniska högskola och Göteborgs universitet kommer att offentligen försvaras fredagen den 11 mars 1977 kl 10.15 i rum 6306 Fysiska institutionen! Chalmers tekniska högskola.
    [Show full text]
  • Laser Spectroscopy of Tin and Cadmium
    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Proposal to the ISOLDE and Neutron Time-of-Flight Committee Laser Spectroscopy of Tin and Cadmium: Across N = 82 and Closing in on N = 50 May 29, 2013 D. T. Yordanov1, D. L. Balabanski2, M. L. Bissell3, K. Blaum1, I. Budinˇcevi´c3, N. Fr¨ommgen4, R. F. Garcia Ruiz3, G. Georgiev5, Ch. Geppert6, M. Hammen4, M. Kowalska7, R. Neugart4, G. Neyens3, W. N¨ortersh¨auser6, J. Papuga3, R. S´anchez8 1Max-Planck-Institut f¨urKernphysik, D-69117 Heidelberg, Germany 2INRNE, Bulgarian Academy of Science, BG-1784 Sofia, Bulgaria 3Instituut voor Kern- en Stralingsfysica, KULeuven, B-3001 Leuven, Belgium 4Institut f¨urKernchemie, Universit¨atMainz, D-55099 Mainz, Germany 5CSNSM-IN2P3-CNRS, Universit´ede Paris Sud, F-91405 Orsay, France 6Technische Universit¨atDarmstadt, 64289 Darmstadt, Germany 7Organisation Europ´eennepour la Recherche Nucl´eaire, CH-1211 Geneva 23, Switzerland 8GSI Helmholtzzentrum f¨urSchwerionenforschung GmbH, D-64291 Darmstadt, Germany Spokesperson: D. T. Yordanov [email protected] Contact person: M. L. Bissell [email protected] Abstract: We propose to study the isotopes of tin starting in proximity of N = 50 up to and beyond N = 82, as well as the \magic-plus-one" nuclei of cadmium at both shell closures. The CERN-INTC-2013-014 / INTC-P-378 29/05/2013 objective is to determine model-independent properties of ground and isomeric states by high-resolution laser spectroscopy, which are essential for understanding the structure of nuclei and their astrophysical importance in this region of the nuclear chart. keywords: tin, cadmium, electromagnetic moments, radii, COLLAPS Requested shifts: 44 shifts of radioactive beam and 6 shifts of stable beam 1 1 Introduction Our recent measurement by collinear laser spectroscopy at ISOLDE-CERN revealed a unique sequence of ten electric quadrupole moments in the isotopes of cadmium increasing linearly with respect to the atomic mass number [1].
    [Show full text]
  • La-Ur-94-3106 Endf-349
    veE EWREQIHT ixhpEQRW ivlution nd gompiltion of pission rodut ields IWWQ F F inglnd nd fF pF ider vos elmos xtionl vortory ytoerD IWWR estrt his doument is the ltest in series of ompiltions of ssion yield dtF pission yield mesurements reported in the open literture nd lulted hrge distriutions hve een used to produe reommended set of yields for the ssion produtsF he originl dt with referene souresD nd the reommended yields re presented in tE ulr formF hese inlude mny nulides whih ssion y neutrons t severl energiesF hese energies inlude therml energies @AD ssion spetrum energies @pAD IR me righ inergy @r or riAD nd spontneous ssion @AD in six sets of ten ehF et e inludes PQSD PQSpD PQSriD PQVpD PQVriD uPQWD uPQWpD uPRID PQQD hPQPpF et f inludes PQQpD PQQriD PQTpD uPQWrD uPRHpD uPRIpD uPRPpD hPQPrD xpPQUpD gfPSPF et g inludes PQRpD PQUpD uPRHrD PQRriD PQTriD uPQVpD emPRIpD emPRQpD xpPQVpD gmPRPpF et h inludes hPPUD hPPWD PQIpD emPRID emPRIrD emPRPwD gmPRSD gfPRWD gfPSID isPSRF et i inludes gfPSHD gmPRRD gmPRVD isPSQD pmPSRD pmPSSD pmPSTD xpPQUrD PQPD PQVF et p inludes gmPRQD gmPRTD gmPRQpD gmPRRpD gmPRTpD gmPRVpD uPRPrD xpPQUD uPRHD nd uPRP to omplete ssion produt yield evlutions for TH ssioning systems in llF his report lso serves s the primry doumenttion for the seond evlution of yields in ixhpGfEs relesed in IWWQF his report ws originlly intended to e printed full sized inluding ll evluted nd ompiled dtF roweverD it ontins more thn VHDHHH single sped linesD most extending over IQP olumns @out IQHH pgesAF he min textD tulr dt in the
    [Show full text]