1. Group Actions and Other Topics in Group Theory

Total Page:16

File Type:pdf, Size:1020Kb

1. Group Actions and Other Topics in Group Theory 1. Group actions and other topics in group theory October 11, 2014 The main topics considered here are group actions, the Sylow theorems, semi-direct products, nilpotent and solvable groups, and simple groups. See Preliminary remarks for some of the notation used here, especially regarding general linear groups. Some further notation: [n] denotes the set of the first n natural numbers 1; 2; :::; n. Pk[n] denotes the set of k-element subsets of [n]. 1 Group actions 1.1 Definition of a group action or G-set Let G be a group, with identity element e.A left G-set is a set X equipped with a map θ : G × X−!X satisfying (i) θ(gh; x) = θ(g; θ(h; x)) for all g; h 2 G and all x 2 X, and (ii) θ(e; x) = x for all x 2 X. Usually we write either g · x or simply juxtaposition gx for θ(g; x); in the latter notation conditions (i) and (ii) become (gh)x = g(hx) and ex = x. We also call this data a group action, or say that \G acts on X" (on the left). Similarly a right G-set is a set X equipped with a map θ : X × G−!X satisfying (in the evident juxtaposition notation) x(gh) = (xg)h and xe = x. Of course the distinction between left and right G-actions does not depend on whether we write the domain of θ as G × X or X × G. The distinction is that in a left action gh acts by h first, then g, whereas in a right action g acts first, then h. Notice that up to this point, we haven't even used the existence of inverses, so exactly the same definition makes sense for left and right monoid actions. We will make little use of monoid actions, however. One immediate advantage of the existence of inverses is that any right action can be converted to a left action by setting g · x = xg−1; similarly any left action can be converted to a right action. Nevertheless it is important to pay close attention to which side the group is acting on. If the side is not specified we always mean a left action (an arbitrary choice on my part!). Any statement about left actions has a parallel statement for right actions; we leave it to the reader to make the translation. 1.2 Some fundamental terminology Let X; Y be (left) G-sets. A map φ : X−!Y is a G-map or a G-equivariant map if φ(gx) = gφ(x) for all g 2 G, x 2 X. Then G-sets and G-maps form a category that we will denote 1 G-Set. The fixed-point set XG is defined by XG = fx 2 X : gx = x 8g 2 Gg. This defines a functor G-set −! Set in the evident way. The isotropy group Gx of a point x 2 X is defined by Gx = fg 2 G : gx = xg; clearly Gx is a subgroup. Thus the fixed-points are the points x with Gx = G. The action is trivial if every point is a fixed point. At the opposite extreme, the action is free if Gx = feg for all x 2 X. Define an equivalence relation on X by x ∼ y if there exists g 2 G such that gx = y.A equivalence class is called an orbit, usually denoted O. The orbit determined by a particular x 2 X is denoted Ox or Gx. The set of all orbits of a left action is denoted GnX; the set of orbits of a right action is denoted X=G. This notational distinction is important because we will often have groups acting on the left and the right of the same set X. The action is transitive if there is only one orbit. In other words, for all x; y 2 X there exists a g such that gx = y. Transitive actions will be discussed in more detail in a later section. If O ⊂ X is an orbit and x 2 O, then the map G−!X given by g 7! gx factors through =∼ a G-bijection G=Gx −! O = Gx. Hence [G : Gx] = jGxj (this is true even when the sets in question are infinite, but we have in mind here the finite case). Finally, we recall a simple but very powerful counting formula. Suppose the group G acts on the finite set X. Then X X jXj = jOj = [G : Gx]; O x2GnX where the first sum is over the orbits O of the action and the second sum means, in a mildly abusive notation, that we are taking a fixed representative x of each orbit. This choice of x 2 O is arbitrary, but the sum is nevertheless well-defined since [G : Gx] = jOj is independent of the choice. 2 Examples 1. The symmetric group Sn acts on the left of [n] := f1; 2; :::; ng by permutions. The action is transitive, with the isotropy group of any point isomorphic to Sn−1. More generally, if X is any set, we let P erm X denote the group of bijections X−!X. Then by construction P erm X acts on the left of X by σ · x = σ(x). It is a left action because a composition σ ◦ τ acts by τ first, then σ. 2. If G is any group, H any subgroup, then the left translation action of H on G is defined by h · g = hg for h 2 H, g 2 G. The right translation action is given by g · h = gh. These are both free actions. The orbit space HnG of the left action is by definition the set of right cosets Hg, while the orbit space G=H of the right action consists of the left cosets gH. If G is finite, then (since every orbit has size jHj) the counting formula just says that jGj = jHj · [G : H]. 2 3. If G is any group, the left conjugation action of G on itself is given by g · x = gxg−1. Similarly right conjugation is defined by x · g = g−1xg. The fixed-point set of either action is the center C(G)(Z(G) is another common notation for the center). The orbits are the conjugacy classes of G. The isotropy group of x is CGx, the centralizer of x in G. In this case the counting formula yields the class equation. To state it we need a notation for conjugacy classes, and|sadly|we have already assigned the letter \C" to centers and centralizers. I will use the non-standard notation κ(x) to mean the conjugacy class of x, and Conj G to mean the set of conjugacy classes. We then have X X jGj = jκ(x)j = [G : CGx]: x2Conj G x2Conj G Once again the notation has the obvious interpretation: We are choosing one x from each conjugacy class, and the choice doesn't matter. 4. If G is any group, let S(G) denote the set of subgroups of G. Then G acts on S(G) by left conjugation: g · H = gHg−1 (there is also a right conjugation, of course). The fixed-points are the normal subgroups. The orbits are conjugacy classes of subgroups. The isotropy group of H is the normalizer NGH of H in G. 5. Let X; Y be sets and let F (X; Y ) denote the set of functions X−!Y . If Y is a left G-set, we get a left G-action on F (X; Y ) by (g · φ)(x) = g(φ(x)). If X is a left G-set, we get a right G-action on F (X; Y ) by (φ · g)(x) = φ(gx). Note carefully that this is a right action. However, we can always convert it to a left action by (g ? φ)(x) = φ(g−1x). If both X and Y are G-sets, we can get a combined left action of G on F (X; Y ) by (g · φ)(x) = gφ(g−1x). The fixed-point set of the \combined" left action gφg−1 is the subset of G-equivariant maps X−!Y , as is easily checked. n 6. Let X be a set, X the n-fold Cartesian product of X with itself. Then Sn acts on Xn by permuting the coordinates. This is a right action, given explicitly by (x1; :::; xn) · σ = (xσ(1); :::xσ(n)): One could check directly that this is a right action, but easier is to note that Xn = F ([n];X), where Sn acts on the domain, on the left. So this is a special case of the previous example. The fixed-point set is the diagonal subset of all (x; x; :::; x). Contemplation of the orbits and isotropy groups is left to the reader. 7. Projective spaces. The purpose of this example is twofold. First of all, projective spaces are ubiquitous in topology and geometry|including especially algebraic geometry, which leads me to discuss them in an algebra course. Second, in \nature" we are often first confronted not with a group action or even a group, but with a set (or topological space, etc.) X that may secretly be equipped with a useful group action and/or realization as the orbit set of a group action. It's important to be able to recognize such structures. Let F be a field, and let V be a finite dimensional vector space over F . (In fact the finite-dimensionality isn't necessary, but I prefer to avoid distractions.) The projective space P(V ) is the set of lines through the origin in V .
Recommended publications
  • Math 5111 (Algebra 1) Lecture #14 of 24 ∼ October 19Th, 2020
    Math 5111 (Algebra 1) Lecture #14 of 24 ∼ October 19th, 2020 Group Isomorphism Theorems + Group Actions The Isomorphism Theorems for Groups Group Actions Polynomial Invariants and An This material represents x3.2.3-3.3.2 from the course notes. Quotients and Homomorphisms, I Like with rings, we also have various natural connections between normal subgroups and group homomorphisms. To begin, observe that if ' : G ! H is a group homomorphism, then ker ' is a normal subgroup of G. In fact, I proved this fact earlier when I introduced the kernel, but let me remark again: if g 2 ker ', then for any a 2 G, then '(aga−1) = '(a)'(g)'(a−1) = '(a)'(a−1) = e. Thus, aga−1 2 ker ' as well, and so by our equivalent properties of normality, this means ker ' is a normal subgroup. Thus, we can use homomorphisms to construct new normal subgroups. Quotients and Homomorphisms, II Equally importantly, we can also do the reverse: we can use normal subgroups to construct homomorphisms. The key observation in this direction is that the map ' : G ! G=N associating a group element to its residue class / left coset (i.e., with '(a) = a) is a ring homomorphism. Indeed, the homomorphism property is precisely what we arranged for the left cosets of N to satisfy: '(a · b) = a · b = a · b = '(a) · '(b). Furthermore, the kernel of this map ' is, by definition, the set of elements in G with '(g) = e, which is to say, the set of elements g 2 N. Thus, kernels of homomorphisms and normal subgroups are precisely the same things.
    [Show full text]
  • Arxiv:2006.00374V4 [Math.GT] 28 May 2021
    CONTROLLED MATHER-THURSTON THEOREMS MICHAEL FREEDMAN ABSTRACT. Classical results of Milnor, Wood, Mather, and Thurston produce flat connections in surprising places. The Milnor-Wood inequality is for circle bundles over surfaces, whereas the Mather-Thurston Theorem is about cobording general manifold bundles to ones admitting a flat connection. The surprise comes from the close encounter with obstructions from Chern-Weil theory and other smooth obstructions such as the Bott classes and the Godbillion-Vey invariant. Contradic- tion is avoided because the structure groups for the positive results are larger than required for the obstructions, e.g. PSL(2,R) versus U(1) in the former case and C1 versus C2 in the latter. This paper adds two types of control strengthening the positive results: In many cases we are able to (1) refine the Mather-Thurston cobordism to a semi-s-cobordism (ssc) and (2) provide detail about how, and to what extent, transition functions must wander from an initial, small, structure group into a larger one. The motivation is to lay mathematical foundations for a physical program. The philosophy is that living in the IR we cannot expect to know, for a given bundle, if it has curvature or is flat, because we can’t resolve the fine scale topology which may be present in the base, introduced by a ssc, nor minute symmetry violating distortions of the fiber. Small scale, UV, “distortions” of the base topology and structure group allow flat connections to simulate curvature at larger scales. The goal is to find a duality under which curvature terms, such as Maxwell’s F F and Hilbert’s R dvol ∧ ∗ are replaced by an action which measures such “distortions.” In this view, curvature resultsR from renormalizing a discrete, group theoretic, structure.
    [Show full text]
  • Torsion Homology and Cellular Approximation 11
    TORSION HOMOLOGY AND CELLULAR APPROXIMATION RAMON´ FLORES AND FERNANDO MURO Abstract. In this note we describe the role of the Schur multiplier in the structure of the p-torsion of discrete groups. More concretely, we show how the knowledge of H2G allows to approximate many groups by colimits of copies of p-groups. Our examples include interesting families of non-commutative infinite groups, including Burnside groups, certain solvable groups and branch groups. We also provide a counterexample for a conjecture of E. Farjoun. 1. Introduction Since its introduction by Issai Schur in 1904 in the study of projective representations, the Schur multiplier H2(G, Z) has become one of the main invariants in the context of Group Theory. Its importance is apparent from the fact that its elements classify all the central extensions of the group, but also from his relation with other operations in the group (tensor product, exterior square, derived subgroup) or its role as the Baer invariant of the group with respect to the variety of abelian groups. This last property, in particular, gives rise to the well- known Hopf formula, which computes the multiplier using as input a presentation of the group, and hence has allowed to use it in an effective way in the field of computational group theory. A brief and concise account to the general concept can be found in [38], while a thorough treatment is the monograph by Karpilovsky [33]. In the last years, the close relationship between the Schur multiplier and the theory of co-localizations of groups, and more precisely with the cellular covers of a group, has been remarked.
    [Show full text]
  • The Fundamental Groupoid of the Quotient of a Hausdorff
    The fundamental groupoid of the quotient of a Hausdorff space by a discontinuous action of a discrete group is the orbit groupoid of the induced action Ronald Brown,∗ Philip J. Higgins,† Mathematics Division, Department of Mathematical Sciences, School of Informatics, Science Laboratories, University of Wales, Bangor South Rd., Gwynedd LL57 1UT, U.K. Durham, DH1 3LE, U.K. October 23, 2018 University of Wales, Bangor, Maths Preprint 02.25 Abstract The main result is that the fundamental groupoidof the orbit space of a discontinuousaction of a discrete groupon a Hausdorffspace which admits a universal coveris the orbit groupoid of the fundamental groupoid of the space. We also describe work of Higgins and of Taylor which makes this result usable for calculations. As an example, we compute the fundamental group of the symmetric square of a space. The main result, which is related to work of Armstrong, is due to Brown and Higgins in 1985 and was published in sections 9 and 10 of Chapter 9 of the first author’s book on Topology [3]. This is a somewhat edited, and in one point (on normal closures) corrected, version of those sections. Since the book is out of print, and the result seems not well known, we now advertise it here. It is hoped that this account will also allow wider views of these results, for example in topos theory and descent theory. Because of its provenance, this should be read as a graduate text rather than an article. The Exercises should be regarded as further propositions for which we leave the proofs to the reader.
    [Show full text]
  • GROUP ACTIONS 1. Introduction the Groups Sn, An, and (For N ≥ 3)
    GROUP ACTIONS KEITH CONRAD 1. Introduction The groups Sn, An, and (for n ≥ 3) Dn behave, by their definitions, as permutations on certain sets. The groups Sn and An both permute the set f1; 2; : : : ; ng and Dn can be considered as a group of permutations of a regular n-gon, or even just of its n vertices, since rigid motions of the vertices determine where the rest of the n-gon goes. If we label the vertices of the n-gon in a definite manner by the numbers from 1 to n then we can view Dn as a subgroup of Sn. For instance, the labeling of the square below lets us regard the 90 degree counterclockwise rotation r in D4 as (1234) and the reflection s across the horizontal line bisecting the square as (24). The rest of the elements of D4, as permutations of the vertices, are in the table below the square. 2 3 1 4 1 r r2 r3 s rs r2s r3s (1) (1234) (13)(24) (1432) (24) (12)(34) (13) (14)(23) If we label the vertices in a different way (e.g., swap the labels 1 and 2), we turn the elements of D4 into a different subgroup of S4. More abstractly, if we are given a set X (not necessarily the set of vertices of a square), then the set Sym(X) of all permutations of X is a group under composition, and the subgroup Alt(X) of even permutations of X is a group under composition. If we list the elements of X in a definite order, say as X = fx1; : : : ; xng, then we can think about Sym(X) as Sn and Alt(X) as An, but a listing in a different order leads to different identifications 1 of Sym(X) with Sn and Alt(X) with An.
    [Show full text]
  • Two-Dimensional Rotational Kinematics Rigid Bodies
    Rigid Bodies A rigid body is an extended object in which the Two-Dimensional Rotational distance between any two points in the object is Kinematics constant in time. Springs or human bodies are non-rigid bodies. 8.01 W10D1 Rotation and Translation Recall: Translational Motion of of Rigid Body the Center of Mass Demonstration: Motion of a thrown baton • Total momentum of system of particles sys total pV= m cm • External force and acceleration of center of mass Translational motion: external force of gravity acts on center of mass sys totaldp totaldVcm total FAext==mm = cm Rotational Motion: object rotates about center of dt dt mass 1 Main Idea: Rotation of Rigid Two-Dimensional Rotation Body Torque produces angular acceleration about center of • Fixed axis rotation: mass Disc is rotating about axis τ total = I α passing through the cm cm cm center of the disc and is perpendicular to the I plane of the disc. cm is the moment of inertial about the center of mass • Plane of motion is fixed: α is the angular acceleration about center of mass cm For straight line motion, bicycle wheel rotates about fixed direction and center of mass is translating Rotational Kinematics Fixed Axis Rotation: Angular for Fixed Axis Rotation Velocity Angle variable θ A point like particle undergoing circular motion at a non-constant speed has SI unit: [rad] dθ ω ≡≡ω kkˆˆ (1)An angular velocity vector Angular velocity dt SI unit: −1 ⎣⎡rad⋅ s ⎦⎤ (2) an angular acceleration vector dθ Vector: ω ≡ Component dt dθ ω ≡ magnitude dt ω >+0, direction kˆ direction ω < 0, direction − kˆ 2 Fixed Axis Rotation: Angular Concept Question: Angular Acceleration Speed 2 ˆˆd θ Object A sits at the outer edge (rim) of a merry-go-round, and Angular acceleration: α ≡≡α kk2 object B sits halfway between the rim and the axis of rotation.
    [Show full text]
  • 1.2 Rules for Translations
    1.2. Rules for Translations www.ck12.org 1.2 Rules for Translations Here you will learn the different notation used for translations. The figure below shows a pattern of a floor tile. Write the mapping rule for the translation of the two blue floor tiles. Watch This First watch this video to learn about writing rules for translations. MEDIA Click image to the left for more content. CK-12 FoundationChapter10RulesforTranslationsA Then watch this video to see some examples. MEDIA Click image to the left for more content. CK-12 FoundationChapter10RulesforTranslationsB 18 www.ck12.org Chapter 1. Unit 1: Transformations, Congruence and Similarity Guidance In geometry, a transformation is an operation that moves, flips, or changes a shape (called the preimage) to create a new shape (called the image). A translation is a type of transformation that moves each point in a figure the same distance in the same direction. Translations are often referred to as slides. You can describe a translation using words like "moved up 3 and over 5 to the left" or with notation. There are two types of notation to know. T x y 1. One notation looks like (3, 5). This notation tells you to add 3 to the values and add 5 to the values. 2. The second notation is a mapping rule of the form (x,y) → (x−7,y+5). This notation tells you that the x and y coordinates are translated to x − 7 and y + 5. The mapping rule notation is the most common. Example A Sarah describes a translation as point P moving from P(−2,2) to P(1,−1).
    [Show full text]
  • Lie Group and Geometry on the Lie Group SL2(R)
    INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Lie group and Geometry on the Lie Group SL2(R) PROJECT REPORT – SEMESTER IV MOUSUMI MALICK 2-YEARS MSc(2011-2012) Guided by –Prof.DEBAPRIYA BISWAS Lie group and Geometry on the Lie Group SL2(R) CERTIFICATE This is to certify that the project entitled “Lie group and Geometry on the Lie group SL2(R)” being submitted by Mousumi Malick Roll no.-10MA40017, Department of Mathematics is a survey of some beautiful results in Lie groups and its geometry and this has been carried out under my supervision. Dr. Debapriya Biswas Department of Mathematics Date- Indian Institute of Technology Khargpur 1 Lie group and Geometry on the Lie Group SL2(R) ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Debapriya Biswas for her help and guidance in preparing this project. Thanks are also due to the other professor of this department for their constant encouragement. Date- place-IIT Kharagpur Mousumi Malick 2 Lie group and Geometry on the Lie Group SL2(R) CONTENTS 1.Introduction ................................................................................................... 4 2.Definition of general linear group: ............................................................... 5 3.Definition of a general Lie group:................................................................... 5 4.Definition of group action: ............................................................................. 5 5. Definition of orbit under a group action: ...................................................... 5 6.1.The general linear
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Definition 1.1. a Group Is a Quadruple (G, E, ⋆, Ι)
    GROUPS AND GROUP ACTIONS. 1. GROUPS We begin by giving a definition of a group: Definition 1.1. A group is a quadruple (G, e, ?, ι) consisting of a set G, an element e G, a binary operation ?: G G G and a map ι: G G such that ∈ × → → (1) The operation ? is associative: (g ? h) ? k = g ? (h ? k), (2) e ? g = g ? e = g, for all g G. ∈ (3) For every g G we have g ? ι(g) = ι(g) ? g = e. ∈ It is standard to suppress the operation ? and write gh or at most g.h for g ? h. The element e is known as the identity element. For clarity, we may also write eG instead of e to emphasize which group we are considering, but may also write 1 for e where this is more conventional (for the group such as C∗ for example). Finally, 1 ι(g) is usually written as g− . Remark 1.2. Let us note a couple of things about the above definition. Firstly clo- sure is not an axiom for a group whatever anyone has ever told you1. (The reason people get confused about this is related to the notion of subgroups – see Example 1.8 later in this section.) The axioms used here are not “minimal”: the exercises give a different set of axioms which assume only the existence of a map ι without specifying it. We leave it to those who like that kind of thing to check that associa- tivity of triple multiplications implies that for any k N, bracketing a k-tuple of ∈ group elements (g1, g2, .
    [Show full text]
  • Projective Representations of Groups
    PROJECTIVE REPRESENTATIONS OF GROUPS EDUARDO MONTEIRO MENDONCA Abstract. We present an introduction to the basic concepts of projective representations of groups and representation groups, and discuss their relations with group cohomology. We conclude the text by discussing the projective representation theory of symmetric groups and its relation to Sergeev and Hecke-Clifford Superalgebras. Contents Introduction1 Acknowledgements2 1. Group cohomology2 1.1. Cohomology groups3 1.2. 2nd-Cohomology group4 2. Projective Representations6 2.1. Projective representation7 2.2. Schur multiplier and cohomology class9 2.3. Equivalent projective representations 10 3. Central Extensions 11 3.1. Central extension of a group 12 3.2. Central extensions and 2nd-cohomology group 13 4. Representation groups 18 4.1. Representation group 18 4.2. Representation groups and projective representations 21 4.3. Perfect groups 27 5. Symmetric group 30 5.1. Representation groups of symmetric groups 30 5.2. Digression on superalgebras 33 5.3. Sergeev and Hecke-Clifford superalgebras 36 References 37 Introduction The theory of group representations emerged as a tool for investigating the structure of a finite group and became one of the central areas of algebra, with important connections to several areas of study such as topology, Lie theory, and mathematical physics. Schur was Date: September 7, 2017. Key words and phrases. projective representation, group, symmetric group, central extension, group cohomology. 2 EDUARDO MONTEIRO MENDONCA the first to realize that, for many of these applications, a new kind of representation had to be introduced, namely, projective representations. The theory of projective representations involves homomorphisms into projective linear groups. Not only do such representations appear naturally in the study of representations of groups, their study showed to be of great importance in the study of quantum mechanics.
    [Show full text]
  • 2-D Drawing Geometry Homogeneous Coordinates
    2-D Drawing Geometry Homogeneous Coordinates The rotation of a point, straight line or an entire image on the screen, about a point other than origin, is achieved by first moving the image until the point of rotation occupies the origin, then performing rotation, then finally moving the image to its original position. The moving of an image from one place to another in a straight line is called a translation. A translation may be done by adding or subtracting to each point, the amount, by which picture is required to be shifted. Translation of point by the change of coordinate cannot be combined with other transformation by using simple matrix application. Such a combination is essential if we wish to rotate an image about a point other than origin by translation, rotation again translation. To combine these three transformations into a single transformation, homogeneous coordinates are used. In homogeneous coordinate system, two-dimensional coordinate positions (x, y) are represented by triple- coordinates. Homogeneous coordinates are generally used in design and construction applications. Here we perform translations, rotations, scaling to fit the picture into proper position 2D Transformation in Computer Graphics- In Computer graphics, Transformation is a process of modifying and re- positioning the existing graphics. • 2D Transformations take place in a two dimensional plane. • Transformations are helpful in changing the position, size, orientation, shape etc of the object. Transformation Techniques- In computer graphics, various transformation techniques are- 1. Translation 2. Rotation 3. Scaling 4. Reflection 2D Translation in Computer Graphics- In Computer graphics, 2D Translation is a process of moving an object from one position to another in a two dimensional plane.
    [Show full text]