This Is a Consolidated Version of The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Summary of Road Closures
summary of road closures targa.com.au #TARGA | #TARGAhighcountry#TARGAtasmania | #TARGAtasmania2021 | #TARGAhighcountry2021 LEG ONE – monday 19th April MUNICIPALITY OF MEANDER VALLEY Stage Name: HIGH PLAINS Road closure time: 7:57 – 12:27 Roads Closed Between the following Roads Weetah Road Mitchells Road and East Parkham Road MUNICIPALITY OF LATROBE Stage Name: MORIARTY Road closure time: 8:27 – 12:57 Roads Closed Between the following Roads Valley Field Road Chaple Road and Oppenheims Road Oppenheims Road Valley Field Road and Hermitage Lane Hermitage Lane Oppenheims Road and Bonneys Road Bonneys Lane Hermitage Lane and Moriarty Road CITY OF DEVONPORT AND MUNICIPALITY OF KENTISH Stage Name: PALOONA Road closure time: 10:01 – 14:31 Roads Closed Between the following Roads Buster Road Melrose Road and Melrose Road Melrose Road Buster Road and Paloona Road Paloona Road Melrose Road and Paloona Dam Road Paloona Dam Road Paloona Road and Lake Paloona Road Lake Paloona Road Paloona Dam Road and Lower Barrington Road Stage Name: MT ROLAND Road closure time: 10:42 – 15:12 Roads Closed Between the following Roads Olivers Road Claude Road and Mersey Forest Road Mersey Forest Road Olivers Road and Liena Road MUNICIPALITY OF MEANDER VALLEY Stage Name: GOLDEN VALLEY Road closure time: 11:50 – 16:20 Roads Closed Between the following Roads Highland Lakes Road Golden Valley Road and Haulage Road MUNICIPALITY OF NORTHERN MIDLANDS Stage Name: POATINA Road closure time: 13:01 – 17:31 Roads Closed Between the following Roads Poatina Road Westons Road -
May 2017 May 2017
May 2017 May 2017 Winners of the Tasmanian trout fishing photo competition Congratulations to the winners of the Tasmanian Trout Fishing Photo Competition. The junior winner is Sabyn Harris with his photo, Four Springs Lake. First prize in the adult category goes to The adult runner up is David Green with his Steven Ooi for his photo, Western Lakes photo, Tyenna River. We would like thank everyone who entered the Tasmanian Trout Fishing Photo Competition. We received over 150 entries and it was a very hard job to select the winners. Congratulations really goes to all of you who entered. Thanks for sharing you inland fishing experiences with us. Page 2 of 25 May 2017 Contents Hot topics .......................................................................................................................................................................... 4 Trout Weekend 2017 ................................................................................................................................................ 4 Brown trout spawning run and transfers ............................................................................................................... 4 Community Infrastructure Fund successful projects ........................................................................................... 4 Carp Workshop 2017 ................................................................................................................................................ 4 Anglers Access – Neil Morrow ................................................................................................................................... -
Glacial Map of Nw
TASMANI A DEPARTMENT OF MIN ES GEOLOGICAL SURV EY RECORD No.6 .. GLACIAL MAP OF N.W. - CEN TRAL TASMANIA by Edward Derbyshire Issued under the authority of The Honourable ERIC ELLIOTT REECE, M.H.A. , Minister for Mines for Tasmania ......... ,. •1968 REGISTERED WITH G . p.a. FOR TRANSMISSION BY POST A5 A 800K D. E . WIL.KIN SOS. Government Printer, Tasmania 2884. Pr~ '0.60 PREFACE In the published One Mile Geological Maps of the Mackintosh. Middlesex, Du Cane and 8t Clair Quadrangles the effects of Pleistocene glaciation have of necessity been only partially depicted in order that the solid geology may be more clearly indicated. However, through the work of many the region covered by these maps and the unpublished King Wi11 iam and Murchison Quadrangles is classic both throughout AustraHa and Overseas because of its modification by glaciation. It is, therefore. fitting that this report of the most recent work done in the region by geomorphology specialist, Mr. E. Derbyshire, be presented. J. G. SYMONS, Director of Mmes. 1- CONTENTS PAGE INTRODUCTION 11 GENERAL STR UCT UIIE AND MOIIPHOLOGY 12 GLACIAL MORPHOLOGY 13 Glacial Erosion ~3 Cirques 14 Nivation of Cirques 15 Discrete Glacial Cirques 15 Glacial Valley-head Cirques 16 Over-ridden Cirques 16 Rock Basin s and Glacial Trou~hs 17 Small Scale Erosional Effects 18 Glacial Depositional Landforms 18 GLACIAL SEDIMENTS 20 Glacial Till 20 Glacifluvial Deposits 30 Glacilacustrine Deposits 32 STIIATIGIIAPHY 35 REFERENCES 40 LIST OF FIGURES PAGE Fig. 1. Histogram showing orientation of the 265 cirques shown on the Glacial Map 14 Fig. -
The Environmental Impact of Building Dams Aswan Dam the Aswan Dam, Built on the Nile River, Was an Enormous Feat of Engineering and Planning
The Environmental Impact of Building Dams Aswan Dam The Aswan dam, built on the Nile River, was an enormous feat of engineering and planning. Lake Nasser was created as a result of the ooding of the dam’s catchment area. Some important cultural heritage sites were taken apart, and rebuilt at Abu Simbel in order to avoid them being ooded by the project. Other sites were not saved and remain under the water. The Gordon Dam Gordon River in Tasmania, Australia. Built in 1974 The Gordon Dam was built for the purpose of providing hydroelectric supply. Water is fed down a 183 m drop to turn turbines that are located under the ground below the dam wall. A proposed second dam on the Gordon River, the Franklin Dam, was never built due to strong opposition from community and environmental groups. The Tasmanian Wilderness Society ran a campaign from 1976 -1983 to save the pristine wilderness from environmental damage. The leader of the Tasmanian Wilderness Society, Dr Bob Brown, later became a member of the Tasmanian Parliament, an Australian Senator and the Parliamentary Leader of the Australian Greens political party. Murray River The Murray River ows for over 2500 km across eastern Australia to its outlet on the coast in South Australia. It forms part of the border between New South Wales and Victoria. During the early to mid 1900s, a series of dams, locks and weirs were built on the river. These disrupted the natural ow of the river and allowed fresh water to be available for irrigation to Australia’s largest food growing region. -
Water Management in the Anthony–Pieman Hydropower Scheme
Water management in the Anthony–Pieman hydropower scheme Pieman Sustainability Review June 2015 FACT SHEET Background The Anthony–Pieman hydropower scheme provides a highly valued and reliable source of electricity. The total water storage of the hydropower scheme is 512 gigalitres and the average annual generation is 2367 gigawatt hours. Construction of the Anthony–Pieman hydropower scheme has resulted in creation of water storages (lakes) and alterations to the natural flow of existing rivers and streams. The Pieman Sustainability Review is a review of operational, social and environmental aspects of the Anthony–Pieman hydropower scheme that are influenced by Hydro Tasmania. This fact sheet elaborates on water management issues presented in the summary report, available at http://www.hydro.com.au/pieman-sustainability-review Water storage levels in the Anthony–Pieman Water levels have been monitored at these storages since hydropower scheme their creation in stages between 1981 and 1991. The Anthony–Pieman hydropower scheme includes eight Headwater storages: Lake Mackintosh and Lake water storages, classified as headwater storages (Lakes Murchison Mackintosh and Murchison), diversion storages (Lakes Lakes Mackintosh and Murchison are the main headwater Henty and Newton and White Spur Pond) and run-of-river storages for the Anthony–Pieman hydropower scheme. storages (Lakes Rosebery, Plimsoll and Pieman). Lakes The water level fluctuates over the entire operating range Murchison, Henty and Newton and White Spur Pond do not from Normal Minimum Operating Level (NMOL) to Full release water directly to a power station; rather they are Supply Level (FSL) (Figures 1, 2). used to transfer water to other storages within the scheme. -
Groundwaters in Wet, Temperate, Mountainous,Sulphide-Mining Districts
Groundwaters in wet, temperate, mountainous, sulphide-mining districts: delineation of modern fluid flow and predictive modelling for mine closure (Rosebery, Tasmania). by Lee R. Evans B.App.Sci.(Hons) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy UNIVERSITY OF TASMANIA September 2009 Cover Image: Elevated orthogonal view of the 3D Rosebery groundwater model grid looking towards the northeast. i Declaration This thesis contains no material that has been accepted for a degree or diploma by the University or any institution, except by way of background information and duly acknowledged in the thesis, and to the best of the candidate’s knowledge and beliefs, contains no material previously published or written by another person, except where due acknowledgement is made in the text of the thesis. Three co-authored conference publications written as part of the present study (Evans et al., 2003; Evans et al., 2004a; and Evans et al., 2004b) are provided in Appendix Sixteen. Lee R. Evans Date: This thesis is to be made available for loan or copying in accordance with the Copyright Act 1969 from the date this statement was signed. Lee R. Evans Date: ii Abstract There are as yet few studies of the hydrogeology of sulphide-mining districts in wet, temperate, mountainous areas of the world. This is despite the importance of understanding the influence of hydrogeology on the evolution and management of environmental issues such as acid mine drainage (AMD). There is a need to determine whether the special climatic and geological features of such districts result in distinct groundwater behaviours and compositions which need to be considered in mining impact studies. -
Technical Parameters of the Tasmanian Electricity Supply System
Electricity Supply Industry Expert Panel Technical Parameters of the Tasmanian Electricity Supply System Information Paper December 2011 Electricity Industry Panel - Secretariat GPO Box 123 Hobart TAS 7001 Telephone: (03) 6232 7123 Email: [email protected] http://www.electricity.tas.gov.au December 2011 © Copyright State of Tasmania, 2011 Contents 1. Objectives and Structure of this Paper ........................................................................................ 1 2. Principles of an Electricity Supply System ..................................................................................... 2 2.1. Introduction .............................................................................................................................. 2 2.2. Properties of Electricity ........................................................................................................... 3 2.3. Generation ............................................................................................................................... 4 2.4. Delivery Elements .................................................................................................................... 7 3. Technical Issues of Meeting Demand, System Reliability & System Security Requirements 9 3.1. Demand .................................................................................................................................... 9 3.2. Reliability ................................................................................................................................ -
Annual Waterways Report
Annual Waterways Report Pieman Catchment Water Assessment Branch 2009 ISSN: 1835-8489 Copyright Notice: Material contained in the report provided is subject to Australian copyright law. Other than in accordance with the Copyright Act 1968 of the Commonwealth Parliament, no part of this report may, in any form or by any means, be reproduced, transmitted or used. This report cannot be redistributed for any commercial purpose whatsoever, or distributed to a third party for such purpose, without prior written permission being sought from the Department of Primary Industries and Water, on behalf of the Crown in Right of the State of Tasmania. Disclaimer: Whilst DPIW has made every attempt to ensure the accuracy and reliability of the information and data provided, it is the responsibility of the data user to make their own decisions about the accuracy, currency, reliability and correctness of information provided. The Department of Primary Industries and Water, its employees and agents, and the Crown in the Right of the State of Tasmania do not accept any liability for any damage caused by, or economic loss arising from, reliance on this information. Department of Primary Industries and Water Pieman Catchment Contents 1. About the catchment 2. Streamflow and Water Allocation 3. River Health 1. About the catchment The Pieman catchment drains a land mass of more than 4,100 km 2 stretching from about Lake St Clair in the Central Highlands west more than 90 km to Granville Harbour on the rugged West Coast of Tasmania. Major rivers draining the catchment are the Savage, Donaldson and Whyte rivers in the lower catchment, the Pieman, Huskisson rivers in the middle catchment and the Mackintosh, Murchison and Anthony rivers in the upper catchment. -
Hydro 4 Water Storage
TERM OF REFERENCE 3: STATE-WIDE WATER STORAGE MANAGEMENT The causes of the floods which were active in Tasmania over the period 4-7 June 2016 including cloud-seeding, State-wide water storage management and debris management. 1 CONTEXT 1.1 Cause of the Floods (a) It is clear that the flooding that affected northern Tasmania (including the Mersey, Forth, Ouse and South Esk rivers) during the relevant period was directly caused by “a persistent and very moist north-easterly airstream” which resulted in “daily [rainfall] totals [that were] unprecedented for any month across several locations in the northern half of Tasmania”, in some cases in excess of 200mm.1 (b) This paper addresses Hydro Tasmania’s water storage management prior to and during the floods. 1.2 Overview (a) In 2014, Tasmania celebrated 100 years of hydro industrialisation and the role it played in the development of Tasmania. Hydro Tasmania believes that understanding the design and purpose of the hydropower infrastructure that was developed to bring electricity and investment to the state is an important starting point to provide context for our submission. The Tasmanian hydropower system design and operation is highly complex and is generally not well understood in the community. We understand that key stakeholder groups are seeking to better understand the role that hydropower operations may have in controlling or contributing to flood events in Tasmania. (b) The hydropower infrastructure in Tasmania was designed and installed for the primary purpose of generating hydro-electricity. Flood mitigation was not a primary objective in the design of Hydro Tasmania’s dams when the schemes were developed, and any flood mitigation benefit is a by-product of their hydro- generation operation. -
THE TASMANIAN HERITAGE FESTIVAL COMMUNITY MILESTONES 1 MAY - 31 MAY 2013 National Trust Heritage Festival 2013 Community Milestones
the NatioNal trust presents THE TASMANIAN HERITAGE FESTIVAL COMMUNITY MILESTONES 1 MAY - 31 MAY 2013 national trust heritage Festival 2013 COMMUNITY MILESTONES message From the miNister message From tourism tasmaNia the month-long tasmanian heritage Festival is here again. a full program provides tasmanians and visitors with an opportunity to the tasmanian heritage Festival, throughout may 2013, is sure to be another successful event for thet asmanian Branch of the National participate and to learn more about our fantastic heritage. trust, showcasing a rich tapestry of heritage experiences all around the island. The Tasmanian Heritage Festival has been running for Thanks must go to the National Trust for sustaining the momentum, rising It is important to ‘shine the spotlight’ on heritage and cultural experiences, For visitors, the many different aspects of Tasmania’s heritage provide the over 25 years. Our festival was the first heritage festival to the challenge, and providing us with another full program. Organising a not only for our local communities but also for visitors to Tasmania. stories, settings and memories they will take back, building an appreciation in Australia, with other states and territories following festival of this size is no small task. of Tasmania’s special qualities and place in history. Tasmania’s lead. The month of May is an opportunity to experience and celebrate many Thanks must also go to the wonderful volunteers and all those in the aspects of Tasmania’s heritage. Contemporary life and visitor experiences As a newcomer to the State I’ve quickly gained an appreciation of Tasmania’s The Heritage Festival is coordinated by the National heritage sector who share their piece of Tasmania’s historic heritage with of Tasmania are very much shaped by the island’s many-layered history. -
Derwent Catchment Review
Derwent Catchment Review PART 1 Introduction and Background Prepared for Derwent Catchment Review Steering Committee June, 2011 By Ruth Eriksen, Lois Koehnken, Alistair Brooks and Daniel Ray Table of Contents 1 Introduction ..........................................................................................................................................1 1.1 Project Scope and Need....................................................................................................1 2 Physical setting......................................................................................................................................1 2.1 Catchment description......................................................................................................2 2.2 Geology and Geomorphology ...........................................................................................5 2.3 Rainfall and climate...........................................................................................................9 2.3.1 Current climate ............................................................................................................9 2.3.2 Future climate............................................................................................................10 2.4 Vegetation patterns ........................................................................................................12 2.5 River hydrology ...............................................................................................................12 2.5.1 -
Conditions Favouring Growth of Fresh Water Biofouling in Hydraulic Canals and the Impact of Biofouling on Pipe Flows
Conditions Favouring Growth of Fresh Water Biofouling in Hydraulic Canals and the Impact of Biofouling on Pipe Flows By Xiao Lin Li BEng(Hons.) Submitted in fulfilment of the requirements for the Degree of Masters University of Tasmania October 2013 Declaration of Originality This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of candidates knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis. …………………………………… Xiao Lin Li Date: 12/10/2013 Statement Concerning Authority to Access This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. …………………………………... Xiao Lin Li Date: 12/10/2013 ii Abstract Abstract Biofouling increases frictional resistance and slows the water flow in fresh water canals and pipes. It results in up to 10% reduction in the flow carrying capacity in hydropower canals in Tasmania, Australia. This project investigated the effect of colour on the growth of biofouling in open channels and the impact of biofouling in pipes and penstocks. The effect of substratum colour on the growth of biofouling was studied by submerging mild steel plates painted with four different coloured epoxy coatings in fresh water. The plates were placed in a concrete lined canal for a period of time to allow biofouling to grow. Results show that black was the favoured colour for the growth of biofouling whereas the white plates developed the least amount.