2010 Electricity Statement of Opportunities for the National Electricity Market
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Financial Services Guide and Independent Expert's Report
15 September 2008 Manager Companies ASX Limited 20 Bridge Street SYDNEY NSW 200 Dear Sir INDEPENDENT EXPERT'S REPORT Attached herewith for immediate release to the market is the Independent Expert’s Report of Grant Samuel dated 15 September 2008. The report will be available today on the Origin Energy website on: www.originenergy.com.au/media/newsroom. Printed copies of the report may be requested by contacting our shareholder information line 1800 647 819. Yours faithfully Bill Hundy Company Secretary 02 8345 5467 - [email protected] For personal use only Origin Energy Limited ABN 30 000 051 696 • Level 45, Australia Square, 264-278 George Street Sydney NSW 2000 GPO Box 5376, Sydney NSW 2001 • Telephone (02) 8345 5000 • Facsimile (02) 9252 9244 • www.originenergy.com.au GRANT SAMUEL & ASSOCIATES LEVEL 19 GOVERNOR MACQUARIE TOWER 1 FARRER PLACE SYDNEY NSW 2000 GPO BOX 4301 SYDNEY NSW 2001 15 September 2008 T: +61 2 9324 4211 / F: +61 2 9324 4301 www.grantsamuel.com.au The Directors Origin Energy Limited Level 45, Australia Square 264-278 George Street Sydney NSW 2000 Dear Directors ConocoPhillips Proposal 1 Introduction On 8 September 2008, Origin Energy Limited (“Origin”) announced that it had entered conditional agreements with a wholly owned subsidiary of ConocoPhillips (“ConocoPhillips”) to create an incorporated 50/50 joint venture (“JV”) to develop Origin’s coal seam gas (“CSG”) assets and a gas liquefaction facility (“the ConocoPhillips Proposal”). The key features of the ConocoPhillips Proposal are: ConocoPhillips will subscribe for new partly paid shares in Origin Energy CSG Limited (“OECSG”) which will comprise 50% of the enlarged share capital. -
Hydro 4 Water Storage
TERM OF REFERENCE 3: STATE-WIDE WATER STORAGE MANAGEMENT The causes of the floods which were active in Tasmania over the period 4-7 June 2016 including cloud-seeding, State-wide water storage management and debris management. 1 CONTEXT 1.1 Cause of the Floods (a) It is clear that the flooding that affected northern Tasmania (including the Mersey, Forth, Ouse and South Esk rivers) during the relevant period was directly caused by “a persistent and very moist north-easterly airstream” which resulted in “daily [rainfall] totals [that were] unprecedented for any month across several locations in the northern half of Tasmania”, in some cases in excess of 200mm.1 (b) This paper addresses Hydro Tasmania’s water storage management prior to and during the floods. 1.2 Overview (a) In 2014, Tasmania celebrated 100 years of hydro industrialisation and the role it played in the development of Tasmania. Hydro Tasmania believes that understanding the design and purpose of the hydropower infrastructure that was developed to bring electricity and investment to the state is an important starting point to provide context for our submission. The Tasmanian hydropower system design and operation is highly complex and is generally not well understood in the community. We understand that key stakeholder groups are seeking to better understand the role that hydropower operations may have in controlling or contributing to flood events in Tasmania. (b) The hydropower infrastructure in Tasmania was designed and installed for the primary purpose of generating hydro-electricity. Flood mitigation was not a primary objective in the design of Hydro Tasmania’s dams when the schemes were developed, and any flood mitigation benefit is a by-product of their hydro- generation operation. -
Derwent Catchment Review
Derwent Catchment Review PART 1 Introduction and Background Prepared for Derwent Catchment Review Steering Committee June, 2011 By Ruth Eriksen, Lois Koehnken, Alistair Brooks and Daniel Ray Table of Contents 1 Introduction ..........................................................................................................................................1 1.1 Project Scope and Need....................................................................................................1 2 Physical setting......................................................................................................................................1 2.1 Catchment description......................................................................................................2 2.2 Geology and Geomorphology ...........................................................................................5 2.3 Rainfall and climate...........................................................................................................9 2.3.1 Current climate ............................................................................................................9 2.3.2 Future climate............................................................................................................10 2.4 Vegetation patterns ........................................................................................................12 2.5 River hydrology ...............................................................................................................12 2.5.1 -
Conditions Favouring Growth of Fresh Water Biofouling in Hydraulic Canals and the Impact of Biofouling on Pipe Flows
Conditions Favouring Growth of Fresh Water Biofouling in Hydraulic Canals and the Impact of Biofouling on Pipe Flows By Xiao Lin Li BEng(Hons.) Submitted in fulfilment of the requirements for the Degree of Masters University of Tasmania October 2013 Declaration of Originality This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of candidates knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis. …………………………………… Xiao Lin Li Date: 12/10/2013 Statement Concerning Authority to Access This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. …………………………………... Xiao Lin Li Date: 12/10/2013 ii Abstract Abstract Biofouling increases frictional resistance and slows the water flow in fresh water canals and pipes. It results in up to 10% reduction in the flow carrying capacity in hydropower canals in Tasmania, Australia. This project investigated the effect of colour on the growth of biofouling in open channels and the impact of biofouling in pipes and penstocks. The effect of substratum colour on the growth of biofouling was studied by submerging mild steel plates painted with four different coloured epoxy coatings in fresh water. The plates were placed in a concrete lined canal for a period of time to allow biofouling to grow. Results show that black was the favoured colour for the growth of biofouling whereas the white plates developed the least amount. -
Gas 2007/08 Annual Report
Report of the Technical Regulator This is the annual report of the Technical Regulator under the Electricity Act 1996 and the Energy Products (Safety and Efficiency) Act 2000. It describes the operations of the Technical Regulator for the financial year 2013-14 as required by sections 14 and 25 of the Acts respectively. These sections require the minister to cause a copy of the report to be laid before both houses of parliament. The Technical Regulator is a statutory office established by Section 7 of the Electricity Act 1996. Robert Faunt has held this office since he was appointed as the Technical Regulator on 28 February 2003. Technical Regulator: Robert Faunt Address: Level 8, ANZ Building 11 Waymouth Street Adelaide 5000 Postal Address: GPO Box 320 Adelaide SA 5001 Telephone: (08) 8226 5500 Facsimile: (08) 8226 5529 Office Hours: 9 am to 5 pm, Monday to Friday (except public holidays) Website: www.sa.gov.au/otr Email: [email protected] ISSN: 1832-8687 Front Cover Photos: Top row: Panoramic View of Clements Gap Wind Farm Middle row (left to right): Electrical installations, High voltage substation equipment, Electrical worker working at a substation Bottom row: Davenport transmission line, courtesy of ElectraNet Inside Photos: Torrens Island Power Station (page 9), courtesy of AGL Energy Tungkillo Substation (page 10), courtesy of ElectraNet Powerlines at Iron Knob (page 13), courtesy of Cowell Electric Note: All photographs in this report have been used with the permission of the relevant provider. i Annual Report of the Technical Regulator 2013-14: Electricity Preface This report covers the Technical Regulator’s operations under the Electricity Act 1996 and the Technical Regulator’s administration of the Energy Products (Safety and Efficiency) Act 2000 for the financial year ending 30 June 2014. -
State of the Energy Market 2011
state of the energy market 2011 AUSTRALIAN ENERGY REGULATOR state of the energy market 2011 AUSTRALIAN ENERGY REGULATOR Australian Energy Regulator Level 35, The Tower, 360 Elizabeth Street, Melbourne Central, Melbourne, Victoria 3000 Email: [email protected] Website: www.aer.gov.au ISBN 978 1 921964 05 3 First published by the Australian Competition and Consumer Commission 2011 10 9 8 7 6 5 4 3 2 1 © Commonwealth of Australia 2011 This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced without prior written permission from the Australian Competition and Consumer Commission. Requests and inquiries concerning reproduction and rights should be addressed to the Director Publishing, ACCC, GPO Box 3131, Canberra ACT 2601, or [email protected]. ACKNOWLEDGEMENTS This report was prepared by the Australian Energy Regulator. The AER gratefully acknowledges the following corporations and government agencies that have contributed to this report: Australian Bureau of Statistics; Australian Energy Market Operator; d-cyphaTrade; Department of Resources, Energy and Tourism (Cwlth); EnergyQuest; Essential Services Commission (Victoria); Essential Services Commission of South Australia; Independent Competition and Regulatory Commission (ACT); Independent Pricing and Regulatory Tribunal of New South Wales; Office of the Tasmanian Economic Regulator; and Queensland Competition Authority. The AER also acknowledges Mark Wilson for supplying photographic images. IMPORTANT NOTICE The information in this publication is for general guidance only. It does not constitute legal or other professional advice, and should not be relied on as a statement of the law in any jurisdiction. Because it is intended only as a general guide, it may contain generalisations. -
Report Title
ISSN 1835-9728 Environmental Economics Research Hub Research Reports The Integration of Wind Generation within the South Australian Region of the Australia National Electricity Market Nicholas Cutler, Iain MacGill and Hugh Outhred Research Report No. 38 November 10 2009 About the authors Nicholas Cutler is a research associate in School of Electrical Engineering and Telecommunications at the University of New South Wales, Sydney, Australia. His research interests include integrating renewable energy into power systems, specifically wind power and wind power forecasting. [email protected] +61 2 9385 4061 Hugh Outhred is a Professorial Visiting Fellow in the School of Electrical Engineering and Telecommunications at the University of New South Wales, Sydney. His research interests are in the areas of energy industry restructuring, energy economics, demand management, and renewable energy. [email protected] +61 2 9385 4035 Dr Iain MacGill is a Senior Lecturer in the School of Electrical Engineering and Telecommunications at the University of New South Wales, and Joint Director (Engineering) for the University’s Centre for Energy and Environmental Markets (CEEM). Iain’s teaching and research interests include electricity industry restructuring and the Australian National Electricity Market, sustainable energy technologies, distributed energy systems, energy policy and environmental regulation. CEEM itself undertakes interdisciplinary research in the monitoring, analysis and design of energy and environmental markets and their associated policy frameworks. To learn more about CEEM and its work, visit the centre website at – www.ceem.unsw.edu.au [email protected] +61 2 9385 4092 Environmental Economics Research Hub Research Reports are published by The Crawford School of Economics and Government, Australian National University, Canberra 0200 Australia. -
Clarence Meeting Agenda
CLARENCE CITY COUNCIL 11 NOV 2019 1 Prior to the commencement of the meeting, the Mayor will make the following declaration: “I acknowledge the Tasmanian Aboriginal Community as the traditional custodians of the land on which we meet today, and pay respect to elders, past and present”. The Mayor also to advise the Meeting and members of the public that Council Meetings, not including Closed Meeting, are audio-visually recorded and published to Council’s website. CLARENCE CITY COUNCIL 11 NOV 2019 2 COUNCIL MEETING MONDAY 11 NOVEMBER 2019 TABLE OF CONTENTS ITEM SUBJECT PAGE 1. APOLOGIES ....................................................................................................................................... 5 2. CONFIRMATION OF MINUTES ............................................................................................................ 5 3. MAYOR’S COMMUNICATION ............................................................................................................. 5 4. COUNCIL WORKSHOPS ...................................................................................................................... 6 5. DECLARATIONS OF INTERESTS OF ALDERMAN OR CLOSE ASSOCIATE ............................................. 7 6. TABLING OF PETITIONS .................................................................................................................... 8 7. PUBLIC QUESTION TIME.................................................................................................................... 9 7.1 PUBLIC QUESTIONS -
The Glacial History of the Upper Mersey Valley
THE GLACIAL HISTORY OF THE UPPER MERSEY VALLEY by A a" D. G. Hannan, B.Sc., B. Ed., M. Ed. (Hons.) • Submitted in fulfilment of the requirements for the degree of Master of Science UNIVERSITY OF TASMANIA HOBART February, 1989 CONTENTS Summary of Figures and Tables Acknowledgements ix Declaration ix Abstract 1 Chapter 1 The upper Mersey Valley and adjacent areas: geographical 3 background Location and topography 3 Lithology and geological structure of the upper Mersey region 4 Access to the region 9 Climate 10 Vegetation 10 Fauna 13 Land use 14 Chapter 2 Literature review, aims and methodology 16 Review of previous studies of glaciation in the upper Mersey 16 region Problems arising from the literature 21 Aims of the study and methodology 23 Chapter $ Landforms produced by glacial and periglacial processes 28 Landforms of glacial erosion 28 Landforms of glacial deposition 37 Periglacial landforms and deposits 43 Chapter 4 Stratigraphic relationships between the Rowallan, Arm and Croesus glaciations 51 Regional stratigraphy 51 Weathering characteristics of the glacial, glacifluvial and solifluction deposits 58 Geographic extent and location of glacial sediments 75 Chapter 5 The Rowallan Glaciation 77 The extent of Rowallan Glaciation ice 77 Sediments associated with Rowallan Glaciation ice 94 Directions of ice movement 106 Deglaciation of Rowallan Glaciation ice 109 The age of the Rowallan Glaciation 113 Climate during the Rowallan Glaciation 116 Chapter The Arm, Croesus and older glaciations 119 The Arm Glaciation 119 The Croesus Glaciation 132 Tertiary Glaciation 135 Late Palaeozoic Glaciation 136 Chapter 7 Conclusions 139 , Possible correlations of other glaciations with the upper Mersey region 139 Concluding remarks 146 References 153 Appendix A INDEX OF FIGURES AND TABLES FIGURES Follows page Figure 1: Location of the study area. -
Multipurpose Water Uses of Hydropower Reservoirs
MULTIPURPOSE WATER USES OF HYDROPOWER RESERVOIRS 7 APRIL 2015 “SHARING THE WATER USES OF MULTIPURPOSE HYDROPOWER RESERVOIRS: THE SHARE CONCEPT” FINAL VERSION This paper presents the main deliverables of the EDF – WWC framework “multipurpose water uses of hydropower reservoirs”. Multipurpose hydropower reservoirs are designed and/or operated to provide services beyond electricity generation, such as water supply, flood and drought management, irrigation, navigation, fisheries, environmental services and recreational activities, etc. These reservoir purposes can conflict at times but are also often complementary: a major challenge with multi‑purpose reservoirs is sharing water amongst competing users. This framework provides: tools to avoid/minimize tensions among users, governance issues for all stages and financial/economical models to develop and operate such multipurpose reservoirs. The SHARE concept was developed as a solution of these challenges. It is based on international case studies to find guidance on particular issues of multipurpose water reservoirs. By Emmanuel BRANCHE Version: Final ‑ April, 7th 2015 The author wish to thank in particular the people and organisations that participated in the discussions of the Steering Committee and those who provided comments on the draft main report: • EDF ‑ Electricité de France (Jean Comby) • ICOLD ‑ International Commission on Large Dams (Alessandro Palmieri) • IEA Hydro ‑ International Energy Agency Hydro (Niels Nielsen) • IHA ‑ International Hydropower Association (Richard Taylor -
AGL Supplementary
AGL submission to Australian Energy Market Commission Review of Effectiveness of Competition in the Electricity and Gas Retail Markets in South Australia Date: September 2008 Table of Contents Introduction........................................................................... 1 The South Australian Wholesale Market...................................... 2 The Torrens Island Power Station.............................................. 6 Summer 2007/2008................................................................ 7 Outlook for prices in South Australia........................................ 11 Comments on the UnitingCare Wesley Submissions ................... 13 Introduction AGL has made a submission to the Commission in support of the Commission’s finding in its Draft Report1 that the gas and electricity markets in South Australia are demonstrating effective competition. In that submission we said that: • AGL concurs with the Commission’s findings that the South Australian energy markets are competitive; • The high prices for the first quarter of 2008 reflected the structure of the South Australian market and the extreme summer that had occurred; and • Market churn was not directly related to high prices. Since making that submission, AGL has becoming increasingly concerned about a number of comments made by an interested party in submissions to the Commission’s Issues Paper and the Draft Report that claim there is a lack of competition in the wholesale electricity market in South Australia. AGL believes that the facts do not support these contrary submissions and the arguments made in them cannot be supported. We are therefore providing additional information to the Commission to more fully discuss pricing issues in South Australia and to counter these claims. AGL notes that similar claims of market failure and generator profiteering were made in the aftermath of the extreme summer of 2000/01. -
Infrastructure Project Pipeline 2020-21
February 2021 Tasmania’s 10 Year Infrastructure Pipeline Infrastructure Tasmania i Contents Contents ............................................................................................................................................................. i Minister’s message ............................................................................................................................................ ii 1. About the Pipeline ......................................................................................................................................... 1 1.1 What is included in the Pipeline? ................................................................................................................... 1 1.2 Purpose of the Pipeline .................................................................................................................................. 2 2. Infrastructure in the context of COVID-19 ....................................................................................................... 3 3. Analysis of Pipeline trends ............................................................................................................................. 5 3.1 Timing of spend by asset class ........................................................................................................................ 5 3.2 Project driver analysis ..................................................................................................................................... 6 3.3 Infrastructure class analysis